
Two Proofs of Parsons’ Theorem

Joost J. Joosten

January 19, 2004

Abstract

It is well-known that IΣ1 is Π2-conservative over PRA. This fact
is often referred to as Parsons’ theorem. In this paper we provide two
proofs of the theorem. One is proof-theoretic and easily formalizable.
The other proof is model-theoretic. The main ingredient of the second
proof is a characterization of IΣ1 in terms of provable closure under
the iteration operation on functions.

1 Introduction

This note is dedicated to a theorem that is proved independently
by C. Parsons ([Par70], [Par72]), G. Mints ([Min72]) and G. Takeuti
([Tak75]). The theorem is usually referred to as Parsons’ theorem and
says that IΣ1 is Π2-conservative over PRA. Often, PRA is associated
with finitism ([Sko67], [HB68], [Tai81]). In this light, Parsons’ theo-
rem can be considered of great importance as a partial realization of
Hilbert’s programme.

The first proofs of Parsons’ theorem were all of proof-theoretical
nature. Parsons’ first proof, [Par70], is based upon Gödel’s Dialec-
tica interpretation. His second proof, [Par72], merely relies on a Cut-
elimination. Mints’ proof, [Min72], employs the no-counterexample
interpretation of a special sequent calculus. The proof by Takeuti,
[Tak75], employs an ordinal analysis in the style of Gentzen.

Over the years, many more proofs of Parsons’ theorem have been
published. In many accounts Herbrand’s theorem plays a central role
in providing primitive recursive Skolem functions for Π2-statements
provable in IΣ1. (Cf. Sieg’s method of Herbrand analysis [Sie91], Avi-
gad’s proof by his notion of Herbrand saturated models [Avi02], Buss’
proof by means of his witness predicates [Bus98], and Ferreira using
Herbrand’s theorem for Σ3 and Σ1-formulas [Fer02].) A first model-
theoretic proof is due to Paris and Kirby. They employ semi-regular
cuts in their proof (cf. [Sim99]:373-381).

1

This note adds two more proofs to the long list. The first proof,
due to L. Beklemishev, is a proof-theoretic one. It is explicitly written
down here for the first time and can be seen as a modern version of
Parsons’ second proof. The main ingredient is the Cut-elimination
theorem for Tait’s sequent calculus.

The second proof is essentially contained in an unpublished note of
A. Visser ([Vis90]). In that note a model-theoretic proof is sketched. A
central ingredient is an analysis of the difference between PRA and IΣ1

in terms of iteration of total functions. The very same note inspired
Zambella in his [Zam96] for a proof of a conservation result of Buss’
S1

2 over PV.
I am grateful to Lev Beklemishev and Albert Visser for making

their proof-sketches available to me. Also the discussion with them
helped the writing of this paper a lot.

2 A Proof-theoretic Proof of Parsons’ The-
orem

The first proof we give of Parsons’ theorem is proof-theoretic. It is due
to L. Beklemishev. It will become evident that the whole argument is
easily formalizable as soon as the superexponential function is provably
total. This is because the proof only uses the standard Cut-elimination
theorem.

We denote by IΣR1 the system that arises from adding to some
minimal arithmetical theory, for example PA− from [Kay91], the Σ1

induction rule. The Σ1 induction rule allows one to conclude ∀x σ(x)
from σ(0) and ∀x (σ(x) → σ(x + 1)) for σ(x) ∈ Σ1. It is well known
that IΣR1 is equi-interpretable with PRA and certainly that IΣR1 is Π2

conservative over PRA. In Lemma 2.2 we shall make this conservation
more precise. In this section we use IΣR1 to state and prove Parsons’
theorem.

Theorem 2.1 IΣ1 is a Π2 conservative extension of IΣR1 .

Proof of Π2 conservativity. In this proof we will use the Tait se-
quent calculus of first order logic which is presented in Schwichtenberg’s
contribution to the Handbook of Mathematical Logic. (See [Sch77].)
It works with sequents which are finite sets and should be read dis-
junctively in the sense that Γ = {ϕ1, . . . , ϕn} stands for ϕ1 ∨ . . . ∨ ϕn.
Often we will omit the set-brackets {}. All formulas are written in a
form that uses only ∧,∨,∀,∃ and literals, that is, atoms or negations
of atoms. Negation of composed formulas is an operation defined by
the de Morgan laws. The axioms of the Tait calculus are:

Γ, ϕ,¬ϕ for atomic ϕ.

2

The rules are:

Γ, ϕ Γ, ψ
Γ, ϕ ∧ ψ

,
Γ, ϕ

Γ, ϕ ∨ ψ
,

Γ, ψ
Γ, ϕ ∨ ψ

,

Γ, ϕ(a)
Γ,∀x ϕ(x)

,
Γ, ϕ(t)

Γ,∃x ϕ(x)
,

plus the cut rule

Γ, ϕ Γ,¬ϕ
Γ

.

In the rule for the universal quantifier introduction it is necessary
that the a does not occur free anywhere else in Γ. And in the rule
for the introduction of the existential quantifier one requires t to be
substitutable for x in ϕ.

So, our aim is to prove that if IΣ1 ` π then IΣR1 ` π whenever
π is a Π2-sentence. We reason as follows. If IΣ1 ` π, we have by
the compactness and deduction theorem that ` σ → π where σ is
the conjunction of a finite number of axioms of IΣ1. Or equivalently
` ¬σ∨π. As the Tait calculus is complete this amounts to the same as
saying that the sequent ¬σ, π is derivable within the calculus. By the
Cut-elimination theorem for the Tait calculus we know that there exists
a cut-free derivation of the sequent. Cut-free proofs have all sorts of
pleasant properties like the sub-formula property (modulo substitution
of terms).

The proof is concluded by showing by induction on the length of
cut-free derivations that if a sequent of the form Σ,Π is derivable then
IΣR1 `

∨
Π. Here Σ is a finite set of negations of induction axioms of

Σ1-formulas written in a specific form and Π is a finite non-empty set
of strict Π2-formulas.1

∨
Π denotes the disjunction of all elements in Π.

The basis case of the proof is trivial as IΣR1 ` σ ∨ ¬σ ∨
∨

Γ for any σ.
So, suppose we have a cut-free proof of Σ,Π. What can be the last

step in the proof of this sequent? Either the last rule yielded something
in the Π part of the sequent or in the Σ part of it. In the first case
nothing interesting happens and we almost automatically obtain the
desired result by the induction hypothesis.

So, suppose something had happened in the Σ part. We can assume
that the Σ part only contains formulas of the form
∃ a [ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) ∧ ¬ϕ(a)], with ϕ∈Σ1. With

1To see that hereby the proof is indeed completed it suffices to remark that we can
take an axiomatization of IΣ1 that consists of Σ2 (actually Π1 is enough) -sentences that
are provable in IΣR1 plus induction axioms for all Σ1 formulas.

3

∀x (ϕ(x)→ ϕ(x+1)) we actually denote the formula in prenex normal
form in the calculus that is predicate-logically equivalent to it.2

The last deduction step thus must have been the introduction of
the existential quantifier and we can by a one step shorter proof derive
for some term t the following sequent

Σ′, ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)) ∧ ¬ϕ(t),Π

By the inversion property of the Tait calculus (for a proof and precise
formulation of the statement consult [Sch77] page 873) we obtain proofs
of the same length of the following sequents

Σ′, ϕ(0),Π , Σ′,∀x (ϕ(x)→ ϕ(x+ 1)),Π and Σ′,¬ϕ(t),Π.

As all of ϕ(0),∀x (ϕ(x) → ϕ(x + 1)) and ¬ϕ(t) are Π2-formulas, we
can apply the induction hypothesis to conclude that we have

IΣR1 ` ϕ(0) ∨
∨

Π,
IΣR1 ` ∀x (ϕ(x)→ ϕ(x+ 1)) ∨

∨
Π,

IΣR1 ` ¬ϕ(t) ∨
∨

Π.

Recall that Π consists of Π2-statements. So, Π is of the form (with
some abuse of notation) ∀ ~u ∃~v Π0(~u,~v). In our context we can omit
the outer universal quantifiers.

