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Abstract. In this paper we will state and prove some comparative theorems
concerning PRA and IΣ1. We shall provide a characterization of IΣ1 in terms of
PRA and iterations of a class of functions.

We will formulate a sufficient condition for a model of PRA to be a model of
IΣ1. This condition is used to give a model-theoretic proof of Parsons’ theorem,
that is, IΣ1 is Π2-conservative over PRA. We shall also give a purely syntactical
proof of Parsons’ theorem.

Finally, we show that IΣ1 proves the consistency of PRA on a definable IΣ1-
cut. This implies that proofs in IΣ1 can have non-elementary speed up over proofs
in PRA.

1. Parsons’ theorem

Parsons’ theorem says that IΣ1 is Π2-conservative over PRA. It was proved
independently by C. Parsons ([Par70], [Par72]), G. Mints ([Min72]) and G.
Takeuti ([Tak75]). Often, PRA is associated with finitism ([Sko67], [HB68],
[Tai81]). In this light, Parsons’ theorem can be considered of great impor-
tance as a partial realization of Hilbert’s programme.

The first proofs of Parsons’ theorem were all of proof-theoretical nature.
Parsons’ first proof, [Par70], is based upon Gödel’s Dialectica interpretation.
His second proof, [Par72], merely relies on a cut-elimination. Mints’ proof,
[Min72], employs the no-counterexample interpretation of a special sequent
calculus. The proof by Takeuti, [Tak75], employs an ordinal analysis in the
style of Gentzen.

Over the years, many more proofs of Parsons’ theorem have been pub-
lished. In many accounts Herbrand’s theorem plays a central role in provid-
ing primitive recursive Skolem functions for Π2-statements provable in IΣ1.
(Cf. Sieg’s method of Herbrand analysis [Sie91], Avigad’s proof by his notion
of Herbrand saturated models [Avi02], Buss’ proof by means of his witness
predicates [Bus98], and Ferreira’s proof using Herbrand’s theorem for Σ3

and Σ1-formulas [Fer02].) A first model-theoretic proof is due to Paris and
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Kirby. They employ semi-regular cuts in their proof (cf. [Sim99]:373-381).

This paper will add two more proofs to the long list. The first proof is
given in Section 3. It is a proof-theoretic proof and can be seen as a modern
version of Parsons’ second proof. The main ingredient is the Cut-elimination
theorem for Tait’s sequent calculus.

The second proof is given in Section 4. It is a model-theoretic proof. A
central ingredient is an analysis of the difference between PRA and IΣ1 in
terms of iteration of total functions.

2. Primitive recursive arithmetic

Primitive recursive arithmetic, PRA for short, was first introduced by Skolem
in [Sko67]. Throughout literature there exist many different variants of PRA.
In a sense though, they are all the same, as they are easily seen to be equi-
interpretable in a faithful way. In this paper we shall consider theories mod-
ulo faithful interpretability.

Reading convention All statements about PRA and other theories in
this paper will refer to the definition given in that section.

Often one defines PRA in a language that contains for every primitive re-
cursive function a function symbol plus its defining axioms. In this extended
language PRA allows for induction over open formulas. In this section we
shall with PRA refer to this theory.

Definition 1 (IΣR
1 ). IΣR

1 is the predicate logical theory in the pure language
of arithmetic {+, ·, 0, 1, <} that contains Robinson’s arithmetic Q plus the
Σ1-induction rule. The Σ1-induction rule allows one to conclude ∀x ϕ(x,y)
from ϕ(0,y) ∧ ∀x (ϕ(x,y)→ ϕ(x+ 1,y)).

It is well known that PRA is faithfully interpretable in IΣR
1 in the ex-

pected way, that is, every function symbol is replaced by its definition in
terms of sequences. For a comparison the other way around, we have the
following lemma.

Lemma 1. IΣR
1 ⊆ PRA.

Proof. The proof goes by induction on the length of a proof in IΣR
1 . If

IΣR
1 ` ϕ without any applications of the Σ1 induction rule, it is clear that

PRA ` ϕ.
So, suppose that the last step in the IΣR

1 -proof of ϕ were an appli-
cation of the Σ1-induction rule. Thus ϕ is of the form ∀x∃ y ϕ0(x, y, z)
and we obtain shorter IΣR

1 -proofs of the Σ1-statements ∃ y ϕ0(0, y, z) and
∃ y′ (ϕ0(x, y, z) → ϕ0(x + 1, y′, z)). The induction hypothesis tells us that
these statements are also provable in PRA. Herbrand’s theorem for PRA
provides us with primitive recursive functions g(z) and h(x, y, z) such that

PRA ` ϕ0(0, g(z), z) (1)
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and
PRA ` ϕ0(x, y, z)→ ϕ0(x+ 1, h(x, y, z), z) (2)

Let f(x, z) be the primitive recursive function defined by{
f(0, z) = g(z),
f(x+ 1, z) = h(x, f(x, z), z).

By (1) and (2) it follows from∆0-induction in PRA that PRA ` ∀x ϕ0(x, f(x, z), z)
whence PRA ` ∀x∃ y ϕ0(x, y, z).

3. A proof-theoretic proof of Parsons’ theorem

The first proof we give of Parsons’ theorem is proof-theoretic. Our pre-
sentation is due to L. Beklemishev. It will become evident that the whole
argument is easily formalizable as soon as the superexponential function
is provably total. This is because our proof only uses the standard Cut-
elimination theorem.

In this section we will work with a fragment of first order predicate logic
that only contains ∧,∨,∀,∃ and ¬, where ¬ may only occur on the level of
atomic formulae. We can define → and unrestricted negation as usual. We
shall thus freely use these connectives too.

A proof system for this fragment of logic in the form of a Tait calculus
is provided in [Sch77]. We will use this calculus in our proof. The calculus
works with sequents which are finite sets and should be read disjunctively
in the sense that Γ = {ϕ1, . . . , ϕn} stands for ϕ1 ∨ . . . ∨ ϕn. We will omit
the set-brackets {}. The axioms of the Tait calculus are:

Γ, ϕ,¬ϕ for atomic ϕ.

The rules are:

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
,

Γ, ϕ

Γ, ϕ ∨ ψ
,

Γ, ψ

Γ, ϕ ∨ ψ
,

Γ, ϕ(a)
Γ,∀x ϕ(x)

,
Γ, ϕ(t)

Γ,∃x ϕ(x)
,

plus the cut rule

Γ, ϕ Γ,¬ϕ
Γ

.

In the rule for the universal quantifier introduction it is necessary that
the a does not occur free anywhere else in Γ . And in the rule for the intro-
duction of the existential quantifier one requires t to be substitutable for
x in ϕ. In our proof we use the nice properties that this calculus is known
to posses. Most notably the cut elimination theorem and some inversion
properties.

Let us now fix our versions of PRA and IΣ1 for this section.
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Definition 2 (IΣ1). The theory IΣ1 is an extension of predicate logic with
some easy Π1-fragment of arithmetic (for example the Π1-part of Robinson’s
arithmetic Q), together with all axioms of the form

∀x (¬Progr(ϕ, x) ∨ ϕ(x,y)).

Here ϕ is some Σ1-formula and Progr(ϕ, x) is the Π2-formula that is equiv-
alent to

ϕ(0,y) ∧ ∀x (ϕ(x,y)→ ϕ(x+ 1,y)).

Definition 3 (PRA). The theory IΣR
1 , also called Primitive Recursive Arith-

metic, is the extension of predicate logic that arises by adding a simple Π1-
fragment of arithmetic1 together with the Σ1-induction rule to it. Here, the
Σ1-induction rule is

Γ, ϕ(0,y) Γ,∀x (¬ϕ(x,y) ∨ ϕ(x+ 1,y))
Γ, ϕ(t,y)

.

where Γ is a Π2-sequent, ϕ a Σ1-formula and t is free for x in ϕ.

Theorem 1. IΣ1 is Π2-conservative over IΣR
1 .

Proof. So, our aim is to prove that if IΣ1 ` π then IΣR
1 ` π whenever π is a

Π2-sentence. If IΣ1 ` π, then by induction on the length of such a proof we
see that some sequent Σ, π is provable in the pure predicate calculus. Here Σ
is a finite set of negations of axioms of IΣ1. By the Cut-elimination theorem
for the Tait calculus we know that there exists a cut-free derivation of the
sequent. Thus we also have the sub-formula property (modulo substitution
of terms) for our cut-free proof of Σ, π.

The proof is concluded by showing by induction on the length of cut-free
derivations that if a sequent of the form Σ,Π is derivable then IΣR

1 ` Π.
Here Σ is a finite set of negations of induction axioms of Σ1-formulas and
Π is a finite non-empty set of Π2-formulas.

