The Logic of Provability
Suggestions for exercises. Week 2.

1. (C)

Provide the code of $\perp \rightarrow \perp$. If we were to code $\neg\left(v_{0}=v_{1}\right)$, how should we treat the brackets?
2. (C)

What is the least common multiple of 3 and 5 ? Find x smaller than this least common multiple such that $x \equiv 2(3)$ and $x \equiv 3(5)$.
3. (B)

Prove (for example by induction) that $\sum_{k=0}^{n} k=\frac{n(n+1)}{2}$.
4. (C)

Shoenfield's coding is given by $\pi(x, y)=(x+y)(x+y)+x+1$. Determine the least positive natural number that is not in the range of this function. (For example by just calculating the "first values".) ((*) Determine the lengths of consecutive gaps in the range of this pairing function.)
5. (C)(D)

When using real numbers we can write down a function for the second component of a pair, so, if $z=(x, y)$ then $y=\frac{z}{2}-\left(\left\lfloor\sqrt{\frac{z}{2}}\right\rfloor^{2}+1\right)$. Show this and give a similar function for x.
6. (C)(D)

Does the number 356645864186 code a formula? If so, which formula?
7. (D)

Find $x<\operatorname{lcm}(3,4,7)$ such that $x \equiv 2(3), x \equiv 1(4) x \equiv 5(7)$
8. (C) (A)

Prove (41) on page 36 of chapter 2. Prove the claim that $\mathrm{GN}(t)<$ $\operatorname{GN}\left(t=t^{\prime}\right)$. Prove also that $\operatorname{GN}\left(t^{\prime}\right)<\operatorname{GN}(t)$ whenever t^{\prime} is a proper subterm of t.
9. (C)

Prove that

$$
\mathbf{G L} \vdash \perp \Rightarrow \mathbf{G L} \vdash A
$$

for any formula A.
10. (C)

Prove that if $\mathbf{K} \vdash A \rightarrow B$ and $\mathbf{K} \vdash A \rightarrow C$ then $\mathbf{K} \vdash A \rightarrow(B \wedge C)$.
11. (C)

Formulate the axiom schemas $\square A \rightarrow \square \square A$ and $\square(\square A \rightarrow A) \rightarrow \square A$ in terms of the \diamond modality.
12. (C)

Derive the following formulas in the respective logics:
(a) $\mathbf{K} \vdash \square(\varphi \wedge \psi) \rightarrow \square \varphi$
(b) $\mathbf{K} \vdash(\square \varphi \wedge \square \psi) \rightarrow \square(\varphi \wedge \psi)$
(c) $\mathbf{K} \vdash(\square \varphi \vee \square \psi) \rightarrow \square(\varphi \vee \psi)$
(d) $\mathbf{K} \mathbf{4} \vdash \square \varphi \rightarrow \square \square \square \varphi$
(e) $\mathbf{K} \mathbf{4} \vdash(\square \varphi \wedge \square \square \psi) \rightarrow \square \square(\varphi \wedge \psi)$
(f) $\mathbf{S} 4 \vdash \diamond \varphi \leftrightarrow \diamond \diamond \varphi$
(g) $\mathbf{K} \vdash \square p \wedge \neg \square \perp \rightarrow \neg \square \neg p$
(h) K4 $\vdash \square p \wedge \square \square(p \rightarrow q) \rightarrow \square \square q$
(i) $\mathbf{K} \vdash \square \square p \wedge \square \square(p \rightarrow q) \rightarrow \square \square q$
13. (D)

Recast the inductive definition of a modal sentence as an explicit one employing finite sequences.
14. (C)

Fill in the gaps in theorem 9 of chapter 1.
15. (C)

Prove a K4 variant of Theorem 20 of Chapter 1 of the book.
$\mathbf{K} 4 \vdash \backsim A_{1} \wedge \ldots \square A_{n} \rightarrow B \Rightarrow \mathbf{K} 4 \vdash \square A_{1} \wedge \ldots \square A_{n} \rightarrow \square B$
16. (D)

Complete the proofs of theorems 14 and 15 of chapter 1 .
17. (C) (A)

Prove that $\mathbf{K} \vdash \diamond(A \vee B) \leftrightarrow \diamond A \vee \diamond B$
18. (C) (A)

Prove that $\mathbf{K} \vdash \square A \rightarrow \square(\square A \rightarrow A)$ and $\mathbf{K} \vdash \square(\square p \rightarrow p) \rightarrow(\square(\square q \rightarrow \square p) \rightarrow \square(\square q \rightarrow p))$.
19. (D) $\left({ }^{*}\right)$

Define formally a natural deduction system for GL. We thus would like to have the necessitation rule only applicable in case of no open assumptions. Prove equivalence of the deduction formulation and the formulation in the book.

