Logische Technieken, Tentamen Utrecht 2-5-2002

1. (a.) Exhibit proofs to show that $\mathbf{K} \vdash(\square \phi \vee \square \psi) \rightarrow \square(\phi \vee \psi)$ and $\mathbf{K 4} \vdash(\square \phi \wedge \square \square \psi) \rightarrow \square \square(\phi \wedge \psi)$.
(b.) Show for each of the above implications that the direction can not be reversed, that is, we have no equivalences in the respective logics.
2. (a.) Provide a proof in $\mathbf{K} 4$ of $\diamond \diamond A \wedge \square(A \rightarrow B) \rightarrow \diamond(A \wedge B)$.
(b.) Let A be a theorem of $\mathbf{G L}$, that is, $\mathbf{G L} \vdash A$. Show that A can not be equivalent to a consistency statement in GL. Thus, for no modal formula C we have that $\mathbf{G L} \vdash A \leftrightarrow \diamond C$.
3. Prove in PA that any number is either odd or even, that is, $\forall x(\exists y 2 y=x \vee \exists y 2 y+1=x)$.
4. (a.) Show that $\mathbf{K} 4 \nvdash \diamond p \rightarrow \diamond(p \wedge \square \neg p)$.
(b.) Show by semantical means that $\diamond p \rightarrow \diamond(p \wedge \square \neg p)$ is valid on (Boolos says in) every transitive and converse well-founded frame. May we conclude that GL $\vdash \diamond p \rightarrow \diamond(p \wedge \square \neg p)$?
(c.) Provide (the sketch of) a proof in $\mathbf{G L}$ of $\diamond p \rightarrow \diamond(p \wedge \square \neg p)$.
(d.) Let α be some arithmetical sentence such that $\mathrm{PA} \nvdash \neg \alpha$. Infer that $\mathbb{N} \models \operatorname{Con}(\ulcorner\alpha \wedge \operatorname{Bew}(\ulcorner\neg \alpha\urcorner)\urcorner)$.
5. Let the Solovay sentences S_{i} be as defined on page 127 of the book.
(a.) Does S_{i} assert that i is the limit of the Solovay function h or does it assert that i is not the limit of the Solovay function h.
(b.) Let i be a top-node in our model, that is, there are no nodes accessible from i. Show that $\mathrm{PA} \vdash S_{i} \rightarrow \operatorname{Bew}(\ulcorner\perp\urcorner)$.