The basis case is trivial. So, for the inductive step, suppose we have a
cut-free proof ofΣ,Π. What can be the last step in the proof of this sequent?
Either the last rule yielded something in the Π-part of the sequent or in the
Σ-part of it. In the first case nothing interesting happens and we almost
automatically obtain the desired result by the induction hypothesis.

So, suppose something had happened in the Σ-part. All formulas in this
part are of the form ∃ a [ϕ(0)∧∀x (ϕ(x)→ ϕ(x+1))∧¬ϕ(a)], with ϕ∈Σ1.

The last deduction step thus must have been the introduction of the
existential quantifier and we can by a one step shorter proof derive for some
term t the following sequent.

Σ′, ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1)) ∧ ¬ϕ(t),Π

1 The same fragment as in Definition 2.
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By the inversion property of the Tait calculus (for a proof and precise for-
mulation of the statement consult e.g. [Sch77] page 873) we obtain proofs
of the same length of the following sequents

Σ′, ϕ(0),Π , Σ′,∀x (ϕ(x)→ ϕ(x+ 1)),Π and Σ′,¬ϕ(t),Π.

As all of ϕ(0),∀x (ϕ(x) → ϕ(x + 1)) and ¬ϕ(t) are Π2-formulas, we can
apply the induction hypothesis to conclude that we have the following.

IΣR
1 ` ϕ(0),Π (1)

IΣR
1 ` ∀x (ϕ(x)→ ϕ(x+ 1)),Π (2)

IΣR
1 ` ¬ϕ(t),Π (3)

Recall that Π consists of Π2-statements. So, we can apply the Σ1-
induction rule to (1) and (2) and obtain ϕ(t),Π. This together with (3)
yields by one application of the cut rule (in IΣR

1 ) the desired result, that is,
IΣR

1 ` Π.

Corollary 1. IΣn is Πn+1-conservative over IΣR
n .

Proof. IΣR
n is defined as the canonical generalization of Definition 3. Chang-

ing the indices in the proof of Theorem 1 immediately yields the result.

In [Bek99] this result is stated as Corollary 4.8. It is a corollary of his
Reduction property, Theorem 2, which is also formalizable in the presence
of the superexponential function. The proof of Parsons’ theorem we have
presented here is very close to the proof of the reduction property.

4. A model theoretic proof of Parsons’ theorem

In this section we shall give a model theoretic proof of Parsons’ theorem.
Our proof has the following outline.

In Subsection 4.1 we give a slightly renewed proof of a theorem by Gaif-
man and Dimitracopoulos. This theorem says that under certain conditions
a definitional extension of a theory has nice properties, like proving enough
induction.

In Subsection 4.2 we use this theorem to give a characterization of IΣ1

in terms of PRA and closure under iteration of a certain class of functions.
In Theorem 4 we will see what it takes for a model M of PRA to also be a
model of IΣ1: A class of functions of this model should be majorizable by
another class of functions.

This theorem is at the heart of our model theoretic proof of Parsons’
theorem in Subsection 4.3. We will show that any countable model N of
PRA falsifying π ∈ Π2 can be extended to a countable model N ′ of IΣ1+¬π
whence IΣ1 0 π. In extending the model we will, having Theorem 4 in the
back of our mind, repeatedly majorize functions to finally obtain a model
of IΣ1 + ¬π.
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Our proof is based on a proofsketch in an unpublished note of Visser
([Vis90]). The very same note inspired Zambella in his [Zam96] for a proof
of a conservation result of Buss’ S1

2 over PV.
First, we fix some formulation of PRA and IΣ1 that suits the purposes

of this section.

Definition 4. The language of PRA is the language of PA plus a family of
new function symbols {Supn | n∈ω}. The non-logical axioms of PRA come
in three sorts.

– Defining axioms for +, ·, and <,2

– Defining axioms for the new symbols
– ∀x Sup0(x) = 2x,
– {Supn+1(0) = 1},
– {∀x Supn+1(x+ 1) = Supn(Supn+1(x)) | n ∈ ω},

– Induction axioms for ∆0({Supi}i∈ω)-formulas in the following form:
∀x (ϕ(0) ∧ ∀ y<x (ϕ(y)→ ϕ(y + 1))→ ϕ(x)).

The logical axioms and rules are just as usual.

The functions Supi describe on the standard model a well-known hier-
archy; Sup0 is the doubling function, Sup1 is the exponentiation function,
Sup2 is superexponentiation, Sup3 is superduperexponentiation and so on.
It is also known that the Supi form an envelope for PRA, that is, every
provably total recursive function of PRA gets eventually majorized by some
Supi. (Essentially this is Parikh’s theorem [Par71].) Consequently all terms
of PRA are majorizable by a strictly monotone one.

PRA proves all the evident properties of the Supi functions like Supn(1) =
2, 1 ≤ Supn+1(y), x ≤ y → Supn(x) ≤ Supn(y), n≤m→ Supn(x)≤Supm(y)
and so on. Of course PRA proves in a trivial way the totality of all the
Supi as these symbols form part of our language. We have chosen an equiv-
alent variant of the usual induction axiom so that we end up with a Π1-
axiomatization of PRA. It is easy to see that our definition of PRA is equiv-
alent, or more precisely equi-interpretable, to any other of our definitions
of PRA.

Definition 5. The theory IΣ1 is the theory that is obtained by adding to
PRA induction axioms ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀x ϕ(x) for all
Σ1({Supi}i∈ω)-formulas ϕ(x) that may contain additional parameters.

Reading conventions Throughout this section we will adhere to the
following notational convention. Arithmetical formulas defining the graph of
a function are denoted by lowercase greek letters. The corresponding lower
case roman letter is reserved to be the symbol that refers to the function
described by its graph. By the corresponding upper case roman letter we
will denote the very short formula that defines the graph using the lower

2 We can take for example Kaye’s system PA− from [Kay91] where in Ax 13 we
replace the unbounded existential quantifier by a bounded one.
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case roman letter and the identity symbol only. Context, like indices and so
forth, are inherited in the expected way.

For example, if χn(x, y) is an arithmetical formula describing a function,
in a richer language this function will be referred to by the symbol gn. The
corresponding Gn will refer to the simple formula gn(x) = y in the enriched
language.

4.1. Introducing a new function symbol

In our discussion we shall like to work with a theory that arises as an ex-
tension of PRA by a definition. We will add a new function symbol f to the
language of PRA together with the axiom ϕ that defines f . Moreover we
would like to employ induction that involves this new function symbol, pos-
sibly also in the binding terms of the bounded quantifiers. We will see that
if the function f allows for a simple definition and has some nice properties
we have indeed access to the extended form of induction.

Essentially the justification boils down to a theorem of Gaifman and
Dimitracopoulos [GD82] a proof of which can also be found in [HP93] (The-
orem 1.48 and Proposition 1.3). We will closely follow here a proof of Bek-
lemishev from [Bek97] which we slightly improved and modified.

We first give the necessary definitions before we come to formulate the
main result, Theorem 2

Definition 6 (∆0({gi}i∈I)-formulas, I∆0({gi}i∈I)).
Let {gi}i∈I be a set of function symbols. The ∆0({gi}i∈I)-formulas are the
bounded formulas in the language of PA enriched with the function symbols
{gi}i∈I . The new function symbols are also allowed to occur in the binding
terms of the bounded quantifiers. By I∆0({gi}i∈I) we mean the theory that
comprises

– some open axioms describing some minimal arithmetic3,
– induction axioms for all ∆0({gi}i∈I)-formulas and
– (possibly) defining axioms of the symbols {gi}i∈I .

The defining axioms of the symbols {gi}i∈I are denoted by D({gi}i∈I).

From now on, we may thus write I∆0({Supi}i∈ω) instead of PRA.

Definition 7 (Tot(ϕ), Mon(ϕ)).
Let ϕ(x, y) be a ∆0({gi}i∈I) formula. By Tot(ϕ) we shall denote the formula
∀x∃ ! y ϕ(x, y)4 stating that ϕ can be regarded as a total function. By Mon(ϕ)
we shall denote the formula ∀x, x′, y, y′ (x ≤ x′ ∧ ϕ(x, y) ∧ ϕ(x′, y′) → y ≤
y′) ∧ Tot(ϕ) stating the monotonicity of the total ϕ.

3 For example the open part of Robinson’s arithmetic.
4 That is, ∀x∃y ϕ(x, y) ∧ ∀x∀y ∀y′ (ϕ(x, y) ∧ ϕ(x, y′)→ y = y′).
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Definition 8 (∆0({gi}i∈I , F )-formula, I∆0({gi}i∈I , F )).
Let ϕ be such that I∆0({gi}i∈I) ` Tot(ϕ). Recall that the uppercase let-
ter F paraphrases the formula f(x) = y. A ∆0({gi}i∈I , F )-formula is a
∆0({gi}i∈I)-formula possibly containing occurrences of F . By I∆0({gi}i∈I , F )
we denote the theory I∆0({gi}i∈I) where we now also have induction for
∆0({gi}i∈I , F ) formulas. The defining axiom of f , in our case ϕ, is also in
I∆0({gi}i∈I , F ).

