Program-size versus Time complexity

Slowdown and speed-up phenomena in the
micro-cosmos of small Turing machines

Joost J. Joosten!, Fernando Soler-Toscano', and Hector Zenil?3

! Grupo de Légica, Lenguaje e Informacién
Departamento de Filosoffa, Légica, y Filosofia de la Ciencia
Universidad de Sevilla

{jjoosten,fsoler}@us.es

2 Laboratoire d’Informatique Fondamentale de Lille
(CNRS), Université de Lille I
3 Wolfram Research, Inc.
hectorz@wolfram.com

Abstract. The aim of this paper is to undertake an experimental inves-
tigation of the trade-offs between program-size and time computational
complexity. The investigation includes an exhaustive exploration and sys-
tematic study of the functions computed by the set of all 2-color Turing
machines with 2 states —we will write (2,2)— and 3 states —we write (3,2)—
with particular attention to the runtimes, space-usages and patterns cor-
responding to the computed functions when the machines have access to
larger resources (more states).

We report that the average runtime of Turing machines computing a
function almost surely increases as a function of the number of states, in-
dicating that machines not terminating (almost) immediately tend to oc-
cupy all the resources at hand. We calculated all time complexity classes
to which the algorithms computing the functions found in both (2,2)
and (3,2) belong to, and made comparison among these classes. For a
selection of functions the comparison is extended to (4,2).

Our study revealed various structures in the micro-cosmos of small Tur-
ing Machines. Most notably we observed “phase-transitions” in the halting-
probability distribution. Moreover, it is observed that small initial seg-
ments fully define a function computed by a TM.

Keywords: small Turing machines, Program-size complexity, Kolmogorov-
Chaitin complexity, space/time complexity, computational complexity,
algorithmic complexity.

1 Introduction

Among the several measures of computational complexity there are measures
focusing on the minimal description of a program and others quantifying the re-
sources (space, time, energy) used by a computation. This paper is a reflection of
an ongoing project with the ultimate goal of contributing to the understanding of



relationships between various measures of complexity by means of computational
experiments. In particular in the current paper we did the following.

We focused on small Turing Machines and looked at the kind of functions that
are computable on them focussing on the runtimes. We then study how allowing
more computational resources in the form of Turing machine states affect the
runtimes of TMs computing these functions. We shall see that in general and on
average, more resources leads to slower computations. In this introduction we
shall briefly introduce the main concepts central to the paper.

1.1 Two measures of complexity

The long run aim of the project focuses on the relationship between various
complexity measures, particularly descriptional and computational complexity
measures. In this subsection we shall briefly and informally introduce them.

In the literature there are results known to theoretically link some complex-
ity notions. For example, in [6], runtime probabilities were estimated based on
Chaitin’s heuristic principle as formulated in [5]. Chaitin’s principle is of descrip-
tive theoretic nature and states that the theorems of a finitely-specified theory
cannot be significantly more complex than the theory itself.

Bennett’s concept of logical depth combines the concept of time complexity
and program-size complexity [1,2] by means of the time that a decompression
algorithm takes to decompress an object from its shortest description.

Recent work by Neary and Woods [16] has shown that the simulation of cyclic
tag systems by cellular automata is effected with a polynomial slow-down, setting
a very low threshold of possible non-polynomial tradeoffs between program-size
and computational time complexity.

Computational Complexity Computational complexity [4,11] analyzes the
difficulty of computational problems in terms of computational resources. The
computational time complexity of a problem is the number of steps that it takes
to solve an instance of the problem using the most efficient algorithm, as a
function of the size of the representation of this instance.

As widely known, the main open problem with regard to this measure of
complexity is the question of whether problems that can be solved in non-
deterministic polynomial time can be solved in deterministic polynomial time,
aka the P versus NP problem. Since P is a subset of NP, the question is whether
NP is contained in P. If it is, the problem may be translated as, for every Turing
machine computing an NP function there is (possibly) another Turing machine
that does so in P time. In principle one may think that if in a space of all Turing
machines with a certain fixed size there is no such a P time machine for the given
function (and because a space of smaller Turing machines is always contained
in the larger) only by adding more resources a more efficient algorithm, perhaps
in P, might be found. We shall see that adding more resources almost certainly
yields to slow-down.



Descriptional Complexity The algorithmic or program-size complexity [10, 5]
of a binary string is informally defined as the shortest program that can produce
the string. There is no algorithmic way of finding the shortest algorithm that
outputs a given string

More precisely, the complexity of a bit string s is the length of the string’s
shortest program in binary on a fixed universal Turing machine. A string is
said to be complex or random if its shortest description cannot be much more
shorter than the length of the string itself. And it is said to be simple if it can be
highly compressed. There are several related variants of algorithmic complexity
or algorithmic information.

In terms of Turing machines, if M is a Turing machine which on input i
outputs string s, then the concatenated string (M, ) is a description of s. The
size of a Turing machine in terms of the number of states (s) and colors (k) (aka
known as symbols) can be represented by the product s - k. Since we are fixing
the number of colors to £ = 2 in our study, we increase the number of states
s as a mean for increasing the program-size (descriptional) complexity of the
Turing machines in order to study any possible tradeoffs with any of the other
complexity measures in question, particularly computational (time) complexity.

1.2 Turing machines

Throughout this project the computational model that we use will be that of
Turing machines. Turing machines are well-known models for universal compu-
tation. This means, that anything that can be computed at all, can be computed
on a Turing machine.

In its simplest form, a Turing machine consists of a two-way infinite tape that
is divided in adjacent cells. Each cell can be either blank or contain a non-blank
color (symbol). The Turing machine comes with a “head” that can move over the
cells of the tape. Moreover, the machine can be in various states. At each step in
time, the machine reads what color is under the head, and then, depending on
in what state it is writes a (possibly) new color in the cell under the head, goes
to a (possibly) new state and have the head move either left or right. A specific
Turing machine is completely determined by its behavior at these time steps.
One often speaks of a transition rule, or a transition table. Figure 1 depicts
graphically such a transition rule when we only allow for 2 colors, black and
white and where there are two states, State 1 and State 2.

TM number 2506
State 1: 4

State 2: A [ 1 Jam

Fig. 1. Transition table of a 2-color 2-state Turing machine with Rule 2506 according
to Wolfram’s enumeration and Wolfram’s visual representation style [14]. [8].



