
UTC Time, Formally Verified
Ana de Almeida Borges
University of Barcelona

Barcelona, Spain
Formal Vindications S.L.

Barcelona, Spain
ana.agvb@gmail.com

Mireia González Bedmar
University of Barcelona

Barcelona, Spain
Formal Vindications S.L.

Barcelona, Spain
mireia.gbedmar@formalv.com

Juan Conejero Rodríguez
University of Barcelona

Barcelona, Spain
Formal Vindications S.L.

Barcelona, Spain
jjcoro@proton.me

Eduardo Hermo Reyes
University of Barcelona

Barcelona, Spain
Formal Vindications S.L.

Barcelona, Spain
ehermo.reyes@formalv.com

Joaquim Casals Buñuel
University of Barcelona

Barcelona, Spain
Formal Vindications S.L.

Barcelona, Spain
jcasalsb@formalv.com

Joost J. Joosten
University of Barcelona

Barcelona, Spain
jjoosten@ub.edu

Abstract
FV Time is a small-scale verification project developed in
the Coq proof assistant using the Mathematical Components
libraries. It is a library for managing conversions between
time formats (UTC and timestamps), as well as commonly
used functions for time arithmetic. As a library for time
conversions, its novelty is the implementation of leap sec-
onds, which are part of the UTC standard but usually not
implemented in existing libraries. Since the verified func-
tions of FV Time are reasonably simple yet non-trivial, it
nicely illustrates our methodology for verifying software
with Coq.

In this paper we present a description of the project, em-
phasizing the main problems faced while developing the
library, as well as some general-purpose solutions that were
produced as by-products and may be used in other veri-
fication projects. These include a refinement package be-
tween proof-oriented MathComp numbers and computation-
oriented primitive numbers from the Coq standard library,
as well as a set of tactics to automatically prove certain de-
cidable statements over finite ranges through brute-force
computation.

CCS Concepts: • Applied computing→ Law; • Software
and its engineering → Formal software verification;
Software libraries and repositories.
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1 Introduction
Coordinated Universal Time (UTC) [42] is the current world
standard for keeping time. Although it uses atomic time, it is
designed to stay close to solar time, and as such it includes
leap seconds. The number of seconds in a minute can be
either 59 (if there is a negative leap second), 60 (the regular
case), or 61 (if there is a positive leap second). The need
for a new leap second is somewhat unpredictable, so the
International Earth Rotation and Reference Systems Service
announces whether there will be one about six months in
advance. The convention is to have at most two leap sec-
onds per year, as the final second of the last day of a month,
preferably June or December. As of 2023, there have been 27
positive leap seconds and no negative ones [41], although a
recent resolution [18] aims to eliminate future leap seconds,
prompted by the various issues and inconveniences they lead
to [48].

The vast majority of software uses Unix time [5, 53], which
is an implementation of UTC without leap seconds [40]. This
is fine for many use cases, and understandable given the
unpredictability of UTC for future moments. However, it
conflicts with legal regulations that explicitly require UTC.
It may seem like 27 seconds are not enough to meaningfully
change anything, but in fact even 27 seconds can make a
difference in real world legal applications, as well as in crit-
ical systems. In particular, in the context of software that
interprets and evaluates the log information for driving time
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Figure 1. The file structure of FV Time. There is an extra file, doe_of_yoeK.v, that only contains auxiliary proofs and
definitions and doesn’t appear in the diagram.

in the road transport sector according to Regulation (EU)
2016/799 [28], the algorithm that translates from second-
resolution data to minute-resolution data as required by the
Regulation can give opposite results depending on whether
UTC or Unix is used – meaning that there exists a possible
data file that gets interpreted as 100% of driving time in UTC
and as 0% of driving time in Unix [3].
It was in this context that FV Time [2] was developed.

It is a by-product of the collaboration between the Univer-
sity of Barcelona and Formal Vindications S.L., whose main
goal is the development of large-scale formally verified soft-
ware with applications in several critical sectors. FV Time
is a small-scale verification project developed in Coq and
relying in the MathComp library. It includes conversions
between time, represented as a 7-tuple of year, month, day,
hour, minute, second, and proof of existence in the chosen
paradigm (to avoid ill-formed tuples such as the ones includ-
ing February 30), and timestamps, represented as the number
of seconds since a chosen epoch (for example, year 0, or year
1970, which is the Unix epoch). We also define dates and
datestamps, which are the respective concepts without infor-
mation on the hour, minute, and second. Functions for time
and duration arithmetic are provided as well. Leap seconds
are tracked via a modifiable parameter, which can be empty
for Unix time or updated as appropriate to keep pace with
UTC.
This paper reports on the development of FV Time from

high-level specifications to executable code integrated with
other software. It can serve as a roadmap for other similar
verification projects. Section 2 describes the main functions
that were verified and our methodology to structure the
project, with an emphasis on the issues and solutions that
can be of general interest.

We also describe two general purpose Coq libraries: FV
Prim63 to MathComp (Section 3) and FV Check Range (Sec-
tion 4). These libraries were developed as aids to FV Time,
but they would be useful in other contexts as well. FV Prim63
to MathComp is a collection of results linking Coq primi-
tive integers to MathComp natural numbers and integers,
which are needed when refining primitive integers to those
MathComp types. FV Check Range is a small set of automa-
tion tactics that solve (provable) goals of the form “for every
primitive integer 𝑥 in the range 𝑎 ≤ 𝑥 < 𝑏, we have 𝑓 (𝑥)”,
where 𝑓 is a boolean function and 𝑎 and 𝑏 are fixed primitive
integers. Although these kinds of goals can sometimes be
automatically solved using preexisting tactics, our approach
simply tests every value of 𝑥 between 𝑎 and 𝑏, which works
regardless of the boolean function 𝑓 and is quite fast.