Note that f cannot occur in a bounding term in an induction axiom of
I∆0({gi}i∈I , F ). Also note that F is nothing but a formula containing f
stating f(x) = y and consists of just six symbols (if f is unary). Of course
later we will substitute for F an arithmetical definition of the graph of f ,
that is, ϕ(x, y).

The main interest of the extension of I∆0({gi}i∈I) by a definition of f
is in Theorem 2 and in its Corollary 2. The latter says that we can freely
use f(x) as an abbreviation of ϕ(x, y) and have access to ∆0({gi}i∈I , f)-
induction whenever f has a ∆0({gi}i∈I) graph and is provably total and
monotone in I∆0({gi}i∈I).

First we prove some technical but rather useful lemmata. They are
slight improvements of Beklemishev’s Lemma 5.12 and 5.13 from [Bek97].
From now on we will work under the assumptions of Theorem 2 so that
I∆0({gi}i∈I) is such that any term t in its language is provably majoriz-
able by some other term t̃ that is strictly increasing in all of its arguments.
Throughout the forthcoming proofs we will for any term t denote by t̃ such
a term that is provably strictly monotone (in all of its arguments) and
majorizing t.

Lemma 2. For every term s(a) of I∆0({gi}i∈I , f) and every
R ∈ {≤,≥,=, <,>} there are terms tRs and s̃(a) strictly increasing in
all of their arguments and a ∆0({gi}i∈I , F )-formula ψRs (a, b, y) such that
I∆0({gi}i∈I , F )+Mon(ϕ) ` ∀ y≥tRs (a) (s(a)Rb↔ ψRs (a, b, y)) and I∆0({gi}i∈I , F )+
Mon(ϕ) ` ∀x (s(x) ≤ s̃(x)).

Proof. The proof proceeds by induction on s(a). In the basis case nothing
has to be done as xiRb, 0Rb and 1Rb are all atomic ∆0({gi}i∈I , F )-formulas.
Moreover all of the xi, 0 and 1 are (provably) strictly monotone in all of
their arguments. For the induction case consider s(a) = h(s1(a)), where h
is either one of the gi or h = f . For simplicity we assume here that h is a
unary function.

The induction hypothesis provides us with a ∆0({gi}i∈I , F )-formula
ψ=
s1(a, b, y) and terms t=s1(a) and s̃1(a) such that

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥t=s1(a) (s1(a) = b↔ ψ=
s1(a, b, y)),

and

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀x (s1(x) ≤ s̃1(x)).
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We now want to say that h(s1(a))Rb in a ∆0({gi}i∈I , F ) way. This
can be done by ∃ y′, y′′≤y (ψ=

s1(a, y′, y) ∧ h(y′) = y′′ ∧ y′′Rb) whenever
y ≥ t=s1(a) + s̃(a). Here we define s̃(a) to be just f(s̃1(a)) in case h = f and
g̃i(s̃1(a)) in case h = gi. Clearly I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀x (s(x) ≤
s̃(x)). Indeed one easily sees that

I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥t=s1(a) + s̃(a) [h(s1(a))Rb↔
∃ y′, y′′≤y (ψ=

s1(a, y′, y) ∧ h(y′) = y′′ ∧ y′′Rb)].

It is also easy to see that t=s1(a) + s̃(a) is indeed monotone. In case h = f
we need Mon(ϕ) here.

A similar reduction applies to the case when the function g has more
than one argument.

It is possible to simplify the above reduction a bit by distinguishing
between h = f and h 6= f and also R == and R 6==, or by proving the
lemma just for R == and showing that all the other cases can be reduced
to this. We are not very much interested in optimality at this point though.

Lemma 3. For every ∆0({gi}i∈I , f)-formula θ(a) there is a
∆0({gi}i∈I , F )-formula θ0(a, y) and a provably monotonic term tθ(a) such
that
I∆0({gi}i∈I , F ) + Mon(ϕ) ` ∀ y≥tθ(a) (θ(a)↔ θ0(a, y)).

Proof. The lemma is proved by induction on θ.

– Basis. In this case θ(a) is s1(a)Rs2(a). Applying Lemma 2 we see that5

s1(a)Rs2(a)↔ ∃ b≤y (ψ=
s2(a, b, y) ∧ ψRs1(a, b, y)) whenever

y ≥ ts1(a) + ts2(a).
– The only interesting induction case is where a bounded quantifier is

involved. We consider the case when θ(a) is ∃x≤s(a) ξ(a, x). The in-
duction hypothesis yields a provably monotonic term tξ(a, x) and a
∆0({gi}i∈I , F )-formula ξ0(a, x, y) such that provably

∀ y≥tξ(a, x) (ξ(a, x)↔ ξ0(a, x, y))

. Combining this with Lemma 2 we get that provably

∃x≤s(a) ξ(a, x)↔ ∃x′≤y (ψ=
s (a, x′, y) ∧ ∃x≤x′ ξ0(a, x, y))6

whenever y ≥ s̃(a) + t=s (a) + tξ(a, s̃(a)).

Theorem 2. Let I∆0({gi}i∈I) be such that any term t in its language is
provably majorizable by some other term t̃ that is strictly increasing in all
of its arguments. We have that I∆0({gi}i∈I , F )+Mon(ϕ) ` I∆0({gi}i∈I , f).

5 If we only want to use Lemma 2 with R being = we can observe that
s1(a)Rs2(a) ↔ ∃ b, c≤y (ψ=

s1(a, b, y) ∧ ψ=
s2(a, c, y) ∧ bRc) whenever y ≥ ts1(a) +

ts2(a).
6 Alternatively, one could take ∃x≤y (ψ≥s (a, x, y) ∧ ξ0(a, x, y)) for y ≥ t≥s (a) +

tξ(a, s̃(a)).
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Proof. We will prove the least number principle for
∆0({gi}i∈I , f)-formulas in I∆0({gi}i∈I , F ) + Mon(ϕ) as this is equivalent
to induction for ∆0({gi}i∈I , f)-formulas. So, let θ(x,a) be a ∆0({gi}i∈I , f)-
formula and reason in I∆0({gi}i∈I , F ) + Mon(ϕ). By Lemma 3 we have a
strict monotonic term tθ(x,a) and a ∆0({gi}i∈I , F )-formula θ0(x,a, y) such
that θ(x,a)↔ θ0(x,a, y) whenever y ≥ tθ(x,a).

Now assume ∃x θ(x,a). We will show that ∃x (θ(x,a)∧∀x′<x ¬θ(x′,a)).
Let x be such that θ(x,a). We now fix some y ≥ tθ(x,a). Thus we have
θ0(x,a, y). Applying the least number principle to the∆0({gi}i∈I , F )-formula
θ0(x,a, y) we get a minimal x0 such that θ0(x0,a, y). As x0 < x and tθ is
monotone we have y ≥ tθ(x,a) ≥ tθ(x0,a) and thus θ(x0,a). If now x′ < x0

such that θ(x′,a) then also θ0(x′,a, y) which would conflict the minimality
of x0 for θ0. Thus x0 is the minimal element such that θ(x0,a).

As in [Bek97] (Remark 5.14) we note here that Theorem 2 shows that
∆0({gi}i∈I , f)-induction is actually provable from ∆0({gi}i∈I , F )-induction
where the bounding terms are just plain variables. Also we note that Lemma
2 and Lemma 3 do not use the full strength of I∆0({gi}i∈I , F ).

Corollary 2. Let I∆0({gi}i∈I) be such that any term t in its language is
provably majorizable by some other term t̃ that is strictly increasing in all
of its arguments. Let f be ∆0({gi}i∈I)-definable by ϕ. Then, I∆0({gi}i∈I)+
Mon(ϕ) ` I∆0({gi}i∈I , f).

Proof. Immediate from Theorem 2 by replacing every occurrence of F by
ϕ.

4.2. PRA, IΣ1 and iterations of total functions

This subsection contains two main results. In Theorem 3 we shall charac-
terize the difference between IΣ1 and PRA in terms of provable closure of
iteration of a certain class of functions.

In Theorem 4 we use this characterization to give a sufficient condition
for a model of PRA to be also a model of IΣ1.

Let us first specify what we mean by function iteration. If f denotes a
function we will denote by f it the (unique) function satisfying the following
primitive recursive schema: f it(0)=1, f it(x+ 1)=f(f it(x)).

Definition 9. Let ϕ(x, y) be some formula. By ϕit(x, y) we denote
∃σ ϕ̃it(σ, x, y) where ϕ̃it(σ, x, y) is the formula
Finseq(σ) ∧ lh(σ) = x+ 1 ∧ σ0 = 1 ∧ σx = y ∧ ∀ i<x ϕ(σi, σi+1).