For example, the head of this machine will only move to the right, write a
black color and go to State 2 whenever the machine was in State 2 and it read
a blank symbol.

We shall often refer to the collection of TMs with & colors and s states as a
TM space. From now on, we shall write (2,2) for the space of TMs with 2 states
and 2 colors, and (3,2) for the space of TMs with 3 states and 2 colors, etc.

1.3 Relating notions of complexity

We relate and explore throughout the experiment the connections between de-
scriptional complexity and time computational complexity. One way to increase
the descriptional complexity of a Turing machine is enlarging its transition table
description by adding a new state. So what we will do is, look at time needed
to perform certain computational tasks first with only 2 states, and next with 3
and 4 states.

Our current findings suggest that even if a more efficient Turing machine algo-
rithm solving a problem instance may exist, the probability of picking a machine
algorithm at random among the TMs that solve the problem in a faster time has
probability close to 0 because the number of slower Turing machines computing
a function outnumbers the number of possible Turing machines speeding it up
by a fast growing function.

1.4 Investigating the micro-cosmos of small Turing machines

We know that small programs are capable of great complexity. For example,
computational universality occurs in cellular automata with just 2 colors and
nearest neighborhood (Rule 110, see [14, 3]) and also (weak) universality in Tur-
ing machines with only 2-states and 3-colors [15].

For all practical purposes one is restricted to perform experiments with small
Turing machines (TMs) if one pursuits a thorough investigation of complete
spaces for a certain size. Yet the space of these machines is rich and large enough
to allow for interesting and insightful comparison, draw some preliminary con-
clusions and shed light on the relations between measures of complexity.

As mentioned before, in this paper, we look at TMs with 2 states and 2 colors
and compare them to TMs more states. The main focus is on the functions they
compute and the runtimes for these functions However, along our investigation
we shall deviate from time to time from our main focus and marvel at the
rich structures present in what we like to refer to as the micro-cosmos of small
Turing machines. Like, what kind of, and how many functions are computed in
each space? What kind of runtimes and space-usage do we typically see and how
are they arranged over the TM space? What are the sets that are definable using
small Turing machines? How many input values does one need to fully determine
the function computed by a TM? We find it amazing how rich the encountered
structures are even when we use so few resources.



1.5 Plan of the paper

After having introduced the main concepts of this paper and after having set out
the context in this section, the remainder of this paper is organized as follows. In
Section 2 we will in full detail describe the experiment, its methodology and the
choices that were made leading us to the current methodology. In Section 3 we
present the structures that we found in (2,2). The main focus is on runtimes but
a lot of other rich structures are exposed there. In Section 4 we do the same for
the space (3,2). Section 5 deals with (4,2) but does not disclose any additional
structure of that space as we did not exhaustively search this space. Rather we
sampled from this space looking for functions we selected from (3,2). In Section
6 we compare the various TM spaces focussing on the runtimes of TMs that
compute a particular function.

2 Methodology and description of the experiment

In this section we shall briefly restate the set-up of our experiment to then fill
out the details and motivate our choices. We try to be as detailed as possible for
a readable paper. For additional information, source code, figures and obtained
data can be requested from any of the authors.

2.1 Methodology in short

It is not hard to see that any computation in (2,2) is also present in (3,2). At
first, we look at TMs in (2,2) and compare them to TMs in (3,2). In particular
we shall study the functions they compute and the time they take to compute
in each space.

The way we proceeded is as follows. We ran all the TMs in (2,2) and (3,2)
for 1000 steps for the first 21 input values 0,1, ...,20. If a TM does not halt by
1000 steps we simply say that it diverges. We saw that certain TMs defined a
regular progression of runtimes that needed more than 1000 steps to complete
the calculation for larger input values. For these regular progressions we filled
out the values manually as described in Subsection 2.7. Thus, we collect all the
functions on the domain [0, 20] computed in (2,2) and (3,2) and investigate and
compare them in terms of run-time, complexity and space-usage. We selected
some interesting functions from (2,2) and (3,2). For these functions we searched
by sampling for TMs in (4,2) that compute them so that we could include (4,2)
in our comparison.

Clearly, at the outset of this project we needed to decide on at least the
following issues:

1. How to represent numbers on a TM?
2. How to decide which function is computed by a particular TM.
3. Decide when a computation is considered finished.

The next subsections will fill out the details of the technical choices made and
provide motivations for these choices. Our set-up is reminiscent of and motivated
by a similar investigation in Wolfram’s book [14], Chapter 12, Section 8.



2.2 Resources

There are (2sk)* s-state k-color Turing machines. That means 4096 in (2,2)
and 2985984 TMs in (3,2). In short, the number of TMs grows exponentially
in the amount of resources. Thus, in representing our data and conventions we
should be as economical as possible in using our resources so that exhaustive
search in the smaller spaces still remains feasible. For example, an additional

halting state will immediately increase the search space®.

2.3 One-sided Turing Machines

In our experiment we have chosen to work with one-sided TMs. That is to say,
we work with TMs with a tape that is unlimited to the left but limited to
the right-hand side. One sided TMs are a common convention in the literature
just perhaps slightly less common than the two sided convention. The following
considerations led us to work with one-sided TMs.

- Efficient (that is, non-unary) number representations are place sensitive.
That is to say, the interpretation of a digit depends on the position where
the digit is in the number. Like in the decimal number 121, the leftmost 1
corresponds to the centenaries, the 2 to the decades and the rightmost 1 to
the units. On a one-sided tape which is unlimited to the left, but limited on
the right, it is straight-forward how to interpret a tape content that is almost
everywhere zero. For example, the tape ...00101 could be interpreted as a
binary string giving rise to the decimal number 5. For a two-sided infinite
tape one can think of ways to come to a number notation, but all seem rather
arbitrary.

- With a one-sided tape there is no need for an extra halting state. We say
that a computation simply halts whenever the head “drops off” the tape
from the right hand side. That is, when the head is on the extremal cell on
the right hand side and receives the instruction to moves right. A two-way
unbounded tape would require an extra halting state which, in the light of
considerations in 2.2 is undesirable.

On the basis of these considerations, and the fact that some work has been done
before in the lines of this experiment [14] that also contributed to motivate our
own investigation, we decided to fix the TM formalism and choose the one-way
tape model.