We briefly outline our method of obtaining clean extracted
code in Section 5. The resulting OCaml code was bundled
with a command-line interface called FVTM (Section 6),
which can be used by other applications. This makes our
time translations available outside the relatively small world
of Coq and OCaml.

Finally, Section 7 gives an overview of the existing related
work, while Section 8 lists the contributions and conclusions
of this project.

2 FV Time
2.1 File Structure
The main goal of FV Time is to provide verified functions
translating between UTC times (with leap seconds) and
timestamps. We describe the file structure of the library in
Figure 1.
As we see throughout this section, the calendar.v file

describes the main datatypes, such as what it means to be

https://formalv.gitlab.io/-/formalv/-/jobs/4677927207/artifacts/public/coqdoc/formalv.time.calendar.html
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a UTC time.1 It also specifies the expected behavior of the
translating functions in an intuitive way. We provide a sec-
ond file, Hinnant.v, with alternative implementations of
these translating functions. The implementations of the dat-
estamp algorithm and its inverse are inspired by the ones
described by Howard Hinnant [39], hence the name of the
file.
FV Time also provides functions to perform basic arith-

metic on UTC times, such as adding a certain number of
hours to a given time, in formalTime.v.

Since these algorithms are meant to be extracted from Coq
to OCaml for efficient execution, we provide a type refine-
ment for each in the HinnantR.v and formalTimeR.v files.
In other words, there are two versions of each algorithm:
one based on proof-friendly datatypes, and one based on ex-
traction and computation-friendly ones. These two versions
are proven equivalent under some assumptions.

Finally, the two extraction files fvtm_extraction.v and
fvtm_extraction_correct.v follow the extractionmethod
explained in Section 5.

2.2 Main Data Types
The central data type in FV Time is a representation of mo-
ments in time in UTC,2 which we call time. Under the hood
it is simply a 6-tuple of natural numbers representing a given
year, month, day, hour, minute, and second, together with a
proof that the tuple in question forms an existing time. What
counts as an existing time depends on the parametrized list
of leap seconds.
For convenience and modularity’s sake, we define three

other relevant types: date, rawDate, and rawTime. A date
is the part of the time with only the year, month, and day,
together with a proof that it exists in UTC. The raw types
are simply the tuples without the proofs. Thus, January 32nd
2000 could be represented as a rawDate but not a date.
We encode the list of leap seconds as a parameter that

can be updated each time a new leap second is announced.
The list is actually a list of pairs, where each pair has a date
(indicating that a leap second occurs on that date) and a
boolean value (where false means that it’s a positive leap
second and true that it’s a negative one). Since we treat
the list as a parameter with unknown contents, it can be
instantiated in any way as long as it satisfies the hypotheses
we use throughout the theorems: the list must be sorted with
respect to the strict order of dates (in particular it doesn’t
include repeated dates), and all the dates in it must be valid.

1Throughout the library and paper, “time” refers to our specification of a
UTC point expressed as a date-time, i.e., a 7-tuple of year, month, day, hour,
minute, second, and proof of validity. We currently take the second to be
the smallest unit, although a finer-grained resolution could be implemented
as well. This is described in more detail in Section 2.2.
2We further assume that the time occurs before the end of year 9999, for
reasons explained in Section 2.3.1.

In particular, FV Time can be used to compute Unix time
conversions by using an empty list of leap seconds.
The raw types are used in the implementations of every

function that operates on dates, such as datestamp. It is then
possible to compute the datestamp of January 32nd 2000, but
we do not wish to prove any facts about the datestamps of
such ill-formed dates. For that reason, we use the valid (non-
raw) versions in the specifications and theorem statements.
There is then a disconnect between the specification and
the implementation, since they refer to different types. This
is easily solved using coercions, i.e., automatically inserted
translations between one type and another.

We use a number of coercions in our development, mostly
between types and their subtypes, as described in Figure 2.
We have a very small type hierarchy. Formalizations of, say,
mathematical algebra or large libraries such as MathComp
include rich hierarchies [54], and there are existing tools
to implement and maintain such large hierarchies such as
Hierarchy Builder [17].

time

date rawTime

rawDate

rawTime_of_timedate_of_time

rawDate_of_date rawDate_of_rawTime

Figure 2. A representation of the four main data types in
FV Time and the coercions between them. Each arrow from
X to Y represents the coercion Y_of_X.

Still, even with a small hierarchy we do run into some
issues. For example, looking at Figure 2, we can see that
there are two possible paths from a time to a rawDate. It
happens that these paths are definitionally equivalent, and
so in some contexts it is irrelevant which one is chosen.
However, sometimes the information that the date part of
the time is valid is crucial, and so the path that goes through
the date must be picked over the other one. In particular,
the following unification problem sometimes arises:

rawDate_of_date ?𝑑 =

rawDate_of_rawTime (rawTime_of_time 𝑡) (1)

In words, given a time 𝑡 , a date ?𝑑 must be found such that
its rawDate corresponds to the rawDate of the rawTime of
the time. The diamond represented in Figure 2 trivially com-
mutes, so we define the canonical coercion date_of_time
as the path to solve (1) with ?𝑑 := date_of_time 𝑡 .
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2.3 Main Functions
The backbone of FV Time is the translations between times
and timestamps, which themselves depend on translations
between dates and datestamps. In this section we focus on
the specification and implementation of these four functions,
as well as the proofs that they coincide onwell-formed inputs.
These terms are listed in Tables 1 and 2.

