The Logic of Provability
Suggestions for exercises. Week 3.

1. (B) (C)

We have defined $\exists x<y A(x)$ to be short for $\exists x(x<y \wedge A(x))$ and dually $\forall x<y A(x)$ to be short for $\forall x(x<y \rightarrow A(x))$. Show that $\exists x<y A(x) \leftrightarrow \neg \forall x<y \neg A(x)$ is provable in PA. Do the same for the dual statement.
2. (C)

Give a formula $A(x, y)$ that is to hold if and only if x divides y. Show that we can chose $A(x, y)$ to be a Δ_{0} formula. We will write $x \mid y$ from now on.
3. (C)

Give a Δ_{0} formula Prime (x) that is to hold on all prime numbers and on no other numbers.
4. (C)

Give a Π_{1} sentence that expresses Goldbach's conjecture.
5. (C) (A)

Carry out the full proof that all atomic formulas are Σ_{1} formulas as outlined on page 25 .
6. (C)

Here we denote both the number zero and its numeral by 0 . Write down both $\overline{\mathrm{GN}(0)}$ and GN($\overline{0})$.
7. (C)

Show that PA $\vdash v_{0}=16 \rightarrow \operatorname{GN}\left(v_{0}\right)=17$.
8. $(\mathrm{D})\left({ }^{*}\right)$

By the Church-Turing thesis we know that some Σ_{1} formula $\pi(x, y)$ holds for (and only for) pairs of numbers (n, m) such that m is the nth prime number. Sketch this formula. You may use previously defined formulas and formulas defined in the book. (For clarity: we would thus like to have $\pi(1,2), \pi(2,3), \pi(3,5), \pi(4,7), \pi(5,11)$ and so on.)
9. (C)

Do we have $\vdash \operatorname{Bew}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Bew}[\varphi]$? And do we have $\vdash \operatorname{Bew}[\varphi] \rightarrow$ $\operatorname{Bew}(\ulcorner\varphi\urcorner)$? Provide a proof or a counterexample.
10. (C)

Prove that $\vdash u \cdot v=w \rightarrow \operatorname{Bew}[u \cdot v=w]$ in the same style as this was done for addition on page 47 .
11. (D)

Prove in PA that $\exists x \exists y(a x+1=b y) \rightarrow \exists x^{\prime} \exists y^{\prime}\left(b x^{\prime}+1=a y^{\prime}\right)$ whenever $b>1$. (Hint: multiply by $b-1$.) Use this to give a simplified proof of theorem (30) of chapter 2 of the book by employing the notion " i is good enough for a and b " being $\exists x \exists y(a x+i=b y) \vee \exists x \exists y(b x+i=a y)$.
12. (C) (D)

Provide proofs for (18)-(22) on page 27.
13. (D)

Prove that every formula φ in predicate logic is equivalent to one in prenex normal form.
14. (D)

Give various disabbreviations of $B(h(g(\bar{x})), g(\bar{x}))$ where h and g denote Σ-pterms (h is unary!) and B denotes some definable binary predicate.
15. (C)

Give Σ-pterms such that

- $h(0)=1 \quad h(1)=2 \quad h(2)=3 \quad h(3)=4 \quad h(4)=5$
- $h(0)=9 \quad h(1)=16 \quad h(2)=25 \quad h(3)=36 \quad h(4)=49$
- $h(0)=5 \quad h(1)=7 \quad h(2)=11 \quad h(3)=13 \quad h(4)=17$

16. (C)

Show that

$$
\begin{aligned}
& \mathbf{T} \vdash \square A \rightarrow \diamond A \text { and } \\
& \mathbf{K} 4 \vdash \square A \rightarrow(\square \square(A \rightarrow B) \rightarrow \square \square B) .
\end{aligned}
$$

17. (C)

Show that GL $\vdash \square\left(\square^{m} \perp \rightarrow \square^{n} \perp\right) \leftrightarrow \square^{n+1} \perp$ whenever $m>n \geq 0$.
18. (C)

Determine if the following formulas are valid in the lowermost worlds of the two Kripke models below: $\square p, \square q, \square p \wedge q, \square \square \perp, \diamond(q \wedge \diamond(p \wedge \neg q))$.

19. (C)

Find a formula which is true in the world 1 of the first model, but not in 1 of the second model.

20. (C)

Determine which of the following formulas are derivable in \mathbf{K} :
(a) $\square \square p \rightarrow \square p$
(b) $\square p \wedge \neg \square \perp \rightarrow \neg \square \neg p$
(c) $\square p \wedge \square \square(p \rightarrow q) \rightarrow \square \square q$
(d)
 $\square p \wedge \square \square(p \rightarrow q) \rightarrow \square$ $\square \square q$

Give proofs of derivable formulas and Kripke countermodels for the nonderivable ones.
21. (D)
(a) How many Kripke frames are there on a single element set? Depict them all. (b) The same question for a two-element set.
22. (D)

Assume a Kripke frame ${ }^{1}$ has n elements and the language has m propositional variables. How many different Kripke models exist on this frame?
23. (C) (A)

Prove the following facts by constructing appropriate Kripke countermodels:
(a) $\mathbf{K} 4 \nvdash \neg p$;
(b) K4 $\nvdash \square(\square p \rightarrow p) \rightarrow \square p$;
(c) $\mathbf{K} \mathbf{4} \nvdash \neg(\square p \rightarrow p)$;
(d) $\mathbf{S} \mathbf{4} \nvdash \square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$;
(Hint: a model with just 2 nodes is sufficient.)
24. (D)

Show that the formula $\square(\square p \rightarrow q) \vee \square(\square q \rightarrow p)$ is valid in all linearly ordered Kripke models (more generally, if the relation R is reflexive and linear).
25. (C) (A)

How many pairwise inequivalent formulas in one propositional variable are there (a) in classical propositional logic; (b) in K4.
(Answer for (b): infinitely many. Hint: iterate \square. Show inequivalence by exhibiting countermodels.)

[^0]
[^0]: ${ }^{1}$ Recall: a model is a frame together with a truth assignment of propositional variables.