2.4 Unary input representation

Once we had chosen to work with TMs with a one-way infinite tape, the next
choice is how to represent the input values of the function. When working with
two colors, there are basically two choices to be made: unary or binary. However,
there is a very subtle point if the input is represented in binary. If we choose for

4 Although in this case not exponentially so, as halting states define no transitions.



a binary representation of the input, the class of functions that can be computed
is rather unnatural and very limited.

The main reason is as follows. Suppose that a TM on input x performs some
computation. Then the TM will perform the very same computation for any
input that is the same as x on all the cells that were visited by the computation.
That is, the computation will be the same for an infinitude of other inputs thus
limiting the class of functions very severely. We can make this more precise in
Theorem 1 below. The theorem shows that coding the input in k-ary where k
is the number of alphabet symbols, severely restricts the class of computable
functions in (s, k) . For convenience and for the sake of our presentation, we
only consider the binary case, that is, k = 2.

Definition 1. A subset of the natural numbers is called a strip if it is of the
form {a+b-n|n € w} for certain fized natural numbers a and b.

Definition 2. A strip of a function f is simply f restricted to some subdomain
D where D is a subset of the natural numbers that is a strip.

Theorem 1 (The Strips Theorem). Let f be a function that is calculated by
a one sided TM. Then f consists of strips of functions of the form a + x.

Proof. Suppose f halts on input 7. Let n be the left-most cell visited by the TM
on input i. Clearly, changing the input on the left-hand side of this n-th cell will
not alter the calculation. In ohter words, the calculation will be the same for
all inputs of the form z - 27"*! + 4. What will be the output for these respective
inputs. Well, let s; = f(i), then the outputs for these infinitely many inputs will
consist of this output s; together with the part of the tape that was unaltered by
the computation. Thus, f(z-2" 1 +4) = 2.2 L (i) = 22" T+ i+ (f(i) —i):
behold our strip of the form a + .

We can see the smallest elements that are defining a strip, the 4 in the proof
above, as sort of prime elements. The first calculation on a TM defines a strip.
The next calculation on an input not already in that strip defines a new strip
and so forth. Thus, the progressively defined strips define new prime elements
and the way they do that is quite similar to Eratosthenes’ Sieve. For various
sieve-generated sets of numbers it is known that they tend to be distributed like
the primes ([18]) in that the prime elements will vanish and only occur with
probability @. If this would hold for the smallest elements of our strips too,
in the limit, each element would belong with probability one to some previously
defined strip. And each prime element defines some function of the form x + a;.
The contribution of the a; vanishes in the limit so that we end up with the
identity function. In this sense, each function calculated by a one-sided TM
would calculate the identity in the limit.

The Strips Theorem is bad for two reasons. Firstly, it shows that the class
of computable functions is severely restricted. We even doubt that universal
function can occur within this class of functions. And, if universal functions do

occur, at the cost of how much coding is that the case. In other words, if possible



at all, how strong should the coding mechanism be that is needed to represent a
computable problem within the strips functions. Secondly, there is the problem
of incomparability of functions computed in TM spaces. It is easily seen that
Theorem 1 generalizes to more colors k. Still, the strips will compute functions
of the form a + x, however the strips themselves will be of the form x - k"1 4 4.
Thus, if at some stage the current project were to be extended and one wishes
to study the functions that occur in spaces that use a different number of colors,
by the Strips Theorem, this intersection is expected to be very small.

The following theorem tells us that the restriction on the class of computable
functions when using k-ary input representation has nothing to do with the fact
that the computation was done on a single sided TM and the same phenomena
occurs in double-sided TMs.

Theorem 2. Let f be a function that is calculated by a two sided TM. Then f
consists of strips of functions of the form a + 2' - x with | € Z.

Proof. As before the proof is based on the observation that altering the input
on that part of the tape that was never visited will not influence the calculation.
The only thing to be taken into account now is that the output can be shifted
to the right (depending on conventions). So that in the end you see that the
function, with 2”* units to the right correspond to 2™ units up, hence a tangent
of 2! for some [ € Z.

On the basis of these considerations we decided to represent the input in
unary. Moreover, from a theoretical viewpoint it is desirable to have the empty
tape input different from the input zero, thus the final choice for our input
representation is to represent the number x by x + 1 consecutive 1’s.

The way of representing the input in unary has two serious draw-backs:

1. The input is very homogeneous. Thus, it can be the case that TMs that
expose otherwise very rich and interesting behavior, do not do so when the
input consists of a consecutive block of 1’s.

2. The input is lengthy so that runtimes can grow seriously out of hand. See
also our remarks on the cleansing process below.

We mitigate these objections with the following considerations.

1. Still interesting examples are found. And actually a simple informal argu-
ment using the Church-Turing thesis shows that universal functions will live
in a canonical way among the thus defined functions.

2. The second objection is more practical and more severe. However, as the
input representation is so homogeneous, often the runtime sequences exhibit
so much regularity that missing values that are too large can be guessed. We
shall do so as described in Subsection 2.7.



2.5 Binary output convention

None of the considerations for the input conventions applies to the output con-
vention. Thus, it is wise to adhere to an output convention that reflects as
much information about the final tape-configuration as possible. Clearly, by in-
terpreting the output as a binary string, from the output value the output tape
configuration can be reconstructed. Hence, our outputs, if interpreted, will be so
as binary numbers.

Definition 3 (Tape Identity). We say that a TM computes the tape identity
when the tape configuration at the end of a computation is identical to the tape
configuration at the start of the computation.

The output representation can be seen as a simple operation between systems,
taking one representation to another. The main issue is, how does one keep the
structure of a system when represented in another system, such that, moreover,
no additional essential complexity is introduced.

For the tape identity, for example, one may think of representations that,
when translated from one to another system, preserve the simplicity of the func-
tion. However, a unary input convention and a binary output representation
immediately endows the tape identity with an exponential growth rate. In prin-
ciple this need not be a problem. However, computations that are very close to
the tape identity will give rise to number theoretic functions that are seemingly
very complex. However, as we shall see, in our current set-up there will be few
occasions where we actually do interpret the output as a number other than for
representational purposes. In most of the cases the raw tape output will suffice.

2.6 The Halting Problem and Rice’s theorem

By the Halting Problem and Rice’s theorem we know that it is in general unde-
cidable to know wether a function is computed by a particular TM and whether
two TMs define the same function. The latter is the problem of extensionality
(do two TMs define the same function?) known to be undecidable by Rice’s
theorem. It can be the case that for TMs of the size considered in this paper,
universality is not yet attained®, that the Halting Problem is actually decidable
in these small spaces and likewise for extensionallity.