Note that if PRA proves the functionality of a ∆0({Supi}i∈ω)-formula ϕ,
it also proves the functionality of ϕ̃it, for example by proving by induction
on σ that ∀σ ∀x, y, y′, σ′≤σ (ϕ̃it(σ, x, y) ∧ ϕ̃it(σ′, x, y′)→ σ = σ′ ∧ y = y′).

As we will need upperbounds on sequences of numbers a short remark
on coding is due here. By [a0, . . . , an] we will denote the code of the se-
quence a0, . . . , an of natural numbers via some fixed coding technique. By
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[a0, . . . , an]u[b0, . . . , bm] we will denote the code of the sequence a0, . . . , an, b0, . . . , bm
that arises from concatenating b0, . . . , bm to a0, . . . , an (to the right).

The projection functions are referred to by sub indexing. So, σi will be
ai if σ = [a0, . . . , an] and i ≤ n and zero if i > n, and n + 1 is called the
length of σ. We say that σ is an initial subsequence of σ′ if σ = [a0, . . . an]
and σ′ = [a0, . . . an, . . . am] and m ≥ n. We denote this by σ v σ′.

Further, we shall employ well known expressions like lh(σ), giving the
length of a sequence σ. If we write down statements involving sequences we
will tacitly assume that the statements actually make sense. For example,
∀ i<lh(x) ψ will thus actually denote Finseq(x) ∧ ∀ i<lh(x) ψ.

We shall not fix any specific coding protocol as any protocol with ele-
mentary projections, concatenation etcetera is good for us.

The following theorem tells us what is the difference between PRA and
IΣ1 in terms of totality statements of ∆0({Supi}i∈ω)-definable functions.

Theorem 3. IΣ1 ≡ PRA + {Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)}.

Proof. For one inclusion we only need to show that IΣ1 ` Tot(ϕ)→ Tot(ϕit)
but this follows easily from a Σ1-induction on x in ∃σ ∃ y ϕ̃it(σ, x, y) under
the assumption that ∀x∃ y ϕ(x, y). We shall thus concentrate on the harder
direction PRA + {Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)} ` IΣ1.

To this end we reason in PRA+{Tot(ϕ)→ Tot(ϕit) | ϕ ∈ ∆0({Supi}i∈ω)}
and assume ∃ y ψ(0, y) ∧ ∀x (∃y ψ(x, y) → ∃ y ψ(x + 1, y)) for some
∆0({Supi}i∈ω)-formula ψ(x, y). Our aim is to obtain ∀x∃ y ψ(x, y).

Let Leastψ,x(y) denote the formula ψ(x, y) ∧ ∀ y′<y ¬ψ(x, y′). We are
going to define in a ∆0({Supi}i∈ω)-way a formula ϕ(x, y) so that f it(x+1) =
[y0, · · · , yx] with ∀ i≤x Leastψ,i(yi).

ϕ(x, y) :=


(i) (x = 0 ∧ y = 0) ∨
(ii) (x = 1 ∧ ∃ y′<y (y = [y′] ∧ Leastψ,0(y′))) ∨
(iii) (x > 1 ∧ ∀ i<lh(x) Leastψ,i(xi)∧

∃ y′<y (y = xu[y′] ∧ Leastψ,lh(x)(y′))) ∨
(iv) (x > 1 ∧ ¬(∀ i<lh(x) Leastψ,i(xi)) ∧ y = 0)

Thus, the function f defined by ϕ has the following properties. It is
always zero unless x=1 or x is of the form [y0, · · · , yn] where each yi is the
smallest witness for ∃y ψ(i, y).

We note, that by our assumptions ∃y ψ(0, y) and ∀x (∃y ψ(x, y)→ ∃y ψ(x+1, y)),
the function f is total. As the definition of ϕ is clearly ∆0({Supi}i∈ω) we
may conclude Tot(f it).

We shall show that f it is ∆0({Supi}i∈ω)-definable, and that provably
Mon(f it). If we know this, then our result follows immediately. Because,
by an easy I∆0({Supi}i∈ω, f it)-induction we conclude ∀x ψ(x, (f it(x+1))x),
whence ∀x∃y ψ(x, y). By Corollary 2 we conclude PRA+{Tot(ϕ)→ Tot(ϕit) |
ϕ ∈ ∆0({Supi}i∈ω)} ` ∀x∃y ψ(x, y) and we are done.
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We will first see inside our theory that Mon(f it). The monotonicity of
f it is intuitively clear but we have to show that we can catch this intuition
using only ∆0({Supi}i∈ω)-induction.

For example, we can first prove by induction on x that all of the f it(x+1)
are “good sequences” where by a good sequence we mean one of the form
[y0, . . . , yx] with the yi minimal witnesses to ∃y ψ(i, y). To make this a
∆0({Supi}i∈ω)-induction we should reformulate the statement as for exam-
ple ∀z ∀σ, x, y≤z (ϕ̃it(σ, x+ 1, y)→ Goodseq(y)).

Now assume ϕ̃it(σ′, x′, y′). We will show by induction on x that

∀x≤x′ ∃σ≤σ′ ∃ y≤y′ ϕ̃it(σ, x′ − x, y) (+)

from which monotonicity follows. If x = 0 we take σ′ = σ and y = y′. For
the inductive step, let σ ≤ σ′ and y ≤ y′ be such that ϕ̃it(σ, x′ − x, y). We
assume that x+ 1 ≤ x′ hence lh(σ) > 1, for if not, the solution is trivial.

By σ−1 we denote the sequence that is obtained from σ by deleting the
last element. Clearly ϕ̃it(σ−1, x

′−x−1, (σ−1)x′−x−1) and ϕ((σ−1)x′−x−1, y).
Thus (σ−1)x′−x−1 is a good sequence which implies that clause (iii) in the
definition of ϕ is used to determine y. Consequently (σ−1)x′−x−1 v y and
thus (σ−1)x′−x−1 ≤ y ≤ y′. Moreover we note that σ−1 v σ and thus
σ−1 ≤ σ ≤ σ′.

We now want to show the ∆0({Supi}i∈ω)-ness of ϕit(x, y) by providing
an upperbound on the σ in ϕ̃it(σ, x, y). Under any reasonable choice of our
coding machinery, we can find an n ∈ ω such that

(a) [
x times︷ ︸︸ ︷
y, · · · , y] ≤ Supn(x+ y),

(b) Supn(x+ y)u[y] ≤ Supn(x+ y + 1).

For such an n it is not hard to see that

∃σ ϕ̃it(σ, x, y)↔ ∃σ′≤Supn(x+ y) ϕ̃it(σ, x, y).

This, we see by proving by induction on σ that

∀σ ∀x, y≤σ (ϕ̃it(σ, x, y)→ ∃σ′≤Supn(x+ y) ϕ̃it(σ, x, y)).

We note that this is sufficient as ϕ̃it(σ, x, y) → x, y ≤ σ. The only interest-
ing possibility in the induction step is when we get for some new x + 1, y
that ϕ̃it(σ + 1, x + 1, y). For σ′′ := (σ + 1)−1 we have that σ′′ < σ + 1
and ϕ̃it(σ′′, x, y−1). By the induction hypothesis we may assume that σ′′ ≤
Supn(x+y−1). By the definition of ϕ̃it, we now see that ϕ̃it(σ′′u[y], x+1, y).
But,

σ′′u[y] ≤ Supn(x+ y−1)u[y]
≤ Supn(x+ y)u[y]
≤ Supn(x+ y + 1).
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We note that we filled the gap between PRA and IΣ1 by transforming
an admissible rule of PRA to axiom form. Indeed Tot(ϕ) |∼Tot(ϕit) is an
admissible rule of PRA. For if PRA ` Tot(ϕ), then f is a primitive recursive
function as is well known. But f it is constructed from f by a simple recur-
sion. Thus f it is primitive recursive and hence provably total in PRA. The
same phenomenon occurs in passing from IΣR

1 to IΣ1 where the (trivially)
admissible Σ1-induction rule is added in axiom form to PRA to obtain IΣ1.

The fact that we allow for variables in Theorem 3 is essential. For if not,
the logical complexity of PRA + {Tot(ϕ) → Tot(ϕit) | ϕ∈∆0({Supi}i∈ω)}
would be7 ∆3 and so would be the logical complexity of IΣ1. But it is
well known that IΣ1 can not be proved by any consistent collection of Σ3-
sentences.

A parameter-free version of PRA+{Tot(ϕ)→ Tot(ϕit) | ϕ∈∆−0 ({Supi}i∈ω)}
will be equivalent to parameter-free Σ1-induction, IΣ1

−.