If we now define ϕ′(x, ~u) := ϕ(x) ∨
∨
∃~v Π0(~u,~v), we obtain a Σ1-

formula to which we can apply the induction rule to obtain ∀x ϕ′(x, ~u)
and thus also ϕ′(t, ~u). Combining this with IΣR1 ` ¬ϕ(t)∨

∨
∃~v Π0(~u,~v)

yields IΣR1 `
∨
∃~v Π0(~u,~v) by one application of the cut rule (in IΣR1)

and thus we have the desired result, IΣR1 `
∨

Π. qed

In order to get the proof of Theorem 2.1 started we had to switch
to a cut-free proof in IΣ1 of the Π2-sentence. This makes that the cor-
responding proof in IΣR1 of the same Π2-sentence is superexponentially

2In the case that the proof in IΣ1 of Π uses an induction axiom with parameters actually
a little coding trick is needed here. The negation of the induction formula can be written
then as ∃x∃ y (ϕ(0, y) ∧ ∀ z (ϕ(z, y)→ ϕ(z + 1, y)) ∧ ¬ϕ(x, y)) which is equivalent by the
coding of pairs to ∃x (ϕ(0, (x)1)∧∀ z (ϕ(z, (x)1)→ ϕ(z+ 1, (x)1))∧¬ϕ((x)0, (x)1)). The
proof then runs the same if one just drags the parameter (t)1 along. Of course we should
have this coding machinery available for example by adding the pairing and projection
functions to our language together with some axioms stating their basic properties. It is
doubtful whether starting with “sufficiently many” negations of induction axioms instead
of enriching the language also suffices. Anyway we are not dealing with an essential
problem here as we could have easily set up the proof with Σ containing sentences of
the form ∃ y1 . . .∃ ym ∃ a [ϕ(0, y1, . . . , ym)∧∀x (ϕ(x, y1, . . . , ym)→ ϕ(x+ 1, y1, . . . , ym))∧
¬ϕ(a, y1, . . . , ym)] with ϕ∈Σ1. Our assumption is just to simplify the presentation of the
argument.

4

larger. In Ignjatovic ([Ign90]) it is shown that this growth of proofs is
essential.

In [Bek99] a generalization of Parsons’ theorem is stated in Corol-
lary 4.8: For n ≥ 1, IΣn is Πn+2-conservative over IΣRn . This is a
corollary of his Reduction property, Theorem 2, which is also formal-
izable in the presence of the superexponential function. The proof of
Parsons’ theorem we have presented here is very close to the proof of
the reduction property.

We conclude this section by showing that PRA as it is formulated
usually contains all theorems of IΣR1 . Often one defines PRA in a
language that contains for every primitive recursive function a function
symbol plus its defining axioms. In this extended language PRA allows
for induction over ∆0-formulas. It is also well-known that PRA is
interpretable in IΣR1 in the expected way, that is, every function symbol
is replaced by its definition in terms of sequences. The interpretability
is in this section to a lesser extend of our concern.

Lemma 2.2 IΣR1 ⊆ PRA.

Proof of Lemma 2.2. The proof goes by induction on the length
of a proof in IΣR1 . If IΣR1 ` ϕ without any applications of the Σ1

induction rule, it is clear that PRA ` ϕ.
So, suppose that the last step in the IΣR1 -proof of ϕ were an appli-

cation of the Σ1 induction rule. Thus ϕ is of the form ∀x∃ y ϕ0(x, y, ~z)
3 and we obtain shorter IΣR1 -proofs of the Σ1-statements ∃ y ϕ0(0, y, ~z)
and ∃ y′ (ϕ0(x, y, ~z)→ ϕ0(x+ 1, y′, ~z)). The induction hypothesis tells
us that these statements are also provable in PRA. Herbrand’s theo-
rem for PRA provides us4 with primitive recursive functions g(~z) and
h(x, y, ~z) such that

PRA ` ϕ0(0, g(~z), ~z) (1)

and
PRA ` ϕ0(x, y, ~z)→ ϕ0(x+ 1, h(x, y, ~z), ~z) (2)

Let f(x, ~z) be the primitive recursive function defined by{
f(0, ~z) = g(~z),
f(x+ 1, ~z) = h(x, f(x, ~z), ~z).

By (1) and (2) it follows from ∆0-induction in PRA that PRA `
∀x ϕ0(x, f(x, ~z), ~z) whence PRA ` ∀x∃ y ϕ0(x, y, ~z). qed

3We treat here the case where ϕ contains only one unbounded existential quantifier.
The more general case can be proved completely analogously.

4It is well known that we can take an open axiomatization of PRA to which we indeed
can apply Herbrand’s theorem. Cf. [Sch87] or [Joo01].

5

We note that our proof of Parsons’ theorem also involves Herbrand’s
theorem for PRA. In our case however Herbrand’s theorem only occurs
in showing the conservation of IΣR1 over PRA. Also we note that
one application of of the Σ1 induction rule in IΣR1 corresponds to one
application of primitive recursion in PRA. The correspondence can be
stretched further as is carried out in [Bek97].

3 A Model-theoretic Proof of Parsons’ The-
orem

In this section we shall work out the proof sketch of Visser’s note
([Vis90]). The precise date in which this note was finished is not clear.
We (and A. Visser too) estimate that it was written around 1990.

Theorem 3.1 (C. Parsons [Par70], [Par72]) IΣ1 is a Π2-conservative
extension of PRA.

If Parsons’ theorem is formulated in this way, we find it convenient
if the language of IΣ1 contains the language of PRA. Therefore we
choose some suitable formulations of these theories. PRA will be just
I∆0 in a language that contains function symbols for some special
primitive recursive functions and IΣ1 will be formulated in that same
language with the induction schema for all Σ1 formulas.

Theorem 3.13 describes the difference between PRA and IΣ1 in
terms of totality statements of recursive functions. Lemma 3.14 tells
us what it takes for a model M of PRA to also be a model of IΣ1:
A class of functions of this model should be majorizable by another
class of functions. This lemma is at the heart of our model-theoretic
proof of Parsons’ theorem. We will show that any countable model N
of PRA falsifying π ∈ Π2 can be extended to a countable model N ′
of IΣ1 + ¬π whence IΣ1 0 π. In extending the model we will, having
Lemma 3.14 in the back of our mind, repeatedly majorize functions to
finally obtain a model of IΣ1 + ¬π.

3.1 Introducing a new function symbol

In our discussion we shall like to work with a theory that arises as an
extension of PRA by a definition. We will add a new function symbol
f to the language of PRA together with the axiom ϕ that defines f .
Moreover we would like to employ induction that involves this new
function symbol, possibly also in the binding terms of the bounded
quantifiers. We will see that if the function f allows for a simple
definition and has some nice properties we have indeed access to the
extended form of induction.

6

Essentially the justification boils down to a theorem of Gaifman
and Dimitracopoulos [GD82] a proof of which can also be found in
[HP93] (Theorem 1.48 on page 45 and Proposition 1.3 on page 271).
We will closely follow here a proof of Beklemishev from [Bek97] which
we slightly modified for our purposes.

Throughout this section we will adhere to the following notational
convention. Arithmetical formulas defining the graph of a function
are denoted by lowercase Greek letters. The corresponding lower case
Roman letter is reserved to be the symbol that refers to the function
described by its graph. By the corresponding upper case Roman letter
we will denote the very short formula that defines the graph using the
lower case Roman letter and the identity symbol only. Context, like
indices and so forth, is inherited in the expected way.

For example, if χn(x, y) is an arithmetical formula describing a
function, in a richer language this function will be referred to by the
symbol gn. The corresponding Gn will refer to the simple formula
gn(x) = y.

Definition 3.2 Let {gi}i∈I be a set of function symbols. The
∆0({gi}i∈I)-formulas are the bounded formulas in the language of PA
enriched with the function symbols {gi}i∈I . The new function symbols
are also allowed to occur in the binding terms of the bounded quanti-
fiers. By I∆0({gi}i∈I) we mean the theory that comprises

• some open axioms describing some minimal arithmetic5,

• induction axioms for all ∆0({gi}i∈I)-formulas and

• (possibly) defining axioms of the symbols {gi}i∈I .