As to the Halting Problem, we simply say that if a function does not halt after
1000 steps, it diverges. Theory tells that the error thus obtained actually drops
exponentially with the size of the computation bound [6] and we re-affirmed this
in our experiments too as is shown in Figure 2. After proceeding this way, we
see that certain functions grow rather fast and very regular up to a certain point

® Recent work ([17]) has shown some small two-way infinite tape universal TMs. Tt is
known that there is no universal machine in the space of two-way unbounded tape
(2,2) Turing machines but there is known at least one weakly universal Turing ma-
chine in (2,3)[14] and it may be (although unlikely) the case that a weakly universal
Turing machine in (3,2) exists.



where they start to diverge. These obviously needed more than 1000 steps to
terminate. We decided to complete these obvious non-genuine divergers manu-
ally. This process is referred to as cleansing and shall be addressed with more
detail in the next subsection.

As to the problem of extensionality, we simply state that two TMs calculate
the same function when they compute (after cleansing) the same outputs on the
first 21 inputs 0 through 20 with a computation bound of 1000 steps. We found
some very interesting observations that support this approach: for the (2,2) space
the computable functions are completely determined by their behavior on the
first 3 input values 0,1,2. For the (3,2) space the first 8 inputs were found to be
sufficient to determine the function entirely.

2.7 Cleansing the data

As mentioned before, the Halting problem is undecidable so one will always err
when mechanically setting a cut-off value for our computations. The choice that
we made in this paper was as follows. We put the cut-off value at 1000. After
doing so, we looked at the functions computed. For those functions that saw
an initial segment with a very regular progression of runtimes, for example 16,
32, 64, 128, 256, 512, -1, -1, we decided to fill out the the missing values in
a mechanized way. It is clear that, although better than just using a cut-off
value, we will still not be getting all functions like this. Moreover, there is a
probability that errors are made while filling out the missing values. However we
deem the error not too significant, as we have a uniform approach in this process
of filling out, that is, we apply the same process for all sequences, either in (2,2)
or in (4,2) etc. Moreover, we know from theory ([6]) that most TMs either halt
quickly or never halt at all and we affirmed this experimentally in this paper.
Thus, whatever error is committed, we know that the effect of it is eventually
only marginally. In this subsection we shall describe the way we mechanically
filled out the regular progressions that exceeded the computation bound.

We wrote a so-called predictor program that was fed incomplete sequences
and was to fill out the missing values. The predictor program is based on the
function FindSequenceFunction® built-in to the computer algebra system Math-
ematica. Basically, it is not essential that we used FindSequenceFunctionor any
other intelligent tool for completing sequences as long as the cleansing method

6 FindSequenceFunction takes a finite sequence of integer values {a1,a2,...} and
retrieves a function that yields the sequence a,. It works by finding solutions to
difference equations represented by the expression DifferenceRoot in Mathematica.
By default, DifferenceRoot uses early elements in the list to find candidate func-
tions, then validates the functions by looking at later elements. DifferenceRoot is
generated by functions such as Sum, RSolve and SeriesCoefficient, also defined
in Mathematica. RSolve can solve linear recurrence equations of any recurring order
with constant coefficients. It can also solve many linear equations (up to second re-
curring order) with non-constant coefficients, as well as many nonlinear equations.
For more information we refer to the extensive online Mathematica documentation.



for all TM spaces is applied in the same fashion. A thorough study of the cleans-
ing process, its properties, adequacy and limitations is presented in [19]. The
predictor pseudo-code is as follows:

1. Start with the finite sequence of integer values (with -1 values in the places
the machine didn’t halt for that input index).

2. Take the first n consecutive non-divergent (convergent) values, where n > 4
(if there is not at least a segment with 4 consecutive non divergent values
then it gives up).

3. Call FindSequenceFunction with the convergent segment and the first di-
vergent value.

4. Replace the first divergent value with the value calculated by evaluating the
function found by FindSequenceFunction for that sequence position.

5. If there are no more -1 values stop otherwise trim the sequence to the next
divergent value and go to 1.

This is an example of a (partial) completion: Let’s assume one has a sequence
(2, 4, 8, 16, -1, 64, -1, 257, -1, -1) with 10 values. The predictor returns: (2, 4,
8, 16, 32, 64, 128, 257, -1, -1) because up to 257 the sequence seemed to be 2"
but from 257 on it was no longer the case, and the predictor was unable to find
a sequence fitting the rest.

The prediction function was constrained by 1 second, meaning that the pro-
cess stops if, after a second of trying, no prediction is made, leaving the non-
convergent value untouched. This is an example of a completed Turing machine
output sequence. Given (3, 6, 9, 12, -1, 18, 21, -1, 27, -1, 33, -1) it is retrieved
completed as (3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36). Notice how the divergent
values denoted by —1 are replaced with values completing the sequence with the
predictor algorithm based in Mathematica’s FindSequenceFunction.

The prediction vs. the actual outcome For a prediction to be called suc-
cessful we require that the output, runtime and space usage sequences coincide
in every value with the step-by-step computation (after verification). One among
three outcomes are possible:

— Both the step-by-step computation and the sequences obtained with FindSequenceFunction
completion produce the same data, which leads us to conclude that the pre-
diction was accurate.

— The step-by-step computation produces a non-convergent value —1, meaning
that after the time bound the step-by-step computation didn’t produce any
new convergent value that wasn’t also produced by the FindSequeceFunction
(which means that either the value to be produced requires a larger time
bound, or that the FindSequenceFunction algorithm has failed, predicting
a convergent value where it is actually divergent).

— The step-by-step computation produced a value that the FindSequenceFunction
algorithm did not predict.



In the end, the predictor indicated what machines we had to run for larger
runtimes in order to complete the sequences up to a final time bound of 200 000
steps for a subset of machines that couldnt be fully completed with the predictor
program. The number of incorrectly predicted (or left incomplete) in (3,2) was
90 out of a total 3368 sequences completed with the predictor program. In ad-
dition to these 45 cases of incorrect completions, we found 108 cases where the
actual computation produced new convergent values that the predictor could not
predict. The completion process led us to only eight final non-completed cases,
all with super fast growing values.

