The Logic of Provability
Suggestions for exercises. Week 6.

1. (C)

We have the following conditionals to be provable in the indicated logics.
(a) $\mathbf{K} \vdash \square p \wedge \neg \square \perp \rightarrow \neg \square \neg p$
(b) $\mathbf{K} 4 \vdash \square p \wedge \square \square(p \rightarrow q) \rightarrow \square \square q$
(c) $\mathbf{K} \vdash \square \square p \wedge \square \square(p \rightarrow q) \rightarrow \square \square q$

Show for each of this implications that the direction can not be reversed, that is, we have no equivalences in the logics.
2. (C) (D) $\left(^{*}\right)$

Show that K plus Löb's rule proves precisely the same theorems as \mathbf{K}. This is rather surprising since we know that K4 plus Löb's rule is extensionally the same as GL which properly extends K4.
3. (C) (A)

Prove that $\mathbf{G L} \vdash \square A \Rightarrow \mathbf{G L} \vdash A$.
4. (C) (D)

Prove that T is modally complete with respect to the class of reflexive frames. (Hint: we only need to alter the definition of the accessability relation R from the completeness proof of \mathbf{K} a bit.)
5. (C) (D)

Prove that S4 is modally complete with respect to the class of reflexive and transitive frames.
6. (C)

Let Blöb's rule be the rule that from $\square(\square A \rightarrow A)$ we may conclude $\square A$. Show that the logic consisting of K4 plus Blöb's rule proves precisely the same theorems as GL.
7. (C) (D)

Using the completeness theorem for $\mathbf{S} 4$ prove:

$$
\mathbf{S} \mathbf{4} \vdash \square \varphi \vee \square \psi \text { implies } \mathbf{S} \mathbf{4} \vdash \varphi \text { or } \mathbf{S} \mathbf{4} \vdash \psi \text {. }
$$

(Hint: a countermodel for $\square \varphi \vee \square \psi$ can be combined from those of φ and ψ.)
8. (C) (D)

Describe a class of Kripke models under which the logic \mathbf{K} together with the axiom $\square \square \perp$ is sound and complete.
9. (C)

For this exercise our language will be $\left\{+, \cdot, 0, S, \operatorname{lh}(-),(-)_{x}\right\}$. Here $\operatorname{lh}(-)$ is the function that assigns to each finite sequence the length of the sequence. $(-)_{x}$ gives the x-th element of the sequence. So if s is the code of the sequence $[12,15,8,31]$ we have $\operatorname{lh}(s)=4$, and for example $(s)_{3}=$ 8. Further we may assume the existence of a Σ predicate Finseq (x) that holds only on codes of finite sequences. Give formulas G_{i} such that

- $G_{0}(a, b) \Leftrightarrow \mathbb{N} \vDash 2^{a}=b$
- $G_{1}(a, b) \Leftrightarrow \mathbb{N} \vDash a!=b$
- $G_{2}(a, b) \Leftrightarrow \mathbb{N} \vDash 2^{a}+a=b$
- $G_{3}(a, b) \Leftrightarrow \mathbb{N} \vDash 2^{a}+a!=b$
- $G_{4}(a, b) \Leftrightarrow \mathbb{N} \vDash a^{a}=b$
- $G_{5}(a, b) \Leftrightarrow \mathbb{N} \vDash a^{a^{a}}=b$

Plea that the same can be done without adding $\operatorname{lh}(-)$ and $(-)_{x}$ to our language.
10. (D)

The set of polynomials P in the variable x is defined as $\left\{\sum_{i=0}^{\infty} a_{1} x^{i} \mid a_{i} \in \mathbb{N} \quad a_{i}=0\right.$ except for finitely many $\left.i\right\}$. We leave out all the contributions with coefficient $a_{i}=0$. Prove that any term in one variable in the language of PA is functionally equivalent to a polynomial, that is, they are the same function. Conclude that 2^{x} can never be given as a term of PA.
11. (C) (A)

Make a rectangle whose cornerpoints consist of the following statements: $\mathbb{N} \vDash \varphi, \mathbb{N} \vDash \operatorname{Bew}(\ulcorner\varphi\urcorner)$, $\mathrm{PA} \vdash \varphi$ and $\operatorname{PA} \vdash \operatorname{Bew}(\ulcorner\varphi\urcorner)$. Indicate which statement implies which by means of (labeled) arrows. Give account for the implications.
12. (C)

Let F_{m}, the formula with Gödel number m be as defined on page 127 . Give F_{1} and F_{2}.
13. (C) (A)

Show that $\operatorname{Pf}\left(x,\left\ulcorner\neg S_{i}\right\urcorner\right) \wedge \operatorname{Pf}\left(x,\left\ulcorner\neg S_{j}\right\urcorner\right)$ is impossible if $i \neq j$, where the S_{i} are defined as on the final line of page 127. Prove by induction on a that $H(a, b)$ as defined on page 128 indeed, verifiably in PA, defines a function, that is, PA $\vdash \forall a \forall b \forall c(H(a, b) \wedge H(a, c) \rightarrow b=c)$.
14. (C)

The first step in the Solovay proof is extending our countermodel. Do we have that $0 \Vdash A \leftrightarrow 1 \Vdash A$ for all modal formulas A ? If so, provide a proof, if not a counterexample.
15. (C)

The graph $H(a, b)$ of the Solovay function is defined on page 127 by an application of the generalized diagonal lemma of page 53. What are m and n in this application?
16. (C)

Prove that PA $\vdash H(a, \bar{i}) \rightarrow S_{i}$ whenever i is a topnode in our model.
17. (C)

Show that $i \geq 1 \Rightarrow \mathrm{PA} \vdash H(a, \bar{i}) \rightarrow \operatorname{Bew}\left(\left\ulcorner\neg S_{i}\right\urcorner\right)$.
18. (C) (D)

What is the logical complexity of the Solovay sentences S_{i} ?
19. (C)

Consider the proof of Lemma 1 of chapter 9 on page 130. Where is the fact used that B is a subsentence of $\neg A$?