The defining axioms of the symbols {gi}i∈I are denoted by D({gi}i∈I).

Definition 3.3 Let ϕ(x, y) be a ∆0({gi}i∈I) formula. By Tot(ϕ) we
shall denote the formula ∀x∃ ! y ϕ(x, y)6 stating that ϕ can be re-
garded as a total function. By Mon(ϕ) we shall denote the formula
∀x, x′, y, y′ (x ≤ x′ ∧ ϕ(x, y) ∧ ϕ(x′, y′)→ y ≤ y′) ∧ Tot(ϕ) stating the
monotonicity of the total ϕ.

Definition 3.4 Let ϕ be such that I∆0({gi}i∈I) ` Tot(ϕ). Recall that
the uppercase letter F paraphrases the formula f(x)=y. A
∆0({gi}i∈I , F)-formula is a ∆0({gi}i∈I)-formula possibly containing
occurrences of F . By I∆0({gi}i∈I , F) we denote the theory I∆0({gi}i∈I)
where we now also have induction for ∆0({gi}i∈I , F) formulas. The
defining axiom of f , in our case ϕ, is also in I∆0({gi}i∈I , F).

5For example the open part of Robinson’s arithmetic.
6That is, ∀x∃y ϕ(x, y) ∧ ∀x∀y ∀y′ (ϕ(x, y) ∧ ϕ(x, y′)→ y = y′).

7

Note that f cannot occur in a bounding term in an induction axiom
of I∆0({gi}i∈I , F). Also note that F is nothing but a formula contain-
ing f stating f(x) = y and consisting of just six symbols. Of course
later we will substitute for F an arithmetical definition of the graph of
f , that is, ϕ(x, y).

The main interest of the extension of I∆0({gi}i∈I) by a definition
of f is in Theorem 3.7 and in its Corollary 3.8. The latter says that
we can freely use f(x) as an abbreviation of ϕ(x, y) and have access to
∆0({gi}i∈I , f)-induction whenever f is provably total and monotone
in I∆0({gi}i∈I) and has a ∆0({gi}i∈I) graph.

First we prove some technical but rather useful lemmata. They are
minor variations of Beklemishev’s Lemma 5.12 and 5.13 from [Bek97].7

From now on we will work under the assumptions of Lemma 3.7 so
that I∆0({gi}i∈I) is such that any term t in its language is provably
majorizable by some other term t̃ that is strictly increasing in all of its
arguments. Throughout the forthcoming proofs we will for any term t
denote by t̃ such a term that is provably strictly monotone (in all of
its arguments) and majorizing t.

Lemma 3.5 For every term s(~a) of I∆0({gi}i∈I , f) and every
R ∈ {≤,≥,=, <,>} there are terms tRs and s̃(a) strictly increasing in
all of their arguments and a ∆0({gi}i∈I , F)-formula ψRs (~a, b, y) such
that I∆0({gi}i∈I , F) + Mon(ϕ) ` ∀ y≥tRs (~a) (s(~a)Rb ↔ ψRs (~a, b, y))
and I∆0({gi}i∈I , F) + Mon(ϕ) ` ∀ ~x (s(~x) ≤ s̃(~x)).

Proof of Lemma 3.5. The proof proceeds by induction on s(~a). In
the basis case nothing has to be done as xiRb, 0Rb and 1Rb are all
atomic ∆0({gi}i∈I , F)-formulas. Moreover all of the xi, 0 and 1 are
(provably) strictly monotone in all of their arguments. For the induc-
tion case consider s(~a) = h(s1(~a)), where h is either one of the gi or
h = f . For simplicity we assume here that h is a unary function.

The induction hypothesis provides us with a ∆0({gi}i∈I , F)-formula
ψ=
s1(~a, b, y) and terms t=s1(~a) and s̃1(~a) such that

I∆0({gi}i∈I , F) + Mon(ϕ) ` ∀ y≥t=s1(~a) (s1(~a) = b↔ ψ=
s1(~a, b, y)),

and

I∆0({gi}i∈I , F) + Mon(ϕ) ` ∀ ~x (s1(~x) ≤ s̃1(~x)).

We now want to say that h(s1(~a))Rb in a ∆0({gi}i∈I , F) way. This
can be done by ∃ y′, y′′≤y (ψ=

s1(~a, y′, y)∧ h(y′) = y′′ ∧ y′′Rb) whenever
7One can also consult the same lemmata of [Bek96]. This reference can be

found online at the homepage of the Philosophy Department of Utrecht University at
http://www.phil.uu.nl/ or http://preprints.phil.uu.nl/lgps/.

8

y ≥ t=s1(~a)+ s̃(~a). Here we define s̃(~a) to be just f(s̃1(~a)) in case h = f
and g̃i(s̃1(~a)) in case h = gi. Clearly I∆0({gi}i∈I , F) + Mon(ϕ) `
∀ ~x (s(~x) ≤ s̃(~x)). Indeed one easily sees that

I∆0({gi}i∈I , F) + Mon(ϕ) ` ∀ y≥t=s1(~a) + s̃(~a) [h(s1(~a))Rb↔
∃ y′, y′′≤y (ψ=

s1(~a, y′, y) ∧ h(y′) = y′′ ∧ y′′Rb)].

It is also easy to see that t=s1(~a) + s̃(~a) is indeed monotone in all of its
arguments. In case h = f we need Mon(ϕ) here.

A similar reduction applies to the case when the function h has
more than one argument. qed

It is possible to simplify the above reduction a bit by distinguishing
between h = f and h 6= f and also R == and R 6==, or by proving
the lemma just for R == and showing that all the other cases can be
reduced to this. We are not very much interested in optimality at this
point though.

Lemma 3.6 For every ∆0({gi}i∈I , f)-formula θ(~a) there is a
∆0({gi}i∈I , F)-formula θ0(~a, y) and a provably monotonic term tθ(~a)
such that
I∆0({gi}i∈I , F) + Mon(ϕ) ` ∀ y≥tθ(~a) (θ(~a)↔ θ0(~a, y)).

Proof of Lemma 3.6. The lemma is proved by induction on θ.

• Basis. In this case θ(~a) is s1(~a)Rs2(~a). Applying Lemma 3.5 we
see that s1(~a)Rs2(~a) ↔ ∃ b≤y (ψ=

s2(~a, b, y) ∧ ψRs1(~a, b, y))8 when-
ever y ≥ ts1(~a) + ts2(~a).

• The only interesting induction case is where a bounded quantifier
is involved. We consider the case when θ(~a) is ∃x≤s(~a) ξ(~a, x).
The induction hypothesis yields a provably monotone term tξ(~a, x)
and a ∆0({gi}i∈I , F)-formula ξ0(~a, x, y) such that provably

∀ y≥tξ(~a, x) (ξ(~a, x)↔ ξ0(~a, x, y))

. Combining this with Lemma 3.5 we get that provably

∃x≤s(~a) ξ(~a, x)↔ ∃x′≤y (ψ=
s (~a, x′, y) ∧ ∃x≤x′ ξ0(~a, x, y))9

whenever y ≥ s̃(~a) + t=s (~a) + tξ(~a, s̃(~a)).

qed

Lemma 3.7 Let I∆0({gi}i∈I) be such that any term t in its language
is provably majorizable by some other term t̃ that is strictly increasing
in all of its arguments. We have that I∆0({gi}i∈I , F) + Mon(ϕ) `
I∆0({gi}i∈I , f).

8If we only want to use Lemma 3.5 with R being = we can observe that s1(~a)Rs2(~a)↔
∃ b, c≤y (ψ=

s1(~a, b, y) ∧ ψ=
s2(~a, c, y) ∧ bRc) whenever y ≥ ts1(~a) + ts2(~a).

9Alternatively, one could take ∃x≤y (ψ≥s (~a, x, y)∧ξ0(~a, x, y)) for y ≥ t≥s (~a)+tξ(~a, s̃(~a)).