The relevant files are calendar.v and Hinnant.v. The
former includes the basic definitions of dates and times, as
well as all the specifications. The latter includes the efficient
implementations and the correctness proofs of the main
functions. Note that the specification and implementation of
a given function have the same name, so we use the name of
the file to clarify which we mean at any given time. Similarly,
some lemma names coincide and are thus clarified as well.

2.3.1 Specifications. The specifications of the main func-
tions were primarily chosen to be intuitive. Thus, the
calendar.datestamp of a date 𝑑 is the size of the set of
dates strictly smaller than 𝑑 , and similarly for calendar.
timestamp, where the order relations on dates and times
are defined as expected. These definitions use the notion of
cardinality of a finite set, which is defined in MathComp’s
fintype library [49]. In order to benefit from this library’s
theory, our types for valid dates and times needed bounds
so that they could be declared as a finType. While a mini-
mum was already imposed by our definition using natural
numbers (a year before 0 cannot be expressed), we arbitrar-
ily set the maximum date as December 31st, 9999. Different
end years could be substituted, although if they were large
enough there might be problems with overflow during the
refinement process (see Section 2.5).
The calendar.datestamp function goes from date, the

type of valid dates, to ’I_max_datestamp.+1, the type of
natural numbers less than or equal to max_datestamp. Hence,
on the specification side, the type of the function already
ensures that the argument and the result are in the expected
range.
To specify the inverse, we start by defining a notion of

next_date, which goes as expected: add 1 to the day compo-
nent if doing so results in a valid date; otherwise set the day
to 1 and add 1 to the month component if doing so results in
a valid date; otherwise set the day to 1, the month to January
and add 1 to the year unless the year was 9999 (the maximum
year), in which case set the year to 1. Its only particularity
is that the successor of the maximum date is the minimum
date. This cyclic behavior was chosen as a convenient, simple
way to maintain the invariant that the successor of a valid
date is always a valid date. We also define next_time to be
cyclic, and we underline that this definition depends on the
parametrized list of leap seconds, as do essentially all the
functions related to time.

Given these notions of next_date and next_time, we de-
fine the calendar.from_datestamp of a number𝑛 as the𝑛th

iteration of next_date after the minimum date, and simi-
larly for calendar.from_timestamp. The spirit of calendar.
from_datestamp is to describe the counting process one
would perform on a real calendar: it is defined as if, given
a datestamp 𝑛, one counted the days one by one from the
epoch up to 𝑛, and the last counted day is the result.

2.3.2 Implementations.

Hinnant.datestamp. If every month had the same num-
ber of days and every year the same number of months,
computing the datestamp of a given date would be as straight-
forward as multiplying each date component by its corre-
sponding number of days and adding everything. Even with
different lengths for different months it would not be par-
ticularly complicated, but the existence of leap years means
that some more care must be taken. In order to have the
algorithm be as simple as possible, we internally use shifted
years that start on the first day of March and end on the last
day of February, as inspired by Hinnant [39]. Thus, the leap
day, if it exists, is the last day of the shifted year and doesn’t
influence the calculation of the datestamp of any day in that
year other than itself. Since the rule for leap years in the
Gregorian calendar repeats itself over periods of 400 years,
we also compute the era (period of 400 years) corresponding
to the date.
The only other main part of Hinnant.datestamp is cal-

culating how many days there are between the start of a
(shifted) year and the first day of each (shifted) month. This
can be represented as a table that assigns the appropriate
value to each (shifted) month – for March (month 0) it is
0, for April (month 1) it is 31, for May (month 2) it is 61,
and so on. However, it turns out that the linear equation
(153 ·𝑚 + 2)/5, where𝑚 is the ordinal of the (shifted) month,
interpolates this table, so we use that instead of storing the
table in memory.

Hinnant.from_datestamp. As in the previous case, we
divide years in 400 year eras and shift everything so that
years start in March. With this framing, the algorithm is
more obviously the inverse of Hinnant.datestamp (a fact
that we rely on for the correctness proofs).

Given the number of days since the beginning of the era,
finding the year must take into consideration leap years, and
finding the month must take into consideration the varying
number of days in each month. For the latter we use a linear
interpolant of the table matching days in a year to months
instead of using the table directly.

Hinnant.timestamp. This is a natural extension to time
of Hinnant.datestamp. In the absence of leap seconds, we
could simply add the product of each time component by
the amount of seconds in that component (60 seconds per
minute, and so on). With leap seconds, we need to addition-
ally calculate the offset generated by them, i.e., the number
of extra (positive or negative) seconds that must be added to
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Table 1. Names and types of the main functions in FV Time.

Specification Implementation
calendar.v Hinnant.v

date datestamp : date → ’I_max_datestamp.+1 datestamp : rawDate → nat
from_datestamp : nat → date from_datestamp : nat → rawDate

time
timestamp : ∀(𝑙𝑠 : leapSeconds),
time 𝑙𝑠 → ’I_(max_timestamp 𝑙𝑠).+1 timestamp : leapSeconds → rawTime → nat

from_timestamp : ∀(𝑙𝑠 : leapSeconds), nat → time 𝑙𝑠 from_timestamp : leapSeconds → nat → rawTime

the leap second-less timestamp, and add it accordingly. Such
an offset is relatively easy to calculate for a given date 𝑑 , for
we can simply count the number of dates in our list of leap
seconds that happened prior to 𝑑 , and then check whether
they were positive or negative to obtain a final offset. This
is accomplished by the offset_rd function.