We now come to prove a theorem that tells us when a model of PRA is
also a model of IΣ1. This lemma is formulated in terms of majorizability
behavior of some total functions. A total function of a model M is a relation
ϕ(x, y) (possibly with parameters from M) for which M |= Tot(ϕ). Often
we will write f ≤ g as short for ∀x (∃ y ϕ(x, y) → ∃ y′ (χ(x, y′) ∧ y ≤ y′))
and say that f is majorized by g. Thus if f ≤ g we automatically have
Tot(ϕ)→ Tot(χ).

Theorem 4. Let M be a model of PRA. If every ∆0({Supi}i∈ω)-definable
total function (with parameters) of M is majorized by m + Supn for some
m ∈M and some n ∈ ω, then M is also a model of IΣ1.

Proof. Let M be satisfying our conditions. To see that M |= IΣ1 we need
in the light of Theorem 3 to show that M |= Tot(ϕ) → Tot(ϕit) for any
∆0({Supi}i∈ω) function ϕ with parameters in M. So, we consider some
function f such thatM |= Tot(ϕ). We choose m ∈M\{0} and n ∈ ω large
enough so that

(a.) M |= f ≤ m+ Supn,
(b.) M |= ∀x (m+ Supn+1(mx+m+ 1) ≤ Supn+1(mx+m+m)).

The second condition is automatically satisfied if m is a non-standard
element.

An easy∆0({Supi}i∈ω)-induction shows that (m+Supn)it(x) ≤ Supn+1(mx+
m). (Remember that we have excluded m = 0.) The case x = 0 is trivial as

7 Actually we should be more careful here as we work in a richer language.
However this makes no essential difference as all the Supn are ∆1-definable over
EA.



14 Joost J. Joosten

1 ≤ Supn+1(m). For the inductive step we see that8

(m+ Supn)it(x+ 1) =
(m+ Supn)((m+ Supn)it(x)) ≤i.h.
m+ Supn(Supn+1(mx+m)) ≤def.
m+ Supn+1(mx+m+ 1) ≤(b.)

Supn+1(mx+m+m) = Supn+1(m(x+ 1) +m).

We can use the obtained bounds to show the totality of f it by estimating
the size of σ that witnesses ϕ̃it(σ, x, y). We know (outside PRA) that σ is
of the form

[1, f(1), f(f(1)), . . . , fx(1)] ≤
[1,m+ Supn(1),m+ Supn(f(1)), . . . ,m+ Supn(fx−1(1))] ≤
[1,m+ Supn(1), (m+ Supn)2(1), . . . , (m+ Supn)2(fx−2(1))] ≤

...
...

[1,m+ Supn(1), (m+ Supn)2(1), . . . , (m+ Supn)x(1)] ≤
[(m+ Supn)x(1), . . . , (m+ Supn)x(1)] ≤
[Supn+1(mx+m), . . . ,Supn+1(mx+m)]

Every time we used dots here in our informal argument, some∆0({Supi}i∈ω)-
induction should actually be applied. To neatly formalize our reasoning we
choose some k ∈ ω large enough for our n and m such that (in M)

(c.) [1] ≤ Supn+k(2m)
(d.) Supn+k(m(x+ 1) +m) u [Supn+1(m(x+ 1) +m)] ≤

Supn+k(m(x+ 2) +m)9

With these choices for m,n and k it is easy to prove by ∆0({Supi}i∈ω)-
induction that

∀x∃σ≤Supn+k(m(x+ 1) +m)∃ y≤Supn+1(mx+m) ϕ̃it(σ, x, y).

If x = 0 then ϕ̃it([1], 0, 1) and by (c.) we have [1] ≤ Supn+k(m(0 + 1) +m).
Also 1 ≤ Supn+1(m). Now suppose ϕ̃it(σ, x, y) with σ and y below their
respective bounds. We have by the definition of ϕ̃it that ϕ̃it(σ u [f(y)], x +
1, f(y)) (again we do as if we had f available in our language). We need to
show that the new values do not grow too fast. But,

f(y) ≤I.H. f(Supn+1(mx+m)) ≤(a.)

m+ Supn(Supn+1(mx+m)) ≤(b.) f(Supn+1(m(x+ 1) +m))

8 This looks like a legitimate induction but remember that (m +
Supn)it has an a priori Σ1({Supi}i∈ω)-definition. The argument should thus
be encapsulated in a ∆0({Supi}i∈ω)-induction, for example by proving

∀ z ∀σ, x, y≤z ( ˜(m+ Supn)
it

(σ, x, y) → y ≤ Supn+1(mx + m)). The essential rea-
soning though boils down to the argument given here.

9 It is not hard to convince oneself that under any reasonable coding protocol
such a k does exist.
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as we have seen before. By (d.) we get that

σ u [f(y)] ≤I.H. Supn+k(m(x+ 1) +m) u [Supn+1(m(x+ 1) +m)]
≤(d.) Supn+k(m(x+ 2) +m).

4.3. The actual proof of Parsons’ theorem

In the setting of this section we formulate Parsons’ theorem as follows.

Theorem 5. ∀π ∈ Π2 (IΣ1 ` π ⇒ PRA ` π)

Before we give the proof of Parsons’ theorem we first agree on some model
theoretic notation.

We recall the definition of M ′ being a 1-elementary extension of M ,
denoted by M ≺1 M

′. This means that M ⊆ M ′ and that for m ∈ M and
σ(y) ∈ Σ1 we have M |= σ(m) ⇔ M ′ |= σ(m). In this case we also say
that M is a 1-elementary submodel of M ′. It is easy to see that

M ≺1 M
′ ⇔ [M |= σ(m)⇒M ′ |= σ(m)] for all σ(y) ∈ Σ2.

A 1-elementary chain is a sequence M0 ≺1 M1 ≺1 M2 ≺1 . . .. It is well
known that the union of a 1-elementary chain is a 1-elementary extension of
every model in the chain. It is worthy to note that in a 1-elementary chain
the truth of Σ2-sentences (with parameters) is preserved from left to right
and the truth of Π2-sentences (without parameters) is preserved from right
to left.

By Th(M,C) we denote the first-order theory of M with all constants
from C added to the language. This makes sense if we know how to interpret
the constants of C in M .
We also recall the definition of the collection principle.

BΓ := {∀x<t∃ y ϕ(x, y)→ ∃ s∀x<t∃ y<s ϕ(x, y) | ϕ ∈ Γ}

together with a minimum of arithmetical axioms, e.g. PA−. We now come
to the actual proof of Theorem 5.

Proof of Theorem 5. Let a countable model M |= PRA + σ be given with
σ ∈ Σ2. We will construct a countable model M ′ of IΣ1 +σ using Theorem
4.

Our strategy will be to make any ∆0({Supi}i∈ω)-definable total function
of M that is not bounded by any of the m + Supn (n ∈ ω, m ∈ M) either
bounded by some m+Supn (n ∈ ω, m ∈M ′) or not total in the PRA-model
M ′. The model M ′ will be the union of a Σ1-elementary chain of models
M = M0 ≺1 M1 ≺1 M2 . . . ≺1 M

′ = ∪i∈ωMi.
At each stage either the boundedness of a total ∆0({Supi}i∈ω)-definable

function is guaranteed (a Π1-sentence: ∀x, y (ϕ(x, y)→ y ≤ m+ Supn(x)))
or its non-totality (a Σ2-sentence: ∃x∀ y ¬ϕ(x, y)). As we shall work with
a 1-elementary chain of models, functions that are dealt with need no more
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attention further on in the chain. Their interesting properties, that is bound-
edness or non-totality, are stable. By choosing the order in which functions
are dealt with in a good way, eventually all total funtions of all models
Mi will be considered. We shall see that as a result of this process every
total function in M ′ that is ∆0({Supi}i∈ω)-definable is bounded by some
M + Supn.

To properly order the functions that we shall deal with, we fix a bijective
pairing function in this proof satisfying x, y ≤ 〈x, y〉. We do as if the models
Mn were already defined and write fn0, fn1, fn2, . . . for the list of the (count-
ably many) total ∆0({Supi}i∈ω)-definable functions of Mn. We emphasize
that we allow the functions fni to contain parameters from Mn. Further-
more we define gn to be fab for the unique a, b ∈ ω such that 〈a, b〉 = n.

We define M0 := M .

We will define Mn+1 to be such that gn becomes (or remains) either
bounded or non-total in it and Mn ≺1 Mn+1. If we can do so, we are done.
For suppose M = M0 |= PRA + σ. As PRA is Π1-axiomatizable in the
language containing the {Supi}i∈ω we get that M ′ |= PRA and likewise
M ′ |= σ.