9

Proof of Lemma 3.7. We will prove the least number principle10

for ∆0({gi}i∈I , f)-formulas in I∆0({gi}i∈I , F)+Mon(ϕ) as this is equiv-
alent to induction for ∆0({gi}i∈I , f)-formulas. So, let θ(x,~a) be a
∆0({gi}i∈I , f)-formula and reason in I∆0({gi}i∈I , F) + Mon(ϕ). By
Lemma 3.6 we have a strict monotone term tθ(x,~a) and a ∆0({gi}i∈I , F)-
formula θ0(x,~a, y) such that θ(x,~a)↔ θ0(x,~a, y) whenever y ≥ tθ(x,~a).

Now assume ∃x θ(x,~a). We will show that

∃x (θ(x,~a) ∧ ∀x′<x ¬θ(x′,~a)).

Let x be such that θ(x,~a). We now fix some y ≥ tθ(x,~a). Thus we have
θ0(x,~a, y). Applying the least number principle to the ∆0({gi}i∈I , F)-
formula θ0(x,~a, y) we get a minimal x0 such that θ0(x0,~a, y). As x0 < x
and tθ is monotone we have y ≥ tθ(x,~a) ≥ tθ(x0,~a) and thus θ(x0,~a). If
now x′<x0 such that θ(x′,~a) then also θ0(x′,~a, y) which would conflict
the minimality of x0 for θ0. Thus x0 is the minimal element such that
θ(x0,~a). qed

As in [Bek97] (Remark 5.14) we note here that Lemma 3.7 shows
that ∆0({gi}i∈I , f) induction is actually provable from ∆0({gi}i∈I , F)
induction where the bounding terms are just plain variables. Also we
note that Lemma 3.5 and Lemma 3.6 do not use the full strength of
I∆0({gi}i∈I , F).

Corollary 3.8 Suppose I∆0({gi}i∈I) and ϕ are as above and
I∆0({gi}i∈I) ` Mon(ϕ). If ϕ ∈ ∆0({gi}i∈I) then we have that
I∆0({gi}i∈I , f) ` ψ ⇒ I∆0({gi}i∈I) ` ψ∗ where ψ∗ is any non-
pathological translation of ψ where f is somehow replaced by ϕ.

Proof of Corollary 3.8. As I∆0({gi}i∈I) ` Tot(ϕ) we can form
an extension by a definition of I∆0({gi}i∈I) by adding an additional
function symbol f to the language and by adopting an additional
axiom ∀x ϕ(x, f(x)). For this definitional extension we know that
if I∆0({gi}i∈I) + D(f) ` ψ then I∆0({gi}i∈I) ` ψ∗ for any non-
pathological translation of ψ where f is somehow replaced by ϕ. (See
for example [End72]:164-173, Section 2.7.) But

I∆0({gi}i∈I) +D(f) ` I∆0({gi}i∈I , F)

as F is a ∆0({gi}i∈I) formula. Theorem 3.7 tells us that
I∆0({gi}i∈I , F) ` I∆0({gi}i∈I , f) since I∆0({gi}i∈I) ` Mon(ϕ). qed

It is noteworthy that the above treatment can be carried out in
a far more general setting where we consider the results relative to

10The equivalence of the least number principle and induction indeed holds for our
classes of ∆0({gi}i∈I , F) and ∆0({gi}i∈I , f)-formulas. The standard proof for the equiv-
alence can just be applied in our case.

10

some base theory T with possibly more function symbols than just
the {gi}i∈I . For example, the generalization of Lemma 3.7 would be
formulated as follows:

Corollary 3.9 Let I∆0({gi}i∈I) and T be such that any term t in the
language of I∆0({gi}i∈I) is provably majorizable in T + I∆0({gi}i∈I)
by some other term t̃ that is strictly increasing in all of its arguments.
We have that T + I∆0({gi}i∈I , F) + Mon(ϕ) ` I∆0({gi}i∈I , f).

3.2 The difference between IΣ1 and PRA in terms
of iteration of ∆0({Supi}i∈ω)-definable functions

In this subsection we will use some definitions of PRA and IΣ1 slightly
different from the usual ones.

Definition 3.10 The language of PRA is the language of PA plus a
family of new function symbols {Supn | n∈ω}. The non-logical axioms
of PRA come in three sorts.

• Defining axioms for +, ·, and <,11

• Defining axioms for the new symbols

– ∀x Sup0(x) = 2x,
– {Supn+1(0) = 1},
– {∀x Supn+1(x+ 1) = Supn(Supn+1(x)) | n ∈ ω},

• Induction axioms for ∆0({Supi}i∈ω)-formulas in the following
form: ∀x (ϕ(0) ∧ ∀ y<x (ϕ(y)→ ϕ(y + 1))→ ϕ(x)).

The logical axioms and rules are just as usual.

The functions Supi describe on the standard model a well-known
hierarchy; Sup0 is the doubling function, Sup1 is the exponentiation
function, Sup2 is superexponentiation, Sup3 is superduperexponentia-
tion and so on. It is also known that the Supi form an envelope for
PRA, that is, every provably total recursive function of PRA gets even-
tually majorized by some Supi. (Essentially this is Parikh’s theorem.)
Evidently all terms of PRA are majorizable by a strictly monotone
one.

PRA proves all the expected properties of the Supi functions like

Supn(1) = 2,
1 ≤ Supn+1(y),
x ≤ y → Supn(x) ≤ Supn(y),
(n≤m ∧ x≤y)→ Supn(x)≤Supm(y),

11We can take for example Kaye’s system PA− from [Kay91] where in Ax 13 we replace
the unbounded existential quantifier by a bounded one.

11

and so on. Of course PRA proves in a trivial way the totality of all the
Supi as these symbols form part of our language. We have chosen an
equivalent variant of the usual induction axiom so that we end up with
a Π1 axiomatization of PRA. It is easy to see that our definition of
PRA is equivalent, or more precisely equi-interpretable, to any other
of our definitions of PRA.

Definition 3.11 The theory IΣ1 is the theory that is obtained by adding
to PRA induction axioms ϕ(0)∧∀x (ϕ(x)→ ϕ(x+ 1))→ ∀x ϕ(x) for
all Σ1({Supi}i∈ω)-formulas ϕ(x) that may contain additional parame-
ters.

We will in the sequel often make use of function iteration. If f
denotes a function we will denote by f it the (unique) function sat-
isfying the following primitive recursive schema: f it(0)=1, f it(x +
1)=f(f it(x)).

Definition 3.12 Let ϕ(x, y) be some formula. By ϕit(x, y) we denote
∃σ ϕ̃it(σ, x, y) where ϕ̃it(σ, x, y) is the formula
Finseq(σ) ∧ (lh(σ) = x+ 1) ∧ (σ0 = 1) ∧ (σx = y) ∧ ∀ i<x ϕ(σi, σi+1).

Note that ϕ̃it is a ∆0({Supi}i∈ω) formula if ϕ is so. Also note that
if PRA proves the functionality of a ∆0({Supi}i∈ω)-formula ϕ, it also
proves the functionality of ϕ̃it, for example by proving by induction on
σ that ∀σ ∀x, y, y′, σ′≤σ (ϕ̃it(σ, x, y)∧ ϕ̃it(σ′, x, y′)→ σ = σ′∧y = y′).

As we will need upper-bounds on sequences of numbers a short re-
mark on coding is due here. By [a0, . . . , an] we will denote the code
of the sequence a0, . . . , an of natural numbers provided by the cod-
ing technique that we will fix below. By [a0, . . . , an]u[b0, . . . , bm] we
will denote the code of the sequence a0, . . . , an, b0, . . . , bm that arises
from concatenating b0, . . . , bm to a0, . . . , an (to the right). Instead
of [a0, . . . , an]u[b] we will often write [a0, . . . , an]ub if the context ex-
cludes any possible confusion. The projection functions are referred
to by sub-indexing. So, σi will be ai if σ = [a0, . . . , an] and i ≤ n
and zero if i > n, and n + 1 is called the length of σ. We use the
same notation for the projection functions for pairs and trust that no
confusion will arise from this. We say that σ is an initial subsequence
of σ′ if σ = [a0, . . . an] and σ′ = [a0, . . . an, . . . am] and m ≥ n. We
denote this by σ v σ′.