Since the leap second offset can a priori be negative (even
though there hasn’t been a single negative leap second as of
2023), we first calculate the timestamp over the integers and
then take its absolute value. This works because even before
taking the absolute value we know that the timestamp is
positive due to our restrictions on leap seconds: we allow at
most one leap second per day (an unimportant restriction,
since the international convention allows at most two leap
seconds per year). Since there are less days than seconds in
any given amount of time, it is not possible to have enough
negative leap seconds to obtain a negative timestamp.

Hinnant.from_timestamp. Once we know how to calcu-
late the date corresponding to some datestamp, calculating
the time corresponding to some timestamp (i.e., to some
number 𝑛 of seconds since the epoch) is straightforward
in the absence of leap seconds. Thus, we first subtract the
relevant offset from 𝑛 and then proceed as if there were no
leap seconds.

Obtaining the offsets for this function is slightly more com-
plicated than it was for Hinnant.timestamp, since our list
of leap seconds is a list of dates and not of timestamps. Thus,
the offset calculator for Hinnant.from_timestamp, called
offset_ts, first computes the Hinnant.timestamp of the
final second of each date in our list of leap seconds (leap
seconds are always the final second of each day by interna-
tional convention), and then proceeds similarly to the offset
computation for Hinnant.timestamp (offset_rd).

2.3.3 Proofs. The specification and implementation of the
main functions differ significantly, and so it is hard to directly
prove that they match. Instead, we make use of lemmas
showing that certain functions are the (left) inverse of others
(also known as canceling lemmas) and the following simple
result.
Remark 2.1. Let 𝑇 and 𝑈 be types, and 𝑓1, 𝑓2 : 𝑇 → 𝑈 be
functions. If there is a function 𝑔 : 𝑈 → 𝑇 that is both a

right inverse of 𝑓1 and a left inverse of 𝑓2, then 𝑓1 and 𝑓2 are
extensionally equal.

We summarize here the correctness proof for timestamp
(Theorem 2.2) as an example. The actual Coq statement in-
cludes our standard assumptions on the shape of the list of
leap seconds (see Section 2.2), omitted here. Note that the
theorem statement is about valid times; we make no claim
about non-existing times such as any moment during Janu-
ary 32nd. Since timestamp takes a rawTime as an argument,
the implicit coercion rawTime_of_time (see Figure 2) is au-
tomatically inserted on the left-hand side of the equation.
Links to the formalizations of the other proofs can be found
in Table 2, which summarizes the results. Note that while the
pre-conditions are explicit, the post-conditions are implied
by the equality to the specifications.

Theorem 2.2 (timestampE). For every time 𝑡 :

Hinnant.timestamp 𝑡 = calendar.timestamp 𝑡 .

Proof. By Remark 2.1 it suffices to find a suitable function
bridging the implementation and specification of timestamp.
We used calendar.from_timestamp and the canceling lem-
mas calendar.timestampK and cal_from_timestampK (see
Figure 3 for a schematic representation of their statements).

□

Given the above strategy, the main challenge becomes
proving the canceling lemmas. There are three relevant lem-
mas for time, depicted as the arrows in Figure 3, and three
analogous ones for dates, used as stepping stones for the
time ones and not shown here. We briefly comment on each
of these three results.
On the specification side, lemma calendar.timestampK

states that calendar.from_timestamp is a left inverse of
calendar.timestamp. Since this is a statement about two
specifications, designed to behave nicely with respect to
proofs, there were no great difficulties in proving it.

The bridge between the specification and the implementa-
tion is provided by cal_from_timestampK, which states that
calendar.from_timestamp is a right inverse of Hinnant.
timestamp. Fortunately, calendar.from_timestamp is very
simple (just iterating next_time), and so this proof follows
without too much difficulty using basic arithmetical facts.
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Table 2. Theorems stating that the implementations of the main functions meet the specifications.

Correctness
Hinnant.v

date

datestampE : ∀(𝑑 : date),
Hinnant.datestamp 𝑑 = calendar.datestamp 𝑑

from_datestampE : ∀(𝑛 : nat), 𝑛 ≤ max_datestamp →
Hinnant.from_datestamp 𝑛 = calendar.from_datestamp 𝑛

time

timestampE : ∀(𝑙𝑠 : leapSeconds) (𝑡 : time 𝑙𝑠),
sorted Order.lt (unzip1 𝑙𝑠) →
all valid_date (unzip1 𝑙𝑠) →
Hinnant.timestamp 𝑙𝑠 𝑡 = @calendar.timestamp 𝑙𝑠 𝑡

from_timestampE : ∀(𝑙𝑠 : leapSeconds) (𝑛 : nat),
sorted Order.lt (unzip1 𝑙𝑠) →
all valid_date (unzip1 𝑙𝑠) →
𝑛 ≤ max_timestamp 𝑙𝑠 →
Hinnant.from_timestamp 𝑙𝑠 𝑛 = calendar.from_timestamp 𝑙𝑠 𝑛

Finally, on the implementation side, the auxiliary lemma
Hinnant.timestampK (needed for the proof of Hinnant.
from_timestampE, which is the correctness theorem for
Hinnant.from_timestamp) states that the function Hinnant.
from_timestamp is a left inverse of Hinnant.timestamp. Its
proof is the most intricate of the three if done with pen and
paper, due to the ubiquitous presence of Euclidean division,
which doesn’t have an inverse. However, once we developed
the automation tool FV Check Range (see Section 4), the
proof was notably eased.