In (4,2) things werent too different. Among the 30955 functions that were
sampled motivated by the functions computed in (3,2) that were found to have
also been computed in (4,2) (having in mind a comparison of time complexity
classes) only 71 cases could not be completed by the prediction process, or were
differently computed by the step-by-step computation. That is only 0.00229 of
the sequences, hence in both cases allowing us to make accurate comparisons
with low uncertainty in spite of the Halting Problem and the problem of very
large (although rare) halting times.

2.8 Running the experiment

To explore the different spaces of TMs we wrote a TM simulator in the program-
ming language C. We tested this C language simulator against the TuringMachine
function in Mathematica as it used the same encoding for TMs. It was checked
and found in concordance for the whole (2,2) space and a sample of the (3,2)
space.

We run the simulator in the cluster of the CICA (Centro de Informética
Cientifica de Andalucia’). To explore the (2,2) space we used only one node of
the cluster and it took 25 minutes. The output was a file of 2 MB. For (3,2)
we used 25 nodes (50 microprocessors) and took a mean of three hours in each
node. All the output files together fill around 900 MB.

3 Investigating the space of 2-states, 2-colors Turing
machines

In this section we shall have our first glimpse into the fascinating micro-cosmos
of small Turing machines. We shall see what kind of computational behavior
is found among the functions that live in (2,2) and reveal various complexity-
related properties of the (2,2) space.

Definition 4. In our context and in the rest of this paper, an algorithm com-
puting a function is one particular set of 21 quadruples of the form

(input value, output value, runtime, space usage)

for each of the input values 0,1,...,20, where the output, runtime and space-
usage correspond to that particular input.

" Andalusian Centre for Scientific Computing: http://www.cica.es/.



In the cleansed data of (2,2) we found 74 functions and a total of 138 different
algorithms computing them.

3.1 Determinant initial segments

An indication of the complexity of the (2,2) space is the number of inputs needed
to determine a function. In the case of (2,2) this number of inputs is only 3. For
the first input, the input 0, there are 11 different outputs. The following list
shows these different outputs (first value in each pair) and the frequency they
appear with (second value in each pair). Output -1 represents the divergent one:

{{3, 13}, {2, 12}, {-1, 10}, {0, 10}, {1, 10}, {7, 6}, {6, 4},
{15, 4}, {4, 2}, {5, 2}, {31, 1}}

For two inputs there are 55 different combinations and for three we find
all the 74 functions. The first input is most significant; without it, the other
inputs only appear in 45 different combinations. This is because there are many
functions with different behavior for the first input than for the rest.

We find it interesting that only 3 values of a TM are needed to fully determine
its behavior in the full (2,2) space that consists of 4096 different TMs. Just as
a matter of analogy we bring the C* functions to mind. These infinitely often
differentiable continuous functions are fully determined by the outputs on a
countable set of input values. It is an interesting question how the minimal
number of input values needed to determine a TM grows relative to the total
number of (2 - s - k)** many different TMs in (s, k) space, or relative to the
number of defined functions in that space.

3.2 Halting probability

In the cumulative version of Figure 2 we see that more than 63% of executions
stop after 50 steps, and little growth is obtained after more steps. Consider-
ing that there is an amount of TMs that never halt, it is consistent with the
theoretical result in [6] that most TMs stop quickly or never halt.

Let us briefly comment on Figure 2. First of all, we stress that the halting
probability ranges over all pairs of TMs in (2,2) and all inputs between 0 and
20. Second, it is good to realize that the graph is some sort of best fit and leaves
out zero values in the following sense. It is easy to see that on the one-sided TM
halting can only occur after an odd number of steps. Thus actually, the halting
probability of every even number of steps is zero. This is not so reflected in the
graph because of a smooth-fit.

We find it interesting that Figure 2 shows features reminiscent of phase tran-
sitions. Completely contrary to what we would have expected, these “phase
transitions” were even more pronounced in (3,2) as one can see in Figure 12.
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Fig. 2. Halting times in (2,2).

3.3 Phase transitions in the halting probability distribution

Let consider Figure 2 again. Note that in this figure only pairs of TMs and
inputs are considered that halt in at most 100 steps. The probability of stopping
(a random TM in (2,2) with a random input in 0 to 20) in at most 100 steps is
0.666. The probability of stopping in any number of steps is 0.667, so most TMs
stop quickly of do not stop.

We clearly observe a phase transition phenomenon. To investigate the cause
of this, let us consider the set of runtimes and the number of their occurrences.
Figure 3 shows at the left the 50 smallest runtimes and the number of occurrences
in the space that we have explored. The phase-transition is apparently caused
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Fig. 3. Occurrences of runtimes

because there are some blocks in the runtimes. To study the cause of this phase-
transition we should observe that the left diagram on Figure 3 represents the
occurrences of runtimes for arbitrary inputs from 0 to 20. The graph on the right
of Figure 3 is clearer. Now, lines correspond to different inputs from 0 to 20. The
graph at the left can be obtained from the right one by adding the occurrences
corresponding to points with the same runtime. The distribution that we observe



here explains the phase-transition effect. It’s very interesting that in all cases
there is a local maximum with around 300 occurrences and after this maximum,
the evolution is very similar. In order to explain this, we look at the following
list® that represents the 10 most frequent runtime sequences in (2,2). Every
runtime sequence is preceded by the number of TMs computing it:

2048 {1, 1, ...} 106 {-1,3,3,...} 20 {3, 7,11, 15, ...}
1265 {-1,-1, ...} 76 {3,-1,-1,...} 20 {3, 5,5, ...}
264 {3,5,7,9,...} 38 {5 7,9 11,...}

112 {3,3,...} 32 {5,3,3,...}

We observe that there are only 5 sequences computed more than 100 times.
They represent 92.65% of the TMs in (2,2). There is only one sequence that is
not constant nor divergent (recall that —1 represents divergences) with 264 oc-
currences: {3,5,7,9,...}. That runtime sequence corresponds to TMs that give
a walk forth and back over the input tape to run of the tape and halt. This is
the most trivial linear sequence and explains the intermediate step in the phase-
transition effect. There is also another similar sequence with 38 occurrences
{5,7,9,11,...}. Moreover, observe that there is a sequence with 20 occurrences
where subsequent runtimes differ by 4 steps. This sequence {3,7,11,15,...} con-
tains alternating values of our original one {3,5,7,9,...} and it explains the
zigzag observed in the left part of Figures 2 and 3.