The binary representation of a number a is denoted by {a}2. Note
that the length of the binary representation can be estimated by
dlog2(a)e + 1. We will code the sequence a0, . . . , an by the unique
number that has as ternary representation the following sequence:

2{an}22 . . . 2{a0}2.

12

We define the code of the empty sequence to be zero. The sequence
2,1 will for example be coded by the ternary number 21210 which is
the decimal number 210. It is clear that all of the coding, length and
projection functions are primitive recursive.

The following theorem tells us what is the difference between PRA
and IΣ1 in terms of totality statements of ∆0({Supi}i∈ω)-definable
functions.

Theorem 3.13 IΣ1 ≡ PRA+{Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)}.

Proof of Theorem 3.13. For one inclusion we only need to show
that IΣ1 ` Tot(ϕ) → Tot(ϕit) but this follows easily from a Σ1 induc-
tion on x in ∃σ ∃ y ϕ̃it(σ, x, y) under the assumption that ∀x∃ y ϕ(x, y).
We shall thus concentrate on the harder direction
PRA + {Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)} ` IΣ1.

To this end we work in PRA+{Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)}
and assume ∃ y ψ(0, y) ∧ ∀x (∃ y ψ(x, y) → ∃ y′ ψ(x+ 1, y′)) for some
∆0({Supi}i∈ω)-formula ψ(x, y). Our aim is to obtain ∀x∃ y ψ(x, y).
First we define a function ϕ(x, y) as follows:

ϕ(x, y) :=



(i) (x = 0 ∧ y = 0) ∨
(ii) (x = 1 ∧ ∃ y0≤y

(y = [〈21, y0〉] ∧ ψ(0, y0) ∧ ∀ y′<y0 ¬ψ(0, y′))) ∨
(iii) (x > 1 ∧ Finseq(x)∧

∀ i<lh(x) ((xi)0 = 2i+1 ∧ ψ(i, (xi)1)∧
∀ y′<(xi)1 ¬ψ(i, (xi)1)) ∧
∃ y0≤y (ψ(lh(x), y0) ∧ ∀ y′<y0 ¬ψ(lh(x), y′)∧
y = x u [〈2lh(x)+1, y0〉])) ∨

(iv) (x > 1 ∧ ¬(Finseq(x)∧
∀ i<lh(x) ((xi)0 = 2i+1 ∧ ψ(i, (xi)1)∧
∀ y′<(xi)1 ¬ψ(i, (xi)1))) ∧
y = 0).

So, the function f that is described by ϕ(x, y) is always zero unless
x = 1 or x is of the form [〈21, y0〉, . . . 〈2l+1, yl〉] for some l ≥ 0 where
we denote here by yj the minimal number such that ψ(j, yj). In the
latter case f yields [〈21, y0〉, . . . 〈2l+1, yl〉, 〈2l+2, yl+1〉]. Of course the
function ϕ(x, y) is tailored for ϕit(x, y) to yield on input x ≥ 1 the
sequence [〈21, y0〉, . . . 〈2x, yx−1〉] where again yj is the minimal number
such that ψ(j, yj).12

12We could as well have defined ϕ so that ϕit would yield sequences of the form
[〈0, y0〉, . . . , 〈x, yx〉]. With our current choice we get a nicer growth-rate. Also do we
see openings for generalizations of the lemma to more restrictive situations, for example
where we work in EA + {Tot(ϕ)→ Tot(ϕit) | ϕ∈∆0(exp)} or on a cut on which exponen-
tiation is a total function. Here EA is Kalmar elementary arithmetic.

13

Note that we have used 2x in our definition of ϕ but this is nothing
but an abbreviation of Sup1(x). We see that there is no overlap in the
clauses (i)-(iv) when it comes to the x values.

By a simple case distinction we see that ∀x∃ y ϕ(x, y). If x = 0,
that is case (i), this is easy. Case (ii) is guaranteed by our assumption
∃ y ψ(0, y) and the ∆0({Supi}i∈ω) least number principle. If x falls un-
der clause (iii) it follows from our assumption that ∀x (∃ y ψ(x, y)→
∃ y′ ψ(x + 1, y′)) and the fact that concatenation, pairing and expo-
nentiation are all total functions in our setting. Also in this case the
∆0({Supi}i∈ω) least number principle is used. Case (iv) again is easy.

Again by a simple case distinction we see that ϕ is functional (one-
valued), that is, ∀x, y, y′ (ϕ(x, y) ∧ ϕ(x, y′) → y = y′). So, ϕ(x, y)
denotes a total function. Thus we apply Tot(ϕ)→ Tot(ϕit) to conclude
Tot(ϕit).

The idea is to show that ∀x ψ(x, ((f it(x+ 1))x)1) (and thus
∀x∃ y ψ(x, y)) by means of ∆0({Supi}i∈ω, f it)-induction. To see that
we have access to ∆0({Supi}i∈ω, f it)-induction we should, by Corollary
3.8 convince ourselves of two more things: Mon(ϕit) and the fact that
f it has a ∆0({Supi}i∈ω) graph.

The monotonicity of f it is intuitively clear but we have to show
that we can catch this intuition using only ∆0({Supi}i∈ω)-induction.

For example, we can first prove by induction on x that all of the
f it(x+1) are “good sequences” where by a good sequence we mean one
of the form [〈21, y0〉, . . . , 〈2x+1, yx〉]. To make this a ∆0({Supi}i∈ω)-
induction we should reformulate the statement as
∀ z∀σ, x, y≤z (ϕ̃it(σ, x+ 1, y)→ Goodseq(y)) or even
∀σ ∀x, y≤σ (ϕ̃it(σ, x+ 1, y)→ Goodseq(y)) is sufficient.

Now assume ϕ̃it(σ′, x′, y′). We will show by induction on x that

∀x≤x′ ∃σ≤σ′ ∃ y≤y′ ϕ̃it(σ, x′ − x, y) (+)

from which monotonicity follows. For if ϕit(x′, y′) and x0 ≤ x′ then
ϕ̃it(σ′, x′, y′) for some σ′ and x0 = x′ − x some x ≤ x′, whence by (+)
ϕ̃it(σ, x′ − x, y) for some σ ≤ σ′ and y ≤ y′.

Thus we prove (+) under the assumption that ϕ̃it(σ′, x′, y′).
If x = 0 we take σ′ = σ and y = y′. For the inductive step, let σ ≤ σ′
and y ≤ y′ be such that ϕ̃it(σ, x′ − x, y). We assume that x + 1 ≤ x′

hence lh(σ) > 1, for if not the solution is trivial. By σ−1 we denote
the sequence that is obtained from σ by deleting the last element.
Clearly ϕ̃it(σ−1, x

′ − x− 1, (σ−1)x′−x−1) and ϕ((σ−1)x′−x−1, y). Thus
(σ−1)x′−x−1 is a good sequence which implies that clause (iii) in the
definition of ϕ is used to determine y. Consequently (σ−1)x′−x−1 v y
and thus (σ−1)x′−x−1 ≤ y ≤ y′. Moreover we note that σ−1 v σ and
thus σ−1 ≤ σ ≤ σ′.

14

We now want to show the ∆0({Supi}i∈ω)-ness of ϕit(x, y) by pro-
viding an upper-bound on the σ in ϕ̃it(σ, x, y). If ϕ̃it(σ, x, y) we have
lh(σ) = x + 1, (σ)x = y ≥ 2x and moreover f it is, as we have just
showed, monotone. As (σ)x = y ≥ 2x we have that x ≤ blog2(y)c ≤
dlog2(y)e. We will estimate the length of the binary representation of
a number y by dlog2(y)e + 1. So, σ can be roughly estimated by the
following numbers written in base 3 :

x+1 times︷ ︸︸ ︷
2 {y}22 . . . 2 {y}2 ≤

dlog2(y)e+1 times︷ ︸︸ ︷
2 {y}22 . . . 2 {y}2 ≤

(dlog2(y)e+1)2 times︷ ︸︸ ︷
22 . . . 22 ≤ 100

2·dlog2(y)e2 times︷ ︸︸ ︷
00 . . . 00 .