If now M ′ |= Tot(ϕ) for some ϕ ∈ ∆0({Supi}i∈ω), we see that for some
n, Mn |= Tot(ϕ) as soon as Mn contains all the parameters that occur in
ϕ. Thus f = gm for some m ≥ n. Thus in Mm+1 the function f will be
surely majorized, for Mm+1 |= ¬Tot(ϕ) ⇒ M ′ |= ¬Tot(ϕ). Consequently
M ′ |= f ≤ m′ + Supk for some m′ ∈Mm+1 ⊆M ′, k ∈ ω. By Theorem 4 we
see that M ′ |= IΣ1.

If Mn |= gn ≤ m+Supk for some m ∈Mn and k ∈ ω we set Mn+1 := Mn.
Clearly Mn ≺1 Mn+1 and gn is bounded in Mn+1 (regargless its totality).

So, suppose that gn is total in Mn and that Mn |= ¬(gn ≤ m+Supk) for
all m ∈Mn and all k ∈ ω. We obtain our required model Mn+1 in two steps.

Step 1.

We go from Mn ≺1 Mn1 |= B∆0({Supi}i∈ω)(+PRA). To this purpose, we
add a fresh constant d to our language and consider

T := Th(Mn, {m}m∈Mn) ∪ {d > Supk(m) | k ∈ ω, m ∈Mn}.

As T is finitely satisfiable in Mn, we can find a countable model Mn0 |=
T . Let Mn1 be the (initial) submodel of Mn0 with domain {x ∈ Mn0 |
∃ k∈ω ∃m∈Mn x ≤ Supk(m)}. Clearly, Mn1 is indeed a submodel, that
is, it is closed under all the Supk. For if x ≤ Supl(m) then Supk(x) ≤
Supk(Supl(m)) ≤ Supk+l+2(m). We see that Mn1 is a model of PRA as
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PRA is Π1-axiomatized. As Mn ⊆Mn1, we get Mn ≺1 Mn1. For,

Mn |= ∃x ϕ(x) , ϕ(x) ∈ Π1 ⇒ for some m∈Mn

Mn |= ϕ(m) ⇒
Mn0 |= ϕ(m) ⇒
Mn1 |= ϕ(m) ⇒
Mn1 |= ∃x ϕ(x).

We now see thatMn1 |= B∆0({Supi}i∈ω). So, supposeMn1 |= ∀x<t∃ y ϕ(x, y)
for some t ∈Mn1 and ϕ ∈ ∆0({Supi}i∈ω). ClearlyMn0 |= ∀x<t∃ y<d ϕ(x, y)
for some d ∈Mn0, actually for any d ∈Mn0\Mn1. Now by the∆0({Supi}i∈ω)
minimal number principle we get a minimal d0 such thatMn0 |= ∀x<t∃ y<d0 ϕ(x, y).
If d0 were in Mn0 \ Mn1, then d0 − 1 would also suffice as a bound on
the y’s. The minimality of d0 thus imposes that d0 ∈ Mn1. Consequently
Mn1 |= ∃ d0 ∀x<t∃ y<d0 ϕ(x, y) and Mn1 |= B∆0({Supi}i∈ω).

Step 2.

We go from10 Mn1 |= B∆0({Supi}i∈ω)(+PRA) to a model Mn1 ≺1

Mn3 |= PRA + ¬Tot(χn). Mn+1 will be the reduct of Mn3 to the origi-
nal language.

If Mn1 |= ¬Tot(χn) nothing has to be done and we take Mn3 = Mn1.
So, we assume that Mn1 |= Tot(χn). We consider the set

Γ := Th(Mn1, {m}m∈Mn1) ∪ {gn(c) > m+ Supk(c) | m ∈Mn1, k ∈ ω}

with c a fresh constant symbol. As gn is not majorizable in Mn1 we see that
any finite subset of Γ is satisfiable whence Γ is satisfiable. Let Mn2 be a
countable model of Γ . Of course, we can naturally embed Mn1 in Mn2.

We will now see that c > Mn1. For suppose c ≤ m ∈ Mn1. Then
Mn1 |= ∀x≤m∃ z gn(x)=z.11 By ∆0({Supi}i∈ω)-collection we get Mn1 |=
∃ d0 ∀x≤m∃ z≤d0 gn(x)=z. But then Mn1 |= gn(c) ≤ d0 whence Mn1 |=
¬(gn(c) > d0 + Supk(c)). A contradiction.

Define Mn3 to be the (initial) submodel of Mn2 with domain {m ∈Mm2 |
∃ k ∈ ω Mn2 |= m < Supk(c)}. As c ≥ Mn1 we get Mn1 ⊆ Mn3. We now
see that Mn1 ≺1 Mn3. For suppose Mn1 |= ∃x ϕ(x) with ϕ(x) ∈ Π1 then
Mn1 |= ϕ(m0) for some m0 ∈ Mn1. Consequently Mn2 |= ϕ(m0) and as
Mn3 ⊂e Mn2 and ϕ(m0) ∈ Π1, also Mn3 |= ϕ(m0) whence Mn3 |= ∃x ϕ(x).
Clearly Mn3 |= ¬Tot(χn) as gn(c) can not have a value in Mn3. ut

Corollary 3. ∀π ∈ Π2 (BΣ1 ` π ⇒ PRA ` π)

Proof. A direct proof of this fact is given in Step 1 in the above proof.

10 Or from the reduct of Mn1 to the original language for that matter.
11 We actually should substitute the ∆0({Supi}i∈ω)-graph of gn here.
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5. Consistency, cuts and length of proofs

A direct consequence of the formalizability of Parsons’ theorem is that PRA
and IΣ1 are equi-consistent. To be more precise, for every theory T proving
the totality of the superexponentiation we have that

T ` Con(PRA)↔ Con(IΣ1).

Consequently IΣ1 0 Con(PRA). In this section we shall see that we can find
a definable IΣ1-cut J such that IΣ1 ` ConJ(PRA). More generally, we shall
show that for this cut J we actually have that for any Σ2-sentence σ, it
holds that IΣ1 + σ ` ConJ(PRA + σ).

As in [Pud86] and [Ign90] we note that Theorem 6 implies that certain
proofs in PRA must get exponentially larger than their counterparts in IΣ1.
This, in a sense, says that the use of the cut-elimination, whence the super
exponential blow-up, in the proof of Theorem 1 was essential.

To the best of our knowledge Ignjatovic ([Ign90]) showed for the first
time that IΣ1 proves the consistency of PRA on some definable cut. His
reasoning was based on a paper by Pudlák ([Pud86]). Pudlák showed in
this paper by model-theoretic means that GB proves the consistency of ZF
on a cut. The cut that Ignjatovic exposes is actually an RCA0-cut. (See for
example [Sim99] for a definition of RCA0.)

The elements of the cut correspond to complexities of formulas for which
a sort of truth-predicate is available. By an interpretability argument it is
shown that a corresponding cut can be defined in IΣ1. It seems straight-
forward to generalize his result to obtain Theorem 6.

In [Joo04] an explicit IΣ1-cut J is exposed such that IΣ1 ` ConJ(PRA).
Actually, a far more general result is proved there by proof theoretical meth-
ods. Namely, that for each n∈ω there exists some IΣn-cut Jn such that for
all Σn+1-sentences σ, IΣn + σ ` ConJn(IΣR

n + σ). The proof is easily for-
malizable in the presence of supexp.

The proof we present here is a simplification of an argument by Visser.
In an unpublished note [Vis90], Visser sketched a modification of a proof of
Paris and Wilkie from [WP87] to obtain our Theorem 6. Lemma 8.10 from
[WP87], implies that for every r∈ω there is an (I∆0 + exp)-cut such that
for every σ∈Σ2, I∆0 + σ + exp proves the consistency of I∆0 + σ + Ωr on
that cut.

5.1. Basic definitions

Let us first give a definition of PRA that is useful to us in our proof. Again,
we will work with the functions Supn(x) as introduced in Section 4. How-
ever, this time we will not extend our language. Rather we shall work with
arithmetical definitions of the Supn(x). Let us recall the defining equations
for the functions Supn(x).

- Sup0(x) = 2·x
- Supz+1(0) = 1
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- Supz+1(x+ 1) = Supz(Supz+1(x))

We see that Supz(x) = y can be expressed by a Σ1-formula:12

(Supz(x) = y) := (∃s S̃up(s, z, x, y)),

where S̃up(s, z, x, y) is the following ∆0-formula:

Finseq(s) ∧ lh(s)=z+1 ∧
lh(sz)=x+1 ∧ ∀ i≤z (Finseq(si) ∧ [(i<z)→ lh(si) = (si+1)lh(si+1)−2])

∧ ∀ j<lh(s0) (s0)j = 2·j ∧
∀ i<lh(s)−1 ((si+1)0 = 1 ∧ ∀ j<lh(si+1)−1 ((si+1)j+1 = (si)(si+1)j ))

∧ (sz)x = y.