2.4 Time Arithmetic
When adding and subtracting durations to a given time, the
irregular periods that the Gregorian calendar and UTC de-
fine must be taken into account. For systems that work in
Unix, the issue arises with months and years, because they
don’t have a constant duration. What some systems do is
define arithmetical operations on months and years that
don’t respect basic arithmetical properties [53]. For exam-
ple, it’s common to define the notion of adding 1 month as
adding 1 to the month component of the time. However, the
result of this operation is not always valid. Thus, adding 1
month in this sense to 2009-01-31 14:00:00 yields 2009-02-31
14:00:00, which is not a valid time because February doesn’t
have 31 days. The adopted solution is to correct the wrong
component by going back to the previous valid one, so the
result would be 2009-02-28 14:00:00. Similarly, it is possible
to add any number to the month component, carrying to the
year if necessary, and then correct the wrong component.
For example, adding 24 months to 2008-02-29 15:00:00 gives
2010-02-28 15:00:00. This operation and the analogously de-
fined subtraction are not mutual inverses, since subtracting
1 month from 2009-02-28 14:00:00 would lead to 2009-01-28

14:00:00, which is some days apart from the original 2009-
01-31 14:00:00. These are used for practical purposes such
as accounting, monthly interest calculation, or utility bills.
However, for general computations on durations this behav-
ior may be undesired.
Our library uses UTC, which means that this problem

affects all the components except seconds. Not all minutes
have the same duration, nor all hours, nor all days. Our
solution is to implement two different types of operations in
time arithmetic. The first approach, leading to the so-called
shift functions, follows the above logic. The second one is a
definition of a standard for durations called formal time, and
operations called add_formal thatmanipulate fixed amounts
of seconds and thus do not suffer from the above issue. Since
both options are available, users are free to choose the best
one for them.

2.4.1 Shift Functions. The shift functions are defined ac-
cording to the logic described above. Thus, the shift function
shifts a component of the time, carrying to the left if neces-
sary, and then if the result is invalid it performs corrections
on the wrong component(s) to return a certain close valid
time. The precise specification can be found in the lemma
shift_utc_yearsP for years, and similarly for the other
date-time components.

2.4.2 Formal Time Arithmetic Functions. In order to
have time arithmetic with the usual arithmetical properties,
we have defined formal time, which establishes standard
durations for every component. A formal second is an atomic
second, a formal minute is 60 formal seconds, and so on.
We have chosen to define a formal month as 30 formal

days. Therefore, add_formal_month adds a constant number
of seconds (30·24·60·60 seconds) to the input. In the example
above, adding a formal month to 2009-01-31 14:00:00 yields
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calendar.timestamp Hinnant.timestamp

calendar.from_timestamp Hinnant.from_timestamp

cal_from_timestampKcalendar.timestampK Hinnant.timestampK

Figure 3. The implementation and specification of the main time functions together with the canceling lemmas used to prove
their correctness. Each arrow from 𝑓 to 𝑔 represents the proof that 𝑓 is a left inverse of 𝑔.

2009-03-02 14:00:00. The result is always valid by construc-
tion, except when it goes beyond the minimum or maximum
dates. Subtraction works similarly.

2.5 Type Refinements
The default representation of the natural numbers in Coq
(and MathComp) is the unary one, which uses roughly a
symbol per unit. It is extremely useful for proving properties
about the natural numbers, as one can reason by structural
induction: prove first that a property holds for zero, and then
that if it holds for 𝑛 it also holds for its successor. However,
it is a very inefficient representation in terms of space. For
example, explicitly representing numbers larger than 5000 in
Coq makes the code almost unusable. There are ways around
this, namely to encode the natural numbers in binary, which
is the standard in computer science. The downside is that
proofs using natural numbers become more complicated.

The usual solution for this problem is to use what is known
as a type refinement. This technique includes an intermediate
stepwhere algorithms are defined on top of non-efficient data
types and then refined (i.e., redefined) on top of efficient ones.
A proof can then be provided to ensure that the refinement
kept the relevant properties of the algorithm. This approach
has been known and used for quite some time [9].

Our particular approach is the following. For a hypothet-
ical function 𝑓 with input a natural number and output a
natural number, we have a specification using the unary nat.
Then we write a first implementation, which would be an
efficient algorithm for 𝑓 except it also uses nat. We prove
a theorem stating that this first implementation behaves as
the specification says. The previous steps are described in
Section 2.3.

