Logische Technieken, Tentamen Utrecht 2-5-2002

- 1. (a.) Exhibit proofs to show that $\mathbf{K} \vdash (\Box \phi \lor \Box \psi) \rightarrow \Box (\phi \lor \psi)$ and $\mathbf{K4} \vdash (\Box \phi \land \Box \Box \psi) \rightarrow \Box \Box (\phi \land \psi).$
 - (b.) Show for each of the above implications that the direction can not be reversed, that is, we have no equivalences in the respective logics.
- 2. (a.) Provide a proof in **K4** of $\Diamond \Diamond A \land \Box(A \to B) \to \Diamond(A \land B)$.
 - (b.) Let A be a theorem of **GL**, that is, **GL** \vdash A. Show that A can not be equivalent to a consistency statement in **GL**. Thus, for no modal formula C we have that **GL** \vdash A $\leftrightarrow \diamond C$.
- 3. Prove in PA that any number is either odd or even, that is, $\forall x (\exists y \ 2y = x \lor \exists y \ 2y + 1 = x).$
- 4. (a.) Show that $\mathbf{K4} \nvDash \Diamond p \to \Diamond (p \land \Box \neg p)$.
 - (b.) Show by semantical means that $\Diamond p \to \Diamond (p \land \Box \neg p)$ is valid on (Boolos says *in*) every transitive and converse well-founded frame. May we conclude that $\mathbf{GL} \vdash \Diamond p \to \Diamond (p \land \Box \neg p)$?
 - (c.) Provide (the sketch of) a proof in **GL** of $\Diamond p \to \Diamond (p \land \Box \neg p)$.
 - (d.) Let α be some arithmetical sentence such that $\mathsf{PA} \nvDash \neg \alpha$. Infer that $\mathbb{N} \models \mathsf{Con}(\ulcorner \alpha \land \mathsf{Bew}(\ulcorner \neg \alpha \urcorner) \urcorner)$.
- 5. Let the Solovay sentences S_i be as defined on page 127 of the book.
 - (a.) Does S_i assert that *i* is the limit of the Solovay function *h* or does it assert that *i* is *not* the limit of the Solovay function *h*.
 - (b.) Let *i* be a top-node in our model, that is, there are no nodes accessible from *i*. Show that $\mathsf{PA} \vdash S_i \to \mathsf{Bew}(\ulcorner \bot \urcorner)$.