This latter number can bounded from above by the following num-
bers which we will write now in base 10 notation 32·dlog2(y)e2+2 ≤
Sup2(y+3). Thus ϕit(x, y) can be written as ∃σ≤Sup2(y+3) ϕ̃it(σ, x, y)
being ∆0({Supi}i∈ω). By a simple ∆0({Supi}i∈ω, f it) induction on x
we now prove ∀x ψ(x, ((f it(x+ 1))x)1).

qed

We note that we filled the gap between PRA and IΣ1 by transform-
ing an admissible rule of PRA to axiom form. Indeed Tot(ϕ) |∼Tot(ϕit)
is an admissible rule of PRA. For if PRA ` Tot(ϕ) then f is a primi-
tive recursive function as is well known. But f it is constructed from f
by a simple recursion. Thus f it is primitive recursive and hence prov-
ably total in PRA. The same phenomenon occurs in passing from IΣR1
to IΣ1 where the (trivially) admissible Σ1 induction rule is added in
axiom form to PRA to obtain IΣ1.

The fact that we allow for variables in Theorem 3.13 is essential.
For if not, the logical complexity of PRA + {Tot(ϕ) → Tot(ϕit) |
ϕ∈∆0({Supi}i∈ω)} would be13 ∆3 and so would be the logical com-
plexity of IΣ1. But the well-known fact that IΣ1 ` RFNΠ3(EA) (where
EA stands for elementary arithmetic, that is, I∆0 plus the totality of
the exponential function) would contradict the fact that RFNΠ3(EA)
is not proved by any consistent Σ3 extension of EA.14 A parameter-
free version of PRA + {Tot(ϕ)→ Tot(ϕit) | ϕ∈∆−0 ({Supi}i∈ω)} will be
equivalent to parameter-free Σ1-induction, IΣ1

−.
13Actually we should be more careful here as we work in a richer language. However

this makes no essential difference as all the Supn are ∆1 definable over EA.
14Let S be some collection of Σ3 sentences such that EA+S extends EA+RFNΠ3(EA).

We also have EA +S ` ∀x (2EA(TrΠ3(ẋ))→ TrΠ3(x)). By compactness we have for some
particular Σ3-sentence σ that EA + σ ` ∀x (2EA(TrΠ3(ẋ)) → TrΠ3(x)). Consequently,
EA + σ ` 2EA(TrΠ3(p¬σq))→ TrΠ3(p¬σq) and thus EA ` σ → (2EA(p¬σq)→ ¬σ). But
we also have EA ` ¬σ → (2EA(p¬σq)→ ¬σ) hence EA ` (2EA(p¬σq)→ ¬σ. Löb’s rule
gives us EA ` ¬σ in which case EA + S is inconsistent.

15

We now come to prove a lemma that tells us when a model of
PRA is also a model of IΣ1. This lemma is formulated in terms
of majorizability behavior of some total functions. A total function
of a model M is a relation ϕ(x, y) (possibly with parameters from
M) for which M |= Tot(ϕ). Often we will write f ≤ g as short for
∀x(∃ y ϕ(x, y) → ∃ y′ (χ(x, y′) ∧ y ≤ y′)) and say that f is majorized
by g. Thus if f ≤ g we automatically have Tot(ϕ)→ Tot(χ).

Lemma 3.14 Let M be a model of PRA. If every ∆0({Supi}i∈ω)
definable total function (with parameters) of M is majorized by m +
Supn for some m ∈ M and some n ∈ ω, then M is also a model of
IΣ1.

Proof of Lemma 3.14. Let M be satisfying our conditions. To
see that M |= IΣ1 we need in the light of Theorem 3.13 to show
that M |= Tot(ϕ) → Tot(ϕit) for any ∆0({Supi}i∈ω) function ϕ with
parameters inM. So, we consider some ∆0({Supi}i∈ω) function f such
that M |= Tot(ϕ). We choose m ∈ M \ {0} and n ∈ ω large enough
so that

(a.) M |= f ≤ m+ Supn,

(b.) M |= ∀x (m+ Supn+1(mx+m+ 1) ≤ Supn+1(mx+m+m)).

The second condition is automatically satisfied ifm is a non-standard
element.

An easy ∆0({Supi}i∈ω)-induction shows that (m + Supn)it(x) ≤
Supn+1(mx + m). (Remember that we have excluded m = 0.) The
case x = 0 is trivial as 1 ≤ Supn+1(m). For the inductive step we see
that15

(m+ Supn)it(x+ 1) =
(m+ Supn)((m+ Supn)it(x)) ≤i.h.
m+ Supn(Supn+1(mx+m)) ≤def.
m+ Supn+1(mx+m+ 1) ≤(b.)

Supn+1(mx+m+m) = Supn+1(m(x+ 1) +m).

We can use the obtained bounds to show the totality of f it by
estimating the size of σ that witnesses ϕ̃it(σ, x, y). We know (outside
PRA) that σ is of the form

15This looks like a legitimate induction but remember that (m+ Supn)it has an a priori
Σ1({Supi}i∈ω) definition. The argument should thus be encapsulated in a ∆0({Supi}i∈ω)-

induction, for example by proving ∀ z∀σ, x, y≤z ˜(m+ Supn)
it

(σ, x, y)→ y ≤ Supn+1(mx+
m). The essential reasoning though boils down to the argument given here.

16

[1, f(1), f(f(1)), . . . , fx(1)] ≤
[1,m+ Supn(1),m+ Supn(f(1)), . . . ,m+ Supn(fx−1(1))] ≤
[1,m+ Supn(1), (m+ Supn)2(1), . . . , (m+ Supn)2(fx−2(1))] ≤

...
...

[1,m+ Supn(1), (m+ Supn)2(1), . . . , (m+ Supn)x(1)] ≤
[(m+ Supn)x(1), . . . , (m+ Supn)x(1)] ≤
[Supn+1(mx+m), . . . ,Supn+1(mx+m)]

Every time we used dots here in our informal argument, some
∆0({Supi}i∈ω)-induction should actually be applied. To neatly for-
malize our reasoning we choose some k ∈ ω large enough for our n and
m such that (in M)

(c.) [1] ≤ Supn+k(2m)

(d.) Supn+k(m(x+ 1) +m) u [Supn+1(m(x+ 1) +m)] ≤
Supn+k(m(x+ 2) +m)16

With these choices form,n and k it is easy to prove by ∆0({Supi}i∈ω)-
induction that

∀x∃σ≤Supn+k(m(x+ 1) +m)∃ y≤Supn+1(mx+m) ϕ̃it(σ, x, y).

If x = 0 then ϕ̃it([1], 0, 1) and by (c.) we have [1] ≤ Supn+k(m(0 +
1) + m). Also 1 ≤ Supn+1(m). Now suppose ϕ̃it(σ, x, y) with σ and y
below their respective bounds. We have by the definition of ϕ̃it that
ϕ̃it(σ u [f(y)], x+ 1, f(y)) (again we do as if we had f available in our
language). We need to show that the new values do not grow too fast.
But,

f(y) ≤i.h. f(Supn+1(mx+m)) ≤(a.)

m+ Supn(Supn+1(mx+m)) ≤(b.) Supn+1(m(x+ 1) +m)
16It is not hard to convince oneself that such a k does exist. As a feature of our coding

we can easily estimate the value of σ u [y]. It will be just σ+ “something else”. This
“something else” is the contribution of {y}2 whose length can be bounded by dlog2(y)e+
1 + 1 (the extra +1 is because in our coding protocol we put a 2 in front). The place
where this contribution appears is dependent on σ whose length can be estimated by
dlog3(σ)e+ 1. The value of {y}2 with a 2 in front interpreted as a base three number can
be bounded by 3dlog2(y)e+3. The place where it occurs yields a bound on that “something
else” of 3dlog2(y)e+dlog3(σ)e+4. Thus σ u [y] ≤ σ + 3dlog2(y)e+dlog3(σ)e+4. In turn σ +
3dlog2(y)e+dlog3(σ)e+4 ≤ σ+ 3σ+y+4. If k = 1 then we get our concatenation situation with
σ(x) = y(x+1) where we denote by σ(x) the binding function on σ, that is, Supn+1(m(x+

1) + m). But f(x + 1) ≥ f(x) + 32f(x)+4 is a recursion that is satisfied if m and n are
large enough and f(x) = Supn+1(m(x+ 1) +m).