Then we provide a refinement. We define a second imple-
mentation of exactly the same algorithm, but this time using
the unsigned primitive integers3 Uint63.int and their oper-
ations, and taking the possibility of overflow into account.4
Now we can prove another lemma stating that, whenever

3Primitive integers, or machine integers, are the integers directly supported
by the processor and used physically in memory, with binary representa-
tion. Programming languages usually provide a type representing primitive
integers.
4It is necessary to consider overflow because primitive integers are defined
cyclically, so that 263 is the same as 0, and so on.

the input is small enough, the outputs of both versions co-
incide. It then follows that the latter implementation meets
the specification for such inputs. Analogously, we refine the
unary type ssrint.int into Sint63.int.
The choice of Uint63.int and Sint63.int was based

both on their efficiency and their good properties with re-
spect to extraction, as described in Section 5.
Even if at first sight the refinement phase may appear

much easier than the previous one, in truth the difficulty
in our case was comparable and arguably higher, for two
different reasons. The first one is that the process of refining
functions requires having a good set of rewriting lemmas
between the operations of the source and target types, which
in our case didn’t exist. Hence, this project led to the develop-
ment of such a set of lemmas, called FV Prim63 to MathComp
(see Section 3), which is now available for any future projects.
The other reason is the nature of the task itself: ensuring the
equivalence between the original and the refined versions
requires ensuring that all of the intermediate steps will not
overflow, or otherwise finding the appropriate bounds for
which they don’t. This was in itself a very extensive and
quite tedious task, eased by our automation tool FV Check
Range (see Section 4).

3 FV Prim63 to MathComp
FV Prim63 to MathComp provides locked and unlocked
conversions between the proof-oriented libraries ssrnat
and ssrint, and between the computation-oriented libraries
Uint63 and Sint63. It also provides an extensive set of lem-
mas for rewriting between their respective arithmetical oper-
ations, with bounds on the numbers as side conditions when
needed.

This tool is independent of FV Time, and can be installed
and used from any development that decides to take the same
refinement path. As explained in Section 2.5, our motivation
was to link an abstract specification with efficient code for
extraction.
A locked version of a function 𝑓 is a provably equal but

not convertible version of 𝑓 . In Coq, a locked version of 𝑓 is
achieved by hiding the body of 𝑓 behind an opaque dummy
constant (see the documentation of locked at [20]). This
prevents the simplification mechanism commonly triggered
during proof development from computing the actual value
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of the functionwhen applied to a specific argument. The need
for locked conversions in our setting comes from certain use
cases where large constants are needed on the specification
side, and as such are expected to be represented as a nat.
However, we have seen that expressing large numbers with
nat takes unfeasible amounts of memory. Our solution is to
represent such large constants as primitive integers and rely
on a coercion nat_of_uint, i.e., on an automatically inserted
translation from primitive unsigned integers to the unary
representation of natural numbers. Crucially, this coercion
needs to be locked to prevent simplification from computing
the unary representation of the number.

4 FV Check Range
We developed a set of tactics to automatically solve provable
decidable goals with up to three free primitive integer vari-
ables bounded by a specific primitive integer range. Given a
provable goal with base statement of type bool (and thus de-
cidable), and given at most three primitive integer variables
and the bounds on which to check them, the tactics identify
the desired boolean statement, generate a list with all the
primitive integers in the relevant range and use vm_compute
[35] to confirm that the boolean statement indeed holds for
every number in range.

These tactics work rather fast, checking ranges with sizes
on the order of 105 in hundredths of seconds and on the
order of 107 in two or three seconds (showing an expected
linear progression) in one of our machines.

We used these tactics at several points during the develop-
ment of FV Time and describe here only a particular example:

∀(0 ≤ 𝑥 < 146097) 𝑥 ≥ ℎ(𝑥)
365 · 365+ ℎ(𝑥)

365 · 4 −
ℎ(𝑥)

365 · 100 (2)

where:

ℎ(𝑥) = 𝑥 − 𝑥

1460 + 𝑥

36524 − 𝑥

146096 .

Note that these are natural numbers, and so the division
operation is Euclidean division, meaning that, for example,
it is not always the case that 𝑥

𝑦
· 𝑦 = 𝑥 .

As expected, we found that using our automation was
significantly easier and faster than translating pen and paper
proofs when proving (2). In particular, the proof inspired by
a pen and paper strategy had 400 lines in Coq and took some
minutes to compile, while the proof using FV Check Range
is a one-liner and takes hundredths of seconds.

There are many other automation tactics available in the
Coq ecosystem, some of which can be used to solve goals
similar to (2) some of the time. See Section 7 for a discussion.

5 Extraction
The concept of extraction is simple: (automatically) translate
statements written in Coq to statements written in some
other, faster, language [45–47]. The extraction algorithms

are not themselves fully formalized yet (although this for-
malization is work in progress in the MetaCoq project [56]),
and so it is possible that errors in the extraction process lead
to unexpected discrepancies between the original and the
extracted code. Below we describe a method for extracting
Coq programs to OCaml so that the resulting OCaml code is
clean, reasonably short, and readable.

5.1 Clean Extraction
The main idea is to only extract Coq code that already looks
as close as possible to OCaml code, so that the extraction
plugin has almost nothing to do. The work of translating
the arbitrarily complex original Coq code to Coq code rep-
resentable in OCaml then falls to the programmer instead
of the plugin. This extra work has two advantages: first,
one obtains control over the extracted OCaml code, and sec-
ond, one can still reason about the Coq code that originated
it. This means that the distance between the verified Coq
code and the unverified OCaml code is much smaller than
if one simply relied on the extraction plugin without any
pre-processing.
When rewriting the original Coq code to make it rep-

resentable in OCaml, a common issue is translating those
partial functions that were defined using dependent types.
Consider, as an example of a partial function, Euclidean divi-
sion on the natural numbers, div. Division is mathematically
undefined when the divisor is 0. There are three main ways
of implementing such partial functions in Coq, illustrated
here with the type signature of division.

1. Forbid the input:

divgt0 : nat → nat_greater_than_0 → nat.