The intuition behind the formula S̃up(s, z, x, y) is very clear. The s is a
sequence of sufficiently large parts of the graphs of the Supz′ ’s. Thus,

s =


[[Sup0(0),Sup0(1), . . . ,Sup0(lh(s0)− 1)],
[Sup1(0),Sup1(1), . . . ,Sup1(lh(s1)− 1)],

...
[Supz(0),Supz(1), . . . ,Supz(lh(sz)− 1)]].

Rather weak theories already prove the main properties of the Supz func-
tions (without saying anything about the definedness) like

Supn(1) = 2,
Supn(2) = 4,
1 ≤ Supn+1(y),
x ≤ y → Supn(x) ≤ Supn(y),
(n≤m ∧ x≤y)→ Supn(x)≤Supm(y),

and so on.

Definition 10. PRA is the first-order theory in the language {+, ·,≤, 0, 1}
using only the connectives ¬,→ and ∀, with the following non-logical ax-
ioms.

[A.] Finitely many defining Π1-axioms for +, ·, ≤, 0 and 1.
[B.] Finitely many identity axioms of complexity Π1.
[C.] For every ϕ(x,a)∈∆0 an induction axiom of complexity Π1 of the form:13

∀x ∀z (ϕ(0, z) ∧ ∀ y<x (ϕ(y, z)→ ϕ(y+1, z))→ ϕ(x, z)).

12 By close inspection of the defining formula we see that Supz(x)=z can actually
be regarded as a ∆0(exp)-formula.
13 We mean of course a Π1-formula using only ¬,→ and ∀, that is logically equiv-
alent to the formula given here. By coding techniques, having just one parameter
z in our induction axioms, is no real restriction. It prevents, however, getting a
non-standard block of quantifiers in non-standard PRA-axioms.
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[D.] For all z∈ω a totality statement (of complexity Π2) for the function
Supz(x) in the following form: ∀x∃s∃ y≤s S̃up(s, z, x, y). Here and in
the sequel z denotes the numeral corresponding to z, that is, the string
z times︷ ︸︸ ︷

1 + . . .+ 1.

The logical axioms and rules are just as usual.

We shall need in our proof of Theorem 6 a formalization of a proof system
that has the sub-formula property. Like Paris and Wilkie we shall use a no-
tion of tableaux proofs rather than some sequent calculus. In our discussion
below we consider theories T that are formulated using only the connectives
→, ¬ and ∀. The other connectives will still be used as abbreviations.

Definition 11. A tableau proof of a contradiction from a set of axioms T
containing the identity axioms is a finite sequence Γ0, Γ1, . . . , Γr where the
Γi satisfy the following conditions.

– For 0 ≤ i ≤ r, Γi is a sequence of sequences of labeled formulas. The
elements of Γi are denoted by Γ ji . The elements of the Γ ji are denoted
by ϕki,j(l) where l is the label of ϕki,j and is either 0 or 1. In case l = 1
in ϕki,j(l), we call ϕki,j the active formula of both Γ ji and Γi. Only non-
atomic formulas can be active.

– Γ0 contains just one finite non-empty sequence of labeled formulas. We
require ϕk0,0∈T for k < lh(Γ 0

0 ).
– In every Γ jr (j < lh(Γr)) there is an atomic formula that also occurs

negated in Γ jr .
– Every 0 ≤ i < r contains exactly one sequence Γ ji with an active formula

in it. This sequence in its turn contains exactly one active formula.
– For 0 ≤ i < r, we have lh(Γi) ≤ lh(Γi+1) ≤ lh(Γi) + 1.
– For 0 ≤ i < r, we have lh(Γ ji ) ≤ lh(Γ ji+1) ≤ lh(Γ ji ) + 2.
– For 0 ≤ i < r, we have ϕki,j = ϕki+1,j for k < lh(Γ ji ).
– lh(Γ ji ) < lh(Γ ji+1) iff Γ ji contains the active formula of Γi. In this case,

with n = lh(Γ ji ) and ϕmi,j the active formula, one of the following holds.14

(β) ϕmi,j is of the form ¬¬θ in which case Γni+1,j = θ and lh(Γ ji+1) = n+1.
(γ) ϕmi,j is of the form θ1 → θ2. In this case Γni+1,j = ¬θ1 and only in

this case lh(Γi+1) = lh(Γi) + 1. Let p := lh(Γi). Γ
p
i+1 is defined as

follows: lh(Γ pi+1) = lh(Γ ji+1) = n + 1, Γ ki+1,p = Γ ki+1,j for k < n and
Γni+1,p = θ2.

(δ) ϕmi,j is of the form ¬(θ1 → θ2). Only in this case lh(Γ ji+1) = lh(Γ ji )+2
and Γni+1,j = θ1 and Γn+1

i+1,j = ¬θ2.
(ε) ϕmi,j is of the form ∀x θ(x). In this case lh(Γ ji+1) = n+1 and Γni+1,j =

θ(t) for some term t that is freely substitutable for x in θ(x).

14 We start with (β), so that we have the same labels as in Definition 8.9 from
[WP87].
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(ζ) ϕmi,j is of the form ¬∀x θ(x). In this case lh(Γ ji+1) = n + 1 and
Γni+1,j = ¬θ(y) for some variable y that occurs in no formula of Γ ji .

It is well-known that ϕ is provable from T iff there is a tableau proof of
a contradiction from T ∪ {¬ϕ}. The length of tableaux proofs can grow su-
perexponentially larger than their regular counterparts. A pleasant feature
of tableaux proofs is the sub-formula property.

We will work with some suitable ∆1-coding of assignments that are
always zero on all but finitely many variables. The constant zero valuation
is denoted just by 0. Also do we use well-known satisfaction predicates like
SatΠ1(π, σ) for formulas π ∈ Π1 and valuations σ. By Val(t, σ) we denote
some ∆1 valuation function for terms t and assignments σ. By Σ1(x) we
denote the predicate that only holds on the standard model on codes of
(syntactical) Σ1-sentences.

5.2. IΣ1 proves the consistency of PRA on a cut

Theorem 6. There exists an IΣ1-cut J such that for all B∈Σ2 we have
IΣ1 +B ` ConJ(PRA +B)

Proof. We will expose an IΣ1-cut and show that IΣ1 +B ` ConJ(PRA+B)
for any B ∈ Σ2(formulated using only ¬, → and ∀). If we would have a
J-proof of ⊥ from PRA + B in IΣ1 + B we can also find a tableau proof
of a contradiction (not necessarily in J) from PRAJ + B, as IΣ1 proves
the totality of the superexponentiation function. By PRAJ we denote the
axiom set of PRA intersected with J .

Thus, it suffices to show that IΣ1 +B ` TabCon(PRAJ +B). By TabCon
we mean the formalization of the assertion that there is no tableau proof of
a contradiction.

The cut that does the job is the following:15

J(z) := ∀ z′≤z ∀x∃y Supz′(x) = y.

First we see that J(z) indeed defines a cut in IΣ1. Obviously IΣ1 ` J(0).
We now see IΣ1 ` J(z)→ J(z+1). For, reason in IΣ1 and suppose J(z). In
order to obtain J(z+1) it is sufficient to show that ∀x∃y Supz+1(x) = y.
This follows from an easy Σ1-induction. As B ∈ Σ2 we may assume that
B = ∃x A(x) with A ∈ Π1.

We reason in IΣ1 + B and assume ¬TabCon(PRAJ + B). As B holds,
for some a we have A(a). We fix this a for the rest of the proof. Let
p = Γ0, Γ1, . . . , Γr be a hypothetical tableau proof of a contradiction from
PRAJ +B.

Via some easy inductions a number of basic properties of p is established,
like the sub-formula property and the fact that every Σ1!-formula in p comes

15 Formally speaking we should use the S̃up(s, z, x, y) predicate here.
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from a PRA-axiom of the form [D.], etcetera. Inductively we define for every
Γ ji a valuation σi,j .

- σ0,0 = 0.
- If Γ ji contains no active formula, σi+1,j = σi,j .
- If Γ ji contains an active formula one of (β)-(ζ) applies. Let m=lh(Γ ji ).
(β) σi+1,j = σi,j .
(γ) σi+1,j = σi+1,m = σi,j .
(δ) σi+1,j = σi,j .
(ε) σi+1,j = σi,j .
(ζ) In this case essentially an existential quantifier is eliminated. We

treat the three possible eliminations.16

• The first existential quantifier in B is eliminated and B is re-
placed by A(y). In this case σi+1,j = σi,j for all variables differ-
ent from y. Furthermore we define σi+1,j(y) = a.
• The first existential quantifier in a formula of the form
∃s∃ y≤s S̃up(s, z, t, y) for some term t and number z∈J is elim-
inated and replaced by ∃ y≤v S̃up(v, z, t, y) for some variable v.
In this case σi+1,j = σi,j for all variables different from v. Fur-
thermore we define σi+1,j(v) to be the minimal number b such
that

∃ y≤b S̃up(b,Val(z, σi,j),Val(t, σi,j), y).