17

as we have seen before. By (d.) we get that

σ u [f(y)] ≤i.h. Supn+k(m(x+ 1) +m) u [Supn+1(m(x+ 1) +m)]
≤(d.) Supn+k(m(x+ 2) +m).

qed

3.3 The actual proof of Parsons’ theorem

Before we give the proof of Parsons’ theorem we first agree on some
model theoretic notation.

We recall the definition of M ′ being a 1-elementary extension of M ,
denoted by M ≺1 M

′. This means that M ⊆M ′ and that for ~m ∈M
and σ(~y) ∈ Σ1 we have M |= σ(~m) ⇔ M ′ |= σ(~m). In this case we
also say that M is a 1-elementary submodel of M ′. It is easy to see
that

M ≺1 M
′ ⇔ [M |= σ(~m)⇒M ′ |= σ(~m)] for all σ(~y) ∈ Σ2.

A 1-elementary chain is a sequence M0 ≺1 M1 ≺1 M2 ≺1 It is
well known that the union of a 1-elementary chain is a 1-elementary
extension of every model in the chain. It is worthy to note that in
a 1-elementary chain the truth of Σ2-sentences (with parameters) is
preserved from left to right and the truth of Π2-sentences (without
parameters) is preserved from right to left.

By Th(M,C) we denote the first-order theory of M with all con-
stants from C added to the language. This makes sense if we know
how to interpret the constants of C in M .
We also recall the definition of the collection principle.

BΓ := {∀x<t∃ y ϕ(x, y)→ ∃ s∀x<t∃ y<s ϕ(x, y) | ϕ ∈ Γ}

together with a minimum of arithmetical axioms, e.g. PA−.
We now come to the actual proof of Theorem 3.1.

Proof of Parsons’ Theorem, Theorem 3.1. Let a countable
model M |= PRA + σ be given with σ ∈ Σ2. We will construct a
countable model M ′ of IΣ1 + σ using Lemma 3.14.

Our strategy will be to make any ∆0({Supi}i∈ω) definable total
function of M that is not bounded by any of the m + Supn (n ∈
ω, m ∈ M) either bounded by some m + Supn (n ∈ ω, m ∈ M ′) or
not total in the PRA-model M ′. The model M ′ will be the union of
a Σ1-elementary chain of models M = M0 ≺1 M1 ≺1 M2 . . . ≺1 M

′ =
∪i∈ωMi.

At each stage either the boundedness of a total ∆0({Supi}i∈ω) de-
finable function is guaranteed (a Π1-sentence: ∀x, y (ϕ(x, y) → y ≤

18

m+ Supn(x))) or its non-totality (a Σ2-sentence: ∃x∀ y ¬ϕ(x, y)). As
we shall work with a 1-elementary chain of models, functions that are
dealt with need no more attention further on in the chain. Their inter-
esting properties, that is boundedness or non-totality, are stable. By
choosing the order in which functions are dealt with in a good way,
eventually all total funtions of all models Mi will be considered. We
shall see that as a result of this process every total function in M ′ that
is ∆0({Supi}i∈ω) definable is bounded by some m+Supn with m ∈M ′
and n ∈ ω.

To properly order the functions that we shall deal with, we fix a
bijective pairing function in this proof satisfying x, y ≤ 〈x, y〉. We write
fn0, fn1, fn2, . . . for the list of the (countably many) total ∆0({Supi}i∈ω)
definable functions of Mn. We emphasize that we allow the functions
fni to contain parameters from Mn. Furthermore we define gn to be
fab for the unique a, b ∈ ω such that 〈a, b〉 = n.

We define M0 := M .

We will define Mn+1 to be such that gn becomes (or remains) either
bounded or non-total in it and Mn ≺1 Mn+1. If we can do so, we are
done. For suppose M = M0 |= PRA +σ. As PRA is Π1 axiomatizable
in the language containing the {Supi}i∈ω17 we get that M ′ |= PRA
and likewise M ′ |= σ.

If now M ′ |= Tot(ϕ) for some ϕ ∈ ∆0({Supi}i∈ω), we see that for
some n, Mn |= Tot(ϕ) as soon as Mn contains all the parameters that
occur in ϕ. Thus f = gm for some m ≥ n. Thus in Mm+1 the function
f will be surely majorized, for Mm+1 |= ¬Tot(ϕ) ⇒ M ′ |= ¬Tot(ϕ).
Consequently M ′ |= f ≤ m′+ Supk for some m′ ∈Mm+1 ⊆M ′, k ∈ ω.
By Lemma 3.14 we see that M ′ |= IΣ1.

If Mn |= gn ≤ m + Supk for some m ∈ Mn and k ∈ ω we set
Mn+1 := Mn. Clearly Mn ≺1 Mn+1 and gn is bounded in Mn+1.

So, suppose that gn is total inMn and that Mn |= ¬(gn ≤ m+Supk)
for all m ∈Mn and all k ∈ ω. We obtain our required model Mn+1 in

17By Matiyasevich’s theorem we know that we also have a purely universal formulation of
PRA. (We assume that the theorem extends to a theory formulated in a richer language.)
We can consider PRAM , the theory that is axiomatized by the pure Π0

1 formulas that
are provided by Matiyasevich’s theorem. A natural question to ask is whether PRAM

and PRA are equivalent. We think this is highly unlikely. For PRAM gives us an open
formulation of PRA. By Herbrand’s theorem we would then be able to write the graph of
any provably total recursive function of PRA, that is, the graph of any primitive recursive
function, as a disjunction of terms of PRA. However it seems unplausible to expect that for
example y = x!, the graph of the factorial function, can be written as such a disjunction.

19

two steps.

Step 1.

First we go from Mn ≺1 Mn1 |= B∆0({Supi}i∈ω)(+PRA). To this
purpose we temporarily expand our language. For every Σ2 formula
∃x ϕ(x) such that Mn |= ∃x ϕ(x) we add a fresh constant cϕ(x) to
our language and call the set of all these contants C. We will fix some
interpretation of the cϕ(x) in Mn such that Mn |= ϕ(cϕ(x)). Let d be a
new constant symbol. It is clear that Th(Mn, {m}m∈Mn ∪{cϕ}cϕ∈C)∪
{d > Supk(cϕ) | k ∈ ω, cϕ ∈ C} is finitely satisfiable, namely in Mn.
Thus there is some countable model Mn0 containing Mn in a natural
way satisfying the whole set.

Let Mn1 be the (initial) submodel of Mn0 with domain {m ∈Mn0 |
∃ k∈ω ∃ cϕ∈C m ≤ Supk(cϕ)}. Clearly Mn1 is indeed a submodel,
that is, it is closed under all the Supk. For if m ≤ Supl(cϕ) then
Supk(m) ≤ Supk(Supl(cϕ)) ≤ Supk+l+2(cϕ). We see that Mn1 is a
model of PRA as PRA is Π1 axiomatized.18

As all the cϕ live in Mn1 and Mn ⊆Mn1 we get Mn ≺1 Mn1. For19,

Mn |= ∃x ϕ(x) , ϕ(x) ∈ Π1 ⇒
Mn |= ϕ(cϕ) ⇒
Mn0 |= ϕ(cϕ) ⇒
Mn1 |= ϕ(cϕ) ⇒
Mn1 |= ∃x ϕ(x).