Altogether, this analysis accounts for the observed phase transition. In a
sense, the analysis reduces the phase transition to the strong presence of linear
performers in Figure 18 together with the facts that on the one hand there are
few different kinds of linear performers and on the other hand that each group
of similar linear TMs is “spread out over the horizontal axis” in Figure 2 as each
input 0,..., 20 is taken into account.

3.4 Runtimes

There is a total of 49 different sequences of runtimes in (2,2). This number is
35 when we only consider total functions. Most of the runtimes grow linear with
the size of the input. A couple of them grow quadratically and just two grow
exponentially. The longest halting runtime occurs in TM numbers 378 and 1351,
that run for 8 388605 steps on the last input, that is on input 20. Both TMs
used only 21 cells? for their computation and outputted the value 2097 151.

Rather than exposing lists of outputvalues we shall prefer to graphically
present our data. The sequence of output values is graphically represented as
follows. On the top line we depict the tape output on input zero (that is, the
input consisted of just one black cell). On the second line immediately below the
first one, we depict the tape output on input one (that is, the input consisted
of two black cells), etc. By doing so, we see that the function computed by TM
378 is just the tape identity.

8 The dots denote a linear progression (or constant which is a special case of linear).
9 It is an interesting question how many times each cell is visited. Is the distribution
uniform over the cells? Or centered around the borders?



Let us focus on all the (2,2) TMs that compute that tape identity. We will
depict most of the important information in one overview diagram. This diagram
as shown in Figure 4 contains at the top a graphical representation of the function
computed as described above.

Below the representation of the function, there are six graphs. On each hori-
zontal axis of these graphs, the input is plotted. The 7; is a diagram that contains
plots for all the runtimes of all the different algorithms computing the function
in question. Likewise, o; depicts all the space-usages occurring. The <7> and
<o> refer to the (arithmetical) average of time and space usage. The subscript h
in e.g. <7>j, indicates that the harmonic average is calculated. As the harmonic
average is only defined for non-zero numbers, for technical reasons we depict the
harmonic average of ¢; + 2 rather than for o;.

Let us recall a definition of the harmonic mean. The harmonic mean of n
non-zero values x1,...,x, is defined as

n

L+

Tn

<xr>p =

In our case, the harmonic mean of the runtimes can be interpreted as follows.
Each TM computes the same function. Thus, the total amount of information in
the end computed by each TM per input is the same although runtimes may be
different. Hence the runtime of one particular TM on one particular input can
be interpreted as time/information. We now consider the following situation:
Let the exhaustive list of TMs computing a particular function f be {TMj,
..., T'M, with runtimes %,
..., tp}. If we normalize the amount of information computed by f to 1, we can
interpret e.g. i as the amount of information computed by TM;j in one time
step. If we now let TM; run for 1 time unit, next TMs for 1 time unit and
finally TM,, for 1 time unit, then the total amount of information of the output
computed is 1/¢; + ... + 1/t,. Clearly,

n times n times

1 1 1
Aredh, mredd 1,1

+.. 4+ = =t
<T>p <T>h n n 131 ln

Thus, we can see the harmonic average as the time by which the typical amount
of information is gathered on a random TM that computes f. Alternatively, the
harmonic average <7>j is such that <Tl>h is the typical amount of information
computed in one time step on a random TM that computes f.

3.5 Clustering in runtimes and space-usages

Observe the two graphics in Figure 5. The left one shows all the runtime se-
quences in (2,2) and the right one the used-space sequences. Divergences are
represented by —1, so they explain the values below the horizontal axis. We find
some exponential runtimes and some quadratic ones, but most of them remain
linear. All space usages in (2,2) are linear.



The image provides the basic information
of the TM outputs depicted by a diagram
with each row the output of each of the 21
inputs, followed by the plot figures of the
average resources taken to compute the
function, preceded by the time and space
plot for each of the algorithm computing
the function. For example, this info box
tells us that there are 1055 TMs comput-
ing the identity function, and that these
TMs are distributed over just 12 differ-
ent algorithms (i.e. TMs that take differ-
ent space/time resources). Notice that at
first glance at the runtimes 7;, they seem
to follow just an exponential sequence
while space grows linearly. However, from
the other diagrams we learn that actually
most TMs run in constant time and space.
Note that all TMs that run out of the tape

in the first step without changing the cell
value (the 25% of the total space) compute
this function.
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Fig. 4. Overview diagram of the tape identity.
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Fig. 5. Runtime and space distribution in (2,2).

An interesting feature of Figure 5 is the clustering. For example, we see that
the space usage comes in three different clusters. The clusters are also present in
the time graphs. Here the clusters are less prominent as there are more runtimes
and the clusters seem to overlap. It is tempting to think of this clustering as
rudimentary manifestations of the computational complexity classes.

Another interesting phenomenon is observed in these graphics. It is that of
alternating divergence, detected in those cases where value —1 alternates with
the other outputs, spaces or runtimes. The phenomena of alternating divergence
is also manifest in the study of definable sets.



3.6 Definable sets

Like in classical recursion theory, we say that a set W is definable by a (2,2) TM
if there is some machine M such that W = W), where W), is defined as usual
as

Wi = {x | M(z) l}.

In total, there are 8 definable sets in (2,2). Below follows an enumeration of
them.

{{3, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20}, {o}, {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 203},
{1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20}, {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 203}, {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, {0, 1}}

It is easy to see that the definable sets are closed under complements.

3.7 Clustering per function

We have seen that all runtime sequences in (2,2) come in clusters and likewise for
the space usage. It is an interesting observation that this clustering also occurs
on the level of single functions. Some examples are reflected in Figure 6.
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Fig. 6. Clustering of runtimes and space-usage per function.



3.8 Computational figures reflecting the number of available
resources

Certain functions clearly reflect the fact that there are only two available states.
This is particularly noticeable from the period of alternating converging and
non-converging values and in the offset of the growth of the output, and in
the alternation period of black and white cells. Some examples are included in
Figure 7.
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Fig. 7. Computational figures reflecting the number of available resources.

3.9 Types of computations in (2,2)

Let us finish this analysis with some comments about the computations that we
can find in (2,2). Most of the TMs perform very simple computations. Apart
from the 50% that in every space finishes the computations in just one step
(those TMs that move to the right from the initial state), the general pattern is
to make just one round through the tape and back. It is the case for TM number
2240 with the sequence of runtimes:

{5, 5, 9, 9, 13, 13, 17, 17, 21, 21, ..}

Figure 8 shows the sequences of tape configurations for inputs 0 to 5. Each of
these five diagrams should be interpreted as follows. The top line represents the
tape input and each subsequent line below that represents the tape configuration
after one more step in the computation.

