next up previous contents
Next: The construction Up: The modal completeness of Previous: General outline of the

Tools

Definition 5.1   $\widetilde{M_0}:= \{ \Gamma \mid \Gamma \mbox{ maximal
$\mathit{ILM_0}$ -consis...
...orall
\mathrm{A} \in \Gamma \ \ Prop( \mathrm{A})
\subset
Prop( \mathcal{A}) \}$. Prop(B) is the set of propositional variables occurring in B.

The definitions of $ \prec$ and $ \Gamma \prec_{\mbox{\footnotesize {B}}} \Delta$ are precisely as before.

In perfect analogy with the case of $\mathit{ILM}$ we have the following two lemmas:

Lemma 5.2   Let $ x \in \widetilde{M_0} $ and $ \neg ( A \rhd B ) \in x \cap R $. There exists y such that $ x \prec_{\mbox{\footnotesize {B}}} y $and $ A \in y $. Moreover, y can be chosen to contain a ``maximal amount'' of $\Box$-formulas.

Lemma 5.3  

Let $ x \in \widetilde{M_0} $ with $ A \rhd B \in x $ and let $y \in \widetilde{M_0} $ be such that $ x \prec_{\mbox{\footnotesize {C}}} y $ and $ A \in y $. There exists $ z \ _C \! \succ x$ , with $ B \in z $.

The M0-axiom is essentially used only in the next lemma.

Lemma 5.4   Consider $ w \prec_{\mbox{\footnotesize {B}}} x \prec y $, all in $\widetilde{M_0}$, such that $ C \rhd D \in w$, and $ C \in y $. Then there exists $z \ _B \! \succ x $ with both $D \in z$ and $ x \subset_{\Box} z$. This z can be chosen to be maximal w.r.t. the $\Box$-inclusion.


 \begin{trivlist}% latex2html id marker 3865
\item[\hskip\labelsep{\sc
Proof~of~{...
... to be maximal w.r.t.\ $\Box$ -inclusion.\hspace*{\fill} {\sc qed}\end{trivlist}



Joost Joosten
2000-02-07