2. Output an error:

diverr : nat → nat → nat_or_error.

3. Output a default value:

divdflt : nat → nat → nat.

Forbidding the input can be done by taking advantage of
dependent types, which are not representable in OCaml. Our
proposed solution is to rewrite any code that uses dependent
types without them, dealing with partiality in some of the
other two ways. Outputting an error can be done with an
option type, which allows to keep error handling inside Coq,
useful if our extracted code is going to work as an external
library for other projects. On the other hand, outputting a de-
fault value has the advantage of yielding a type signature as
simple as possible, which keeps compositionality with other
functions. Theorems can then take into account the neces-
sary hypotheses on the input. We also extracted functions
in this flavor and used this strategy in the implementation
side of our development, as seen in Section 2.3.

https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
https://formalv.gitlab.io/-/formalv/-/jobs/4677927207/artifacts/public/coqdoc/formalv.prim63_mathcomp.ssrnat_Uint63.html#nat_of_uint
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#bool
https://metacoq.github.io/
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#nat
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This transformation contributes to avoiding the presence
of Obj.magic,5 and moreover gives us control about what
to do in cases where an undesired input is given, which
can happen when executing the extracted code, because
dependent types are not expressible in OCaml.
A different problem arises when using Coq libraries that

were not purpose-built for extraction, as is the case of Math-
Comp. The pervasive use of canonical structures does not
lend itself well to extraction. The mere presence of a boolean
equality over an eqType leads to over 20 lines of almost vac-
uous OCaml code where often the boolean equality for our
desired type could be defined in a couple of much more easily
understood lines that need to be included anyway.
Here our proposed solution is to avoid MathComp and

other external libraries as much as possible when paring
down the functions meant for extraction. It has been our
experience that most of the benefit of using external libraries
is in the wealth of results about the defined functions, and
not in the functions themselves. These are usually not that
numerous or hard to redefine using only simple Coq features.

Given the above observations, our proposed procedure for
clean extraction is as follows:

0. Suppose the functions that need to be extracted live
in a file original.v.

1. In a new file (say, extraction_file.v) that does not
import nor depend on any other file (save perhaps on
simple modules such as List from the Coq Standard
Library), recursively redefine all the functions that are
meant to be extracted, i.e., redefine the functions in
original.v as well as every function mentioned in
original.v, whether defined in the current project
or provided by MathComp or others. Avoid any Coq
features not present in OCaml.

2. Extract the functions in extraction_file.v.
3. In another file (say, extraction_file_correct.v)

that imports original.v, extraction_file.v, and
anything else useful or necessary, show that the ex-
tracted functions behave the same as the original ones,
possibly under some reasonable assumptions.

A simple example following this method can be found in
[33].

5.2 What and How Did We Extract?
The only part of the Coq code that makes sense to extract
are the implemented algorithms. We started with the func-
tions defined in HinnantR.v and formalTimeR.v (Step 0).
We then redefined all functions to be extracted together with
their dependencies in fvtm_extraction.v (Step 1) and ex-
tracted them in extraction_command.v (Step 2). Note that
Coq extraction is recursive, so we only needed to list the

5Obj.magic is a low-level OCaml function that allows casting any type to
any other type. It is purposefully undocumented because it is not meant for
the casual user.

functions we wished to add to the OCaml user interface,
not every function used to define them. The link between
the original functions and the functions to be extracted was
provided in fvtm_extraction_correct.v.
We used ExtrOcamlBasic and ExtrOCamlInt63 from

Coq’s Standard Library to help with the extraction. The for-
mer is a small collection of well-accepted translations, such
as mapping Coq’s bool type to OCaml’s, and other such
mappings where the types are basically the same in both lan-
guages. The latter maps the Coq definitions of Uint63 and
Sint63 to the very same OCaml module used to implement
primitive integers by the Coq kernel.
Our extracted code can be used as a library, taking into

account that functions come in two flavors with respect to
the way they deal with partiality: we provide versions named
f_plain that output default values on ill-formed inputs, cor-
responding to the fdflt described above, and versions named
simply f that output a more complex type called possibly,
which includes information about problematic inputs and
corresponds to ferr. We decided to have the latter because
our purpose when extracting was to use the library from
other programming languages, for which we wrote a small
command-line interface in OCaml that can be compiled as an
executable and invoked from any other program, described
in Section 6. It was thus convenient to extract versions that
detect errors (where we proved lemmas about what errors
are detected, and when), instead of implementing the full
exception handling in OCaml, which would be prone to bugs.
For each function f_plain, there is a lemma f_plainR

(where the “R” stands for “refinement”) showing that f_plain
meets its specification (i.e., that it behaves like calendar.f
on the relevant inputs). Furthermore, there are lemmas prov-
ing that the error handling for f is correct given certain
assumptions on the input.