The walk around the tape can be more complicated. This is the case for TM
number 2205 with the runtime sequence:

{3, 7, 17, 27, 37, 47, 57, 67, 77, ...}



Fig. 8. Turing machine tape evolution for Rule 2240.

which has a greater runtime but it only uses that part of the tape that was
given as input, as we can see in the computations (Figure 9, left). TM 2205
is interesting in that it shows a clearly localized and propagating pattern that
contains the essential computation.

pesEeiiE et
el TR

Fig. 9. Tape evolution for Rules 2205 (left) and 1351 (right).

The case of TM 1351 is one of the few that escapes from this simple behav-
ior. As we saw, it has the highest runtimes in (2,2). Figure 9 (right) shows its
tape evolution. Note that it is computing the tape identity. Many other TMs
in (2,2) compute this function in linear or constant time. In this case of TM
1351 the pattern is generated by a genuine recursive process thus explaining the
exponential runtime.

In (2,2) we also witnessed TMs performing iterative computations that gave
rise to mainly quadratic runtimes. An example of this is TM 1447, whose com-
putations for the first seven inputs are represented in Figure 10.
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Fig. 10. Turing machine tape evolution for Rule 1447.

Let us briefly summarize the types of computations that we saw in (2,2).

— Constant time behavior like the head (almost) immediately dropping off the
tape;

— Linear behavior like running to the end of the tape and then back again as
Rule 2240;

— Iterative behavior like using each black cell to repeat a certain process as in
Rule 1447,

— Localized computation like in Rule 2205;

— Recursive computations like in Rule 1351.

As most of the TMs in (2,2) compute their functions in the easiest possible
way (just one crossing of the tape), no significant speed-up can be expected.
Only slowdown is possible in most cases.

4 Investigating the space of 3-states, 2-colors Turing
machines

In the cleansed data of (3,2) we found 3886 functions and a total of 12824
different algorithms that computed them.
4.1 Determinant initial segments

As these machines are more complex than those of (2,2), more outputs are needed
to characterize a function. From 3 required in (2,2) we need now 8, see Figure 11.
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Fig. 11. Number of outputs required to characterize a function in (3,2).

4.2 Halting probability

Figure 12 shows the runtime probability distributions in (3,2). The same behav-
ior that we commented for (2,2) is also observed.
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Fig. 12. Runtime proprobability distributions in (3,2).

Note that the “phase transitions” in (3,2) are even more pronounced than
n (2,2). We can see these phase transitions as rudimentary manifestations of
computational complexity classes. Similar reasoning as in Subsection 3.3 can be
applied for (3,2) to account for the phase transitions as we can see in Figure 13.
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4.3 Runtimes and space-usages

In (3,2) the number of different runtimes and space usage sequences is the same:
3676. Plotting them all as we did for (2,2) would not be too informative in
this case. So, Figure 14 shows samples of 50 sequences of space and runtime
sequences. Divergent values are omitted as to avoid big sweeps in the graphs
caused by the alternating divergers. As in (2,2) we observe the same phenomenon
of clustering.
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Fig. 14. Sampling of 50 space (left) and runtime (right) sequences in (3,2).

4.4 Definable sets

Now we have found 100 definable sets. Recall that in (2,2) definable sets were
closed under taking complements. This does not happen in (3,2). There are 46
definable sets, like

{3, {03}, {1}, {23, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}, ...}
that coexist with their complements, but another 54, like
{{o, 3}, {1, 3}, {1, 4}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}, ...}

are definable sets but their complements are not. We note that, although there
are more definable sets in (3,2) in an absolute sense, the number of definable
sets in (3,2) relative to the total amount of functions in (3,2) is about four times
smaller than in (2,2).

4.5 Clustering per function

In (3,2) the same phenomenon of the clustering of runtime and space usage
within a single function also happens. Moreover, as Figure 15 shows, exponential
runtime sequences may occur in a (3,2) function (left) while only linear behavior
is present among the (2,2) computations of the function (right).
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Fig. 15. Clustering per function in (3,2).

4.6 Exponential behavior in (3,2) computations

Recall that in (2,2) most convergent TMs complete their computations in linear
time. Now (3,2) presents more interesting exponential behavior, not only in
runtime but also in used space.

The max runtime in (3,2) is 894481409 steps found in the TMs number
599063 and 666364 (a pair of twin rules!?) at input 20. The values of this function
are double exponential. All of them are a power of 2 minus 2.

Figure 16 shows the tape evolution with inputs 0 and 1. The pattern observed
on the right repeats itself.

5 The space (4,2)

An exhaustive search of this space fell out of the scope of the current project. For
the sake of our investigations we were merely interested in finding functions in
(4,2) that we were interested in. Thus, we sampled and looked only for interesting
functions that we selected from (2,2) and (3,2). In searching the 4,2 space, we
proceeded as follows. We selected 284 functions in (3,2), 18 of them also in (2,2),
that we hoped to find in (4,2) using a sample of about 56x10% random TMs.
Our search process consisted of generating random TMs and run them for
1000 steps, with inputs from 0 to 21. The output (with runtime and space usage)

19 We call two rules in (3,2) twin rules whenever they are exactly the same after
switching the role of State 2 and State 3.



Fig. 16. Tape evolution for Rule 599063.

was saved only for those TMs with a converging part that matches some of the
284 selected functions.

We saved 32235683 TMs. From these, 28032552 were very simple TMs that
halt in just one step for every input, so we removed them. We worked with
4203131 non-trivial TMs.

After cleansing there were 1549 functions computed by 49674 algorithms.
From these functions, 22 are in (2,2) and 429 in (3,2). TMs computing all the
284 functions of the sampling were found.

Throughout the remainder of the paper it is good to constantly have in mind
that the sampling in the (4,2) space is not at all representative.

6 Comparison between the TM spaces

The most prominent conclusion from this section is that when computing a
particular function, slow-down of a computation is more likely than speed-up if
the TMs have access to more resources to perform their computations. Actually
no essential speed-up was witnessed at all. We shall compare the runtimes both
numerically and asymptotically.

6.1 Runtimes comparison

In this section we compare the types of runtime progressions we encountered
in our experiment. We use the big O notation to classify the different types of
runtimes. Again, it is good to bear in mind that our findings are based on just
21 different inputs. However, the estimates of the asymptotic behavior is based
on the functions as found in the cleansing process.

