
The Logic of Provability
Suggestions for exercises. Week 3.

1. (B) (C)

We have defined ∃x < yA(x) to be short for ∃x(x < y ∧ A(x)) and
dually ∀x < yA(x) to be short for ∀x(x < y → A(x)). Show that
∃x < yA(x) ↔ ¬∀x < y¬A(x) is provable in PA. Do the same for the
dual statement.

2. (C)

Give a formula A(x, y) that is to hold if and only if x divides y. Show
that we can chose A(x, y) to be a ∆0 formula. We will write x | y from
now on.

3. (C)

Give a ∆0 formula Prime(x) that is to hold on all prime numbers and
on no other numbers.

4. (C)

Give a Π1 sentence that expresses Goldbach’s conjecture.

5. (C) (A)

Carry out the full proof that all atomic formulas are Σ1 formulas as
outlined on page 25.

6. (C)

Here we denote both the number zero and its numeral by 0. Write
down both GN(0) and GN(0).

7. (C)

Show that PA ` v0 = 16→ GN(v0) = 17.

8. (D)(*)

By the Church-Turing thesis we know that some Σ1 formula π(x, y)
holds for (and only for) pairs of numbers (n,m) such that m is the nth
prime number. Sketch this formula. You may use previously defined
formulas and formulas defined in the book. (For clarity: we would thus
like to have π(1, 2), π(2, 3), π(3, 5), π(4, 7), π(5, 11) and so on.)
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9. (C)

Do we have ` Bew(pϕq) → Bew[ϕ]? And do we have ` Bew[ϕ] →
Bew(pϕq)? Provide a proof or a counterexample.

10. (C)

Prove that ` u · v = w → Bew[u · v = w] in the same style as this was
done for addition on page 47.

11. (D)

Prove in PA that ∃x∃y(ax+ 1 = by)→ ∃x′∃y′(bx′ + 1 = ay′) whenever
b > 1. (Hint: multiply by b − 1.) Use this to give a simplified proof
of theorem (30) of chapter 2 of the book by employing the notion “i is
good enough for a and b” being ∃x∃y(ax+ i = by)∨∃x∃y(bx+ i = ay).

12. (C) (D)

Provide proofs for (18)-(22) on page 27.

13. (D)

Prove that every formula ϕ in predicate logic is equivalent to one in
prenex normal form.

14. (D)

Give various disabbreviations of B(h(g(x)), g(x)) where h and g denote
Σ-pterms (h is unary!) and B denotes some definable binary predicate.

15. (C)

Give Σ-pterms such that

• h(0) = 1 h(1) = 2 h(2) = 3 h(3) = 4 h(4) = 5

• h(0) = 9 h(1) = 16 h(2) = 25 h(3) = 36 h(4) = 49

• h(0) = 5 h(1) = 7 h(2) = 11 h(3) = 13 h(4) = 17

16. (C)

Show that
T ` 2A→ 3A and
K4 ` 2A→ (22(A→ B)→ 22B).
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17. (C)

Show that GL ` 2(2m⊥ → 2n⊥)↔ 2n+1⊥ whenever m > n ≥ 0.

18. (C)

Determine if the following formulas are valid in the lowermost worlds of
the two Kripke models below: 2p, 2q, 2p∧ q, 22⊥, 3(q∧3(p∧¬q)).
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19. (C)

Find a formula which is true in the world 1 of the first model, but not
in 1 of the second model.
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20. (C)

Determine which of the following formulas are derivable in K:

(a) 22p→ 2p

(b) 2p ∧ ¬2⊥ → ¬2¬p
(c) 2p ∧22(p→ q)→ 22q
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(d) 22p ∧22(p→ q)→ 22q

Give proofs of derivable formulas and Kripke countermodels for the
nonderivable ones.

21. (D)

(a) How many Kripke frames are there on a single element set? Depict
them all. (b) The same question for a two-element set.

22. (D)

Assume a Kripke frame1 has n elements and the language has m propo-
sitional variables. How many different Kripke models exist on this
frame?

23. (C) (A)

Prove the following facts by constructing appropriate Kripke counter-
models:

(a) K4 0 ¬p;
(b) K4 0 2(2p→ p)→ 2p;

(c) K4 0 ¬(2p→ p);

(d) S4 0 2(2(p→ 2p)→ p)→ p;
(Hint: a model with just 2 nodes is sufficient.)

24. (D)

Show that the formula 2(2p→ q) ∨2(2q → p) is valid in all linearly
ordered Kripke models (more generally, if the relation R is reflexive
and linear).

25. (C) (A)

How many pairwise inequivalent formulas in one propositional variable
are there (a) in classical propositional logic; (b) in K4.
(Answer for (b): infinitely many. Hint: iterate 2. Show inequivalence
by exhibiting countermodels.)

1Recall: a model is a frame together with a truth assignment of propositional variables.
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