We now see that Mn1 |= B∆0({Supi}i∈ω).
So, suppose Mn1 |= ∀x<t∃ y ϕ(x, y) for some t ∈ Mn1 and ϕ ∈
∆0({Supi}i∈ω). Clearly Mn0 |= ∀x<t∃ y<d ϕ(x, y) for some d ∈
Mn0, actually for any d ∈ Mn0 \ Mn1. Now by the ∆0({Supi}i∈ω)
minimal number principle we get a minimal d0 such that Mn0 |=
∀x<t∃ y<d0 ϕ(x, y). If d0 were in Mn0 \ Mn1, then d0 − 1 would
also suffice as a bound on the y’s. The minimality of d0 thus imposes
that d0 ∈ Mn1. Consequently Mn1 |= ∃ d0∀x<t∃ y<d0 ϕ(x, y) and
Mn1 |= B∆0({Supi}i∈ω).20

18We can also see the validity of the induction axioms by elementary means. For suppose
Mn1 |= ψ(0) ∧ ∀x (ψ(x)→ ψ(x+ 1)) for some ψ(x) ∈ ∆0({Supi}i∈ω).

If Mn0 |= ∀x (ψ(x) → ψ(x + 1)) we have by ∆0({Supi}i∈ω)-induction in Mn0 that
Mn0 |= ∀x ψ(x), which is Π1, so, Mn1 |= ∀x ψ(x). If Mn0 6|= ∀x (ψ(x)→ ψ(x+ 1)) then
by the least number principle for ∆0({Supi}i∈ω)-formulas there is a minimal a ∈ Mn0

such that Mn0 |= ψ(a)∧¬ψ(a+ 1). Because of Mn1 |= ∀x (ψ(x)→ ψ(x+ 1)), we see that
a cannot be in Mn1. We thus see that ∀x≤a ψ(x) and again we obtain Mn1 |= ∀x ψ(x).

19Note that adding the {cϕ}cϕ∈C is not necessary as all the cϕ are already contained in
the {m}m∈Mn . It only provides us with a richer vocabulary.

20By coding techniques we could obtain here Mn1 |= BΣ1({Supi}i∈ω).

20

Step 2.

Secondly we go from Mn1 |= B∆0({Supi}i∈ω)(+PRA)21 to a model
Mn1 ≺1 Mn3 |= PRA + ¬Tot(χn). If Mn1 |= ¬Tot(χn) nothing has to
be done and we take Mn3 = Mn1, so, we assume that Mn1 |= Tot(χn)
here. We consider the set

Γ := Th(Mn1, {m}m∈Mn1) ∪ {gn(c) > m+ Supk(c) | m ∈Mn1, k ∈ ω}

with c a fresh constant symbol.
As gn is not majorizable in Mn1 we see that any finite subset of Γ

is satisfiable whence Γ is satisfiable. Let Mn2 be a countable model of
Γ in which we can naturally embed Mn1.

We will now see that c > Mn1. For suppose c ≤ m ∈ Mn1. Then
Mn1 |= ∀x≤m∃ z gn(x)=z.22 By ∆0({Supi}i∈ω)-collection we get
Mn1 |= ∃ d0 ∀x≤m∃ z≤d0 gn=z. But then Mn1 |= gn(c) ≤ d0 whence
Mn1 |= ¬(gn(c) > d0 + Supk(c)). A contradiction.

Define Mn3 to be the (initial) submodel of Mn2 with domain {m ∈
Mm2 | ∃ k ∈ ω Mn2 |= m < Supk(c)}. As c ≥Mn1 we get Mn1 ⊆Mn3.
We now see that Mn1 ≺1 Mn3. For suppose Mn1 |= ∃x ϕ(x) with
ϕ(x) ∈ Π1 then Mn1 |= ϕ(m0) for some m0 ∈ Mn1. Consequently
Mn2 |= ϕ(m0) and as Mn3 ⊂e Mn2 and ϕ(m0) ∈ Π1, also Mn3 |=
ϕ(m0) whence Mn3 |= ∃x ϕ(x). Clearly Mn3 |= ¬Tot(χn) as gn(c)
cannot have a value in Mn3. Mn+1 will be the reduct of Mn3 to the
original language.

qed

References

[Avi02] J Avigad. Saturated models of universal theories. Annals of
Pure and Applied Logic, 118(3):219–234, 2002.

[Bek96] L.D. Beklemishev. Induction rules, reflection principles, and
provably recursive functions. Logic Group Preprint Series
168, University of Utrecht, 1996.

[Bek97] L.D. Beklemishev. Induction rules, reflection principles, and
provably recursive functions. Annals of Pure and Applied
Logic, 85:193–242, 1997.

[Bek99] L.D. Beklemishev. Proof-theoretic analysis by iterated reflec-
tion. Preprint, to appear in 2002 in Archive for Mathematical
Logic, 1999.

21Or from the reduct of Mn1 to the original language for that matter.
22We actually should substitute the ∆0({Supi}i∈ω) graph of gn here.

21

[Bus98] S.R. Buss. First-order proof theory of arithmetic. In S.R.
Buss, editor, Handbook of Proof Theory, pages 79–148, Ams-
terdam, 1998. Elsevier, North-Holland.

[End72] H.B. Enderton. A mathematical introduction to logic. Aca-
demic Press, New York, 1972.

[Fer02] F. Ferreira. Yet another proof of Parsons’ theorem. Not yet
published, 2002.

[GD82] H. Gaifman and C. Dimitracopoulos. Fragments of Peano’s
arithmetic and the MDRP theorem. In Logic and algorithmic
(Zurich, 1980), (Monograph. Enseign. Math., 30), pages 187–
206. Genève, University of Genève, 1982.

[HB68] D. Hilbert and P. Bernays. Grundlagen der Mathematik, Vols.
I and II, 2d ed. Springer-Verlag, Berlin, 1968.

[HP93] P. Hájek and P. Pudlák. Metamathematics of First Order
Arithmetic. Springer-Verlag, Berlin, Heidelberg, New York,
1993.

[Ign90] A.D. Ignjatovic. Fragments of first and Second Order Arith-
metic and Length of Proofs. PhD thesis, University of Cali-
fornia, Berkeley, 1990.

[Joo01] J.J. Joosten. Arithmetics, a course by Lev Beklemishev, per-
sonal notes of Joost J. Joosten., 2001. Lecture notes online
at http://www.phil.uu.nl/ j̃oosten/.

[Kay91] R. Kaye. Models of Peano Arithmetic. Oxford University
Press, Oxford, 1991.

[Min72] G Mints. Quantifier-free and one-quantifier systems. Jour-
nal of Soviet Mathematics, 1:71–84, 1972. First published in
Russian in 1971.

[Par70] C. Parsons. On a number-theoretic choice schema and its
relation to induction. In A. Kino, J. Myhill, and R.E. Vessley,
editors, Intuitionism and Proof Theory, pages 459–473. North
Holland, Amsterdam, 1970.

[Par72] C. Parsons. On n-quantifier induction. Journal of Symbolic
Logic, 37(3):466–482, 1972.

[Sch77] H. Schwichtenberg. Some applications of cut-elimination. In
J. Barwise, editor, Handbook of Mathematical Logic, pages
867–896. North Holland, Amsterdam, 1977.

[Sch87] D.G. Schwarz. On the equivalence between logic-free
and logic-bearing systems of primitive recursive arithmetic.
Zeitschrift f. math. Logik und Grundlagen d. Math., 33:245–
253, 1987.

22

[Sie91] W. Sieg. Herbrand analyses. Archive for Mathematical Logic,
30:409–441, 1991.

[Sim99] S. G. Simpson. Subsystems of Second Order Arithmetic.
Springer-Verlag, 1999.

[Sko67] T. Skolem. The foundations of elementary arithmetic estab-
lished by means of the recursive mode of thought, without
the use of apparent variables ranging over infinite domains.
In J. van Heijenoort, editor, From Frege to Godel, pages 302–
333. Iuniverse, Harvard, 1967.

[Tai81] W. Tait. Finitism. Journal of Philosophy, 78:524–546, 1981.

[Tak75] G. Takeuti. Proof Theory. North–Holland, Amsterdam, 1975.

[Vis90] A. Visser. Notes on IΣ1. Unpublished manuscript, 1990?

[Zam96] D Zambella. Notes on polynomial bounded arithmetic. Jour-
nal of Symbolic Logic, 61:942–966, 1996.

23