Note that, as z ∈ J , such a number b must exist.
• A bounded existential quantifier in a formula of the form ∃x≤t θ(x)

is eliminated and ∃x≤t θ(x) is replaced by y ≤ t ∧ θ(y) for
some variable y. In this case θ(y) is in ∆0 (yet another induc-
tion). We define σi+1,j(y) to be the minimal c ≤ Val(t, σi,j) such
that Sat∆0(pθ(c)q, σi,j) if such a c exists. In case no such c ex-
ists, we define σi+1,j(y) = 0. For the other variables we have
σi+1,j = σi,j .

It is not hard to see that σi,j(x) has a Σ1 or even ∆1-graph. The proof is
now completed by showing by induction on i:

∀ i≤r ∃ j<lh(Γi)∀ k<lh(Γ ji ) (Σ1(pϕki,jq)→ SatΣ1(pϕki,jq, σi,j)). (†)

Note that the statement is indeed Σ1 as in IΣ1 we have the Σ1-collection
principle which tells us that the bounded universal quantifiers can be some-
how pushed inside the unbounded existential quantifier of the SatΣ1 .

Once we have shown (†), we have indeed finished the proof as every Γ jr
(j<lh(Γr)) contains some atomic formula and its negation. Atomic formulas
are certainly Σ1 which gives for some j<lh(Γr) and some atomic formula θ,
both SatΣ1(pθq, σr,j) and SatΣ1(p¬θq, σr,j) and we have arrived at a con-
tradiction. Hence TabCon(PRAJ +B).

16 Again, to see (in IΣ1) that these are the only three possibilities, an induction
is executed.
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As announced (†) will be proved by induction on i. If i=0, as there are
no Σ1-formulas in Γ 0

0 , (†) holds in a trivial way.
For the inductive step, let i<r and j<lh(Γi) such that

∀ k<lh(Γ ji ) (Σ1(pϕki,jq)→ SatΣ1(pϕki,jq, σi,j)).

We look for j′<lh(Γi+1) such that

∀ k<lh(Γ j
′

i+1) (Σ1(pϕki+1,j′q)→ SatΣ1(pϕki+1,j′q, σi+1,j′)). (‡)

If Γ ji contains no active formula, Γ ji+1=Γ ji and σi+1,j=σi,j , and we can
just take j′=j.

So, we may assume that Γ ji contains an active formula, say ϕmi,j , and one
of (β)-(ζ) holds. In the cases (β), (γ) and (δ) it is clear which j′ should be
taken such that (‡) holds. We now concentrate on the two remaining cases.

(ζ). Here ϕmi,j is of the form ∃x θ(x). We only need to consider the case that
∃x θ(x) ∈ Σ1. By an easy induction we see that ∃x θ(x) is either ∆0 or a
subformula (modulo substitution of terms) of an axiom of PRA from group
[D].

In case ϕmi,j = ∃x θ(x) and ∃x θ(x) ∈ ∆0, for some v /∈ Γ ji , ϕmi+1,j = θ(v).
As we know that SatΣ1(pϕmi,jq, σi,j), we see that σi+1,j is tailored such that
Sat∆0(pϕmi+1,jq, σi+1,j) holds. Clearly also SatΣ1(pϕmi+1,jq, σi+1,j) and we
can take j=j′ to obtain (‡).

The other possibility is ϕmi,j = ∃s∃ y≤s S̃up(s, z, t, y) for some (possibly
non-standard) term t. Consequently ϕmi+1,j = ∃ y≤v S̃up(v, z, t, y) for some
v /∈ Γ ji . Again σi+1,j is tailored such that Sat∆0(pϕmi+1,jq, σi+1,j) holds and
we can take j=j′ to obtain (‡).

(ε). We only need to consider the case ϕmi,j = ∀x θ(x) with θ(x) ∈ Σ1. In
case ∀x θ(x) ∈ Σ1, the induction hypothesis and the definition of σi+1,j

guarantees us that j=j′ yields a solution of (‡). So, we may assume that
∀x θ(x) /∈ Σ1. By an easy induction we see that thus ∀x θ(x) is A(a) or
θ(x) has one of the following forms:

1. A subformula (modulo substitution of terms) of an axiom of PRA of the
form [A] or [B],

2. A subformula (modulo substitution of terms) of an induction axiom [C],
3. ∃s∃ y≤s S̃up(s, z, t, y) for some (possibly non-standard) term t and some
z∈J .

Our strategy in all cases but 3 will be to show that17

∀σ SatΠ1(p∀x θ(x)q, σ). ♣

17 ∀σ SatΠ1(pϕq, σ) is often denoted by TrueΠ1(ϕ).
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This is sufficient as

∀σ SatΠ1(p∀x θ(x)q, σ) ⇒
∀σ ∀x Sat∆0(pθ(v)q, σ[v/x])⇒
∀σ′ Sat∆0(pθ(v)q, σ′) ⇒
∀σ Sat∆0(pθ(t)q, σ) ⇒
∀σ SatΣ1(pθ(t)q, σ).

Here v is some fresh variable, θ[v/x] denotes the formula where x is substi-
tuted for v in θ(v), and σ[v/x] denotes the valuation which (possibly) only
differs from σ in that it assigns to the variable v the value x.

The strategy to prove 3 is quite similar. The formula
∀x∃s∃ y≤s S̃up(s, z, x, y) is a standard formula that holds if z ∈ J , whence
for some variable v we have

∀σ SatΠ2(p∀x∃s∃ y≤s S̃up(s, v, x, y)q, σ[v/z])

and thus also

∀σ SatΠ2(p∀x∃s∃ y≤s S̃up(s, z, x, y)q, σ).

We immediately see that

∀σ SatΣ1(p∃s∃ y≤s S̃up(s, z, t, y)q, σ).

The proof is thus finished if we have shown ♣ in case ∀x θ(x) is either
A(a) or a subformula of an axiom of the groups [A], [B] and [C]. The only
hard case is whenever ∀x θ(x) is a subformula of a PRA axiom of group
[C], as the other cases concern true standard Π1-sentences only. By an easy
induction we see that it is sufficient to show that for every ϕ ∈ ∆0

∀x SatΠ1(p∀z (ϕ(0, z)∧∀ y<v (ϕ(y, z)→ ϕ(y+1, z))→ ϕ(v, z))q, σ0,0[v/x]).

This is proved by a Π1-induction on x. Note that in IΣ1 we have indeed
access to Π1-induction as IΣ1 ≡ IΠ1. The fact that ϕ can be non-standard
urges us to be very precise.

If x=0 we are done if we have shown

SatΠ1(p∀z (ϕ(0, z) ∧ ∀ y<0 (ϕ(y, z)→ ϕ(y + 1, z))→ ϕ(0, z))q, σ0,0)

or equivalently

∀z Sat∆0(pϕ(0, w)→ ϕ(0, w)q, σ0,0[w/z]).

By an easy induction on the length of ϕ we can show that for any σ

Sat∆0(pϕ(0, w)→ ϕ(0, w)q, σ).

For the inductive step we have to show

SatΠ1(p∀z (ϕ(0, z)∧∀ y<v (ϕ(y, z)→ ϕ(y+1, z))→ ϕ(v, z))q, σ0,0[v/x+1])
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or equivalently that for arbitrary18 z

Sat∆0(pϕ(0, w)∧∀ y<v (ϕ(y, w)→ ϕ(y+1, w))→ ϕ(v, w)q, σ0,0[v/x+1][w/z]).

The reasoning by which we obtain this, is almost like ϕ were standard. So,
we suppose

Sat∆0(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))q, σ0,0[v/x+ 1][w/z]) (\)

and set out to prove

Sat∆0(pϕ(v, w)q, σ0,0[v/x+ 1][w/z]).

The induction hypothesis together with some basic properties of the Sat
predicates gives us

Sat∆0(pϕ(0, w)∧∀ y<v (ϕ(y, w)→ ϕ(y+1, w))→ ϕ(v, w)q, σ0,0[v/x][w/z]). (])

A witnessing sequence for (\) is also a witnessing sequence for

Sat∆0(pϕ(0, w) ∧ ∀ y<v (ϕ(y, w)→ ϕ(y + 1, w))q, σ0,0[v/x][w/z]).

Combining this with (]) gives us Sat∆0(pϕ(v, w)q, σ0,0[v/x][w/z]). Also from
(\) we get Sat∆0(pϕ(v, w) → ϕ(v + 1, w)q, σ0,0[v/x][w/z]), so that we may
conclude Sat∆0(pϕ(v+1, w)q, σ0,0[v/x][w/z]). A witnessing sequence for the
latter is also a witnessing sequence for

Sat∆0(pϕ(v, w)q, σ0,0[v/x+ 1][w/z]).
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