In Figure 17, a table is presented that compares the runtime complexity
classes between functions computed in (2,2), (3,2) and (4,2). Under (2,2) is the



distribution of time complexity classes for the different algorithms in (2,2) com-
puting the particular function in that row, followed by the distribution of time
complexity classes computing the same function in (3,2) and (4,2). Each time
complexity class is followed by the number of occurrences among the algorithms

in that TM space. The complexity classes are sorted in increasing order.

function # (2,2) (3,2) (4,2)
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Fig. 17. Comparison of the distributions of all 22 functions computed in the three
studied spaces (2,2), (3,2) and (4,2). The function number is an index from the list of
all the functions computed in these spaces sorted by how they occurred in (2,2).



No essentially (different asymptotic behavior) faster runtime was found in
either (3,2) compared to (2,2) or (4,2) compared to (3,2) and (2,2). Thus, no
speed-up was found other than by a linear factor as reported in Subsection (6.3).
That is, no algorithm in (4,2) or (3,2) computing a function in (3,2) or (2,2) was
essentially faster than the fastest algorithm computing already found in (2,2) or
(3,2). Amusing findings were Turing machines computing the identify function
in as much as exponential time. They are an example of machines spending
all resources to compute a simple function. Another example is the constant
function f(n) = 0 computed in O(n?), O(n?®), O(n*) and even O(Ezp).

In (2,2) however, there are very few non-linear time algorithms and func-
tions!!. However as we see from the similar table for (3,2) versus (4,2) in Fig-
ure 17, also between these spaces there is no essential speed-up witnessed. Again
only speed-up by a linear factor can occur.

6.2 Distributions over the complexity classes

Figure 18 shows the distribution of the the TMs over the different asymptotic
complexity classes. On the level of this distribution we see that the slow-down
is manifested in a shift of the distribution to the right of the spectrum.
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Fig. 18. Time complexity distributions of (2,2) (left) and (3,2) (right).

We have far to few data to possibly speak of a prior in the distributions of our
TMs over these complexity classes. However, we do remark the following. In the
following table we see the fraction per complexity class of the non-constant TMs
for each space. Even though for (4,2) we do not at all work with a representative

' We call a function O(f) time, when its asymptotically fastest algorithm is O(f) time.



sampling still there is some similarity in the fractions. Most notably within one
TM space, the ratio of one complexity class to another is in the same order of
magnitude as the same ratio in one of the other spaces. Notwithstanding this
being a far cry from a prior, we do find it worth!? while mentioning.

pr (2.2) (3.2) (4.2)
O(n 0.941667 | 0932911 | 0.925167
O(n?) | 0.0333333 | 0.0346627 | 0.0462362
0(n®) 0 0.0160268 | 0.0137579
O(n”) 0 0.0022363 | 0.00309552

O(Exp) 0.025 0.0141633 | 0.0117433

6.3 Quantifying the linear speed-up factor

For obvious reasons all functions computed in (2,2) are computed in (3,2). The
most salient feature in the comparison of the (2,2) and (3,2) spaces is the promi-
nent slowdown indicated by both the arithmetic and the harmonic averages. The
space (3,2) spans a larger number of runtime classes. Figures 19 and 20 are ex-
amples of two functions computed in both spaces in a side by side comparison
with the information of the function computed in (3,2) on the left side and the
function computed by (2,2) on the right side. In [9] a full overview of such side by
side comparison is published. Notice that the numbering scheme of the functions
indicated by the letter f followed by a number may not be the same because
they occur in different order in each of the (2,2) and (3,2) spaces but they are
presented side by side for comparison with the corresponding function number
in each space.

One important calculation experimentally relating descriptional (program-
size) complexity and (time resources) computational complexity is the compari-
son of maximum of the average runtimes on inputs 0,...,20, and the estimation
of the speed-ups and slowdowns factors found in (3,2) with respect to (2,2).

It turns out that 19 functions out of the 74 computed in (2,2) and (3,2)
had at least one fastest computing algorithm in (3,2). That is a fraction of
0.256 of the 74 functions in (2,2). A further inspection reveals that among the
3414 algorithms in (3,2), computing one of the functions in (2,2), only 122 were
faster. If we supposed that “chances” of speed-up versus slow-down on the level
of algorithms were fifty-fifty, then the probability that we observed at most 122
instantiations of speed-up would be in the order of 1071%. Thus we can safely
state that the phenomena of slow-down at the level of algorithms is significant.

Figure 23 shows the scarceness of the speed-up and the magnitudes of such
probabilities. Figures 22 quantify the linear factors of speed-up showing the
average and maximum. The typical average speed-up was 1.23 times faster for

12° Although we have very few data points we could still audaciously calculate the
Pearson coefficient correlations between the classes that are inhabited within one
of the spaces. Among (2,2), (3,2) and (4,2) the Pearson coefficients are: 0.999737,
0.999897 and 0.999645.
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Fig. 19. Side by side comparison of an example computation of a function in (2,2) and
(3,2) (the identity function).
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Fig. 20. Side by side comparison of the computation of a function in (2,2) and (3,2).



an algorithm found when there was a faster algorithm in (3,2) computing a
function in (2,2).
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Fig. 21. Distribution of speed-up probabilities per function. Interpreted as the proba-
bility of picking an algorithm in (3,2) computing faster an function in (2,2).

In contrast, slowdown was generalized, with no speed-up for 0.743 of the
functions. Slowdown was not only the rule but the significance of the slowdown
was much larger than the scarce speed-up phenomenon. The average algorithm
in (3,2) took 2379.75 longer and the maximum slowdown was of the order of

1.19837 x 10 times slower than the slowest algorithm computing the same func-
tion in (2,2).
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Fig. 22. Speed up significance: on the left average and on the right maximum speed-
ups.

As mentioned before there is also no essential speed-up in the space (4,2)
compared to (3,2) and only linear speed-up was witnessed at times. But again,
slow-down was the rule. Thus, (4,2) confirmed the trend between (2,2) and (3,2),



that is that linear speed up is scarce yet present, three functions (0.0069) sampled
from (3,2) had faster algorithms in (4,2) that in average took from 2.5 to 3 times
less time to compute the same function, see Figure 6.3.

speed-up
factor

30

Fig. 23. Distribution of average speed-up factors among all selected 429 functions
computed in (3,2) and (4,2).
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