6 FVTM: a Command-line Interface for FV
Time

After extraction, we end up with an OCaml library with all
the relevant functions of our development. However, OCaml
is not the most popular programming language and com-
munication with other languages is non-trivial. Hence, we
wrote a command-line interface in OCaml that allows to
compile the library as an executable and invoke it from the
terminal or from any other programming language. This
command-line version of the library is named FVTM (FV
Time Manager) [29]. The main functions of the library, i.e.,
the conversions between UTC times and timestamps, can be
tried online at Formal Vindications S.L.’s webpage.6

6https://formalv.com/TimeManager/FVTimeCalculation

https://formalv.gitlab.io/-/formalv/-/jobs/4677927207/artifacts/public/coqdoc/formalv.time.HinnantR.html
https://formalv.gitlab.io/-/formalv/-/jobs/4677927207/artifacts/public/coqdoc/formalv.time.formalTimeR.html
https://formalv.gitlab.io/-/formalv/-/jobs/4677927207/artifacts/public/coqdoc/formalv.time.fvtm_extraction.html
https://formalv.gitlab.io/-/formalv/-/jobs/4677927207/artifacts/public/coqdoc/formalv.time.extraction_command.html
https://formalv.gitlab.io/-/formalv/-/jobs/4677927207/artifacts/public/coqdoc/formalv.time.fvtm_extraction_correct.html
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.extraction.ExtrOcamlBasic.html
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.extraction.ExtrOCamlInt63.html
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Init.Datatypes.html#bool
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Numbers.Cyclic.Int63.Uint63.html
https://coq.inria.fr/distrib/V8.17.1/stdlib/Coq.Numbers.Cyclic.Int63.Sint63.html
https://formalv.gitlab.io/-/formalv/-/jobs/4677927207/artifacts/public/coqdoc/formalv.time.fvtm_extraction.html#possibly
https://formalv.com/TimeManager/FVTimeCalculation
https://formalv.com/TimeManager/FVTimeCalculation
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7 Related Work
The field of formal verification has been flourishing during
the last few decades, both in the area of mathematics for-
malization [1, 19, 26, 30–32, 50], and also in the realm of
software verification [6, 7, 12–15, 38, 44].

FV Time is not the first library to implement UTC (see for
example [23, 34, 43, 51]), but to the best of our knowledge it
is the first formally verified one either for Unix time or for
UTC.

Our approach using refinements has been extensively de-
veloped both in specific proof assistant developments, such
as Coq [16, 25, 27] and Isabelle/HOL [37]. Some other soft-
ware verification projects have used it too [12].

It must be noted that in the literature many efforts have
been devoted to free the developer from the burden of man-
ually proving every result in the proof assistant. These ef-
forts have yielded several Coq tactics to automatically per-
form certain proof tasks, such as micromega [10], ring [36],
interval [52], itauto [11], sauto [24], firstorder [22],
and auto and eauto [21]. The tactics auto, eauto and sauto
are lemma aggregators, meaning that they produce proofs
by combining existing lemmas that can be configured by
the user, but this wouldn’t solve our intricate arithmetical
expressions. The ring tactic is also of no use, since our goals
included Euclidean division, which doesn’t form a ring, field
or semi-field on the integers. As for itauto and firstorder,
they are solvers for intuitionistic propositional logic and first
order logic respectively, and, although extensible, they can’t
solve our goals to the best of our attempts.

Notably, micromega provides a set of tactics for arithmetic,
one of which can deal with some instances of Euclidean
division. In fact, a translation of (2) to ssrint can be au-
tomatically solved when using mczify [55], an extension
of micromega designed to work with MathComp numbers.
However, it can’t yet be solved in the realm of binary or
primitive integers. This is likely not a fundamental but a
practical shortcoming that could be bridged with some work.
Nonetheless, our tactics solve any kind of decidable goals
on primitive integers, not only arithmetical expressions, and
thus the scope is significantly different from micromega’s.
Lastly, interval solves interval arithmetic goals on real

numbers. It does not seem like it can solve a translation of
our arithmetical expressions in particular. Even if it could,
it would introduce a significant amount of overhead and
unnecessary axioms due to the detour through the (classical)
reals.

8 Contributions and Conclusion
We believe that the development of a formalized time library
implementing UTC conversions and operations satisfies an
existing need in the panorama of software dealing with time.
More importantly, its formal verification led to a number of

problems, some of which have yielded general-purpose solu-
tions, while others may be more specific but still inspiring
for analogous situations.
The first general-purpose development, FV Prim63 to

MathComp, provides a translation between proof-oriented
types and operations from MathComp (the ssrnat and the
ssrint libraries), and computation-oriented, extraction-
friendly types and operations from the Coq Standard Library
(the Uint63 and Sint63 libraries). We believe that the world
of formal verification of software needs powerful, expres-
sive libraries like MathComp for the specification side, and
extraction-friendly libraries for the implementation side [8].
FV Prim63 to MathComp fills the gap between them.
As direct consequences of this work, it is worth noting

that this project catalyzed the addition of signed primitive
integers (Sint63) to Coq. The unsigned version was already
available, but when we needed the signed version as well,
one of the authors teamed up with the Coq developers to
make it happen [4]. Furthermore, we opened a number of
minor issues in the Coq bug tracker and helped fix some of
them. The improvements live on in the Coq versions since
released.
Another general-purpose by-product has been the devel-

opment of FV Check Range, which provides a set of tac-
tics to automatically solve decidable statements with up to
three variables bounded by a specific primitive integer range.
These tactics have reduced our development time noticeably,
and we hope they serve the same purpose for other teams.
Future work includes extending this tool to work with an
arbitrary number of variables.
Regarding extraction, we have presented a methodology

to minimize possible bugs (crucial before verified extraction
for Coq is completed) and obtain clean and simple extracted
code. This methodology could serve as a first model of good-
practice for other projects.

Finally, we have developed a non-trivial formalized library
that is still simple enough to be an accessible example and
roadmap to other libraries. In particular, we have dealt with a
number of typical things such as subtyping, partial functions,
algorithm and type refinements, extraction, and interface
creation.
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