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Lecture XXII

Thew-rule.

Recall that Godel's theorem gives us a universally quantified statement (x)A(x) all of whose
instances are provable but which is not itself provable. Thus, while intuitively it might seem
like (X)A(X) follows from A(QQ), A(0"), ..., in fact, while all of the latter are provable, the

former is not provable. However, it would be provable if we added to our formal system the
following rule, known as therrule: from A(0), A(0'), ... to infer (x)A(x). In fact, this was
Hilbert's suggestion when he first heard about Godel's result.

Thew-rule can't actually be applied in practice, since it has infinitely many premises and
S0 a proof using the-rule would be infinitely long. Moreover, even if we can prove each
of the instances of (x)A(x), we may not be in a position to know that they are all provable.
For example, consider Goldbach's conjecture. Supposing that it is in fact true, we can easily
prove each of its instances; nonetheless, we are not now in a position to know that all of its
instances are provable, since we are not now in a position to prove that the statement itself is
true.

Nonetheless, we can consider formal systems which contaimrtile, even if we
cannot actually use such systems. If we addothde to an ordinary first-order deductive
system (Q, for example), then not only will there be no true but unprdvalskatements:
all true statements will be provable. To see this, suppose we start out with a system which
proves all true sentences of Lim, and which is such that every sentence of the language of
arithmetic is provably equivalent ta&g or I, sentence, for some n. If we add éreule to
such a system, then we will be able to prove every2ifwe I, sentence, and therefore
every true sentence whatsoever. We show this by induction on n. (For the sake of the
proof, we define a formula to be bdipandly if it is a formula of Lim.) We know it
holds for n = 0, because by hypothesis all true sentences of Lim are provable. Suppose it
holds for n, and let A be 3,1 formula. Then A isl(X)B(x) for somel, formula B(x). If
A is true, then BI(M)) is true for some m, so by the inductive hypothes®¥BY is
provable in the system, so A is also provable. Now let Alidg.aformula. Then A is
(X)B(x) for some>,, formula B(x). If A is true, then B{™) is true for all m, so by the
inductive hypothesis, B(M) is provable for all m. Now we apply therule: from the
sentences By, B(0'), ..., we can infer the sentence (xX)B(x), i.e. the sentence A, so Ais
provable.

So as long as we stay within the first-order language of arithmetic, we can get around
the Godel theorem by allowing our formal systems to includexthde. However, if we
consider richer languages (e.g. languages with quantifiers over sets of numbers, or with
extra predicates), we will not necessarily be able to get around the Gédel result in this way.
In fact, there are languages richer than the first-order language of arithmetic such that, even
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when we allow formal systems to containuarule, we get a Godel-type result. This was

first discovered by Rosser, but it was not until much later, when extensions of the
arithmetical hierarchy were being studied in the 50's, that his ideas were taken up again.

The Analvtical Hierarchy.

We have already seen how to enrich the language of arithmetic by adding extra predicates
and function symbols. We can also treat these new symbadsialsles and even quantify

over them. The resulting formulae will then have two types of variables: one type for
numbers and one type for sets (or functions); if a formula has n number variables and k set
variables, then it defines an n+k-place relation between numbers and sets, in which the first
n places are occupied by numbers and the remaining places are occupied by sets. Similarly,
if there are k function variables, then the formula defines an n+k-place relation between
numbers and functions. (The formula f(x) =y, for example, defines the 3-place relation
{<x,y, > x,yONand f:N - N and f(x) = y}.) When the variables are function

variables, their values are alwagtal functions.

We could get by with only unary predicates, reducing functions and other predicates to
unary predicates via standard methods. We could also use only unary function symbols.
That is, we could rewrite f¢x..., %) as f([x, ..., %), and replace sets by their characteristic
functions. In principle it doesn't matter what we do, but it will turn out to be convenient to
require all the new variables to be unary function variables, so we shall do so. We use lower
case Greek letters for function variables.

In the case ofJ formulae, a version of the monotonicity and finiteness theorems hold.
That is, if A(x, ..., %, 01, ...,0k) IS azgformula, then <my ..., m, fy, ..., &> satisfies it iff
there are finite initial segmentg s.., & of fy, ..., &, such that <my ..., m,, s, ..., &> satisfies
it. (Unary functions oMN can be seen as infinite sequences of numbers; an initial segment
of a function f is then a sequence <f(0), ..., f(x)> for some x.) Actually, this way of putting
it isn't quite correct, because we require the values of the variables to be total functions, so
we must restate it as follows. Let A* be the result of replagi(g =y by (2)(Seql(s Xx)

Ox < zO[x, y] Os) wherever it occurs in A. (If function variables are embedded in A, we
iterate this process.) Then gm., m, fq, ..., k> satisfies A iff for some finite initial
segmentsss..., & of fy, ..., k, respectively, <m ..., N}, ay, ..., 0> satisfies A*,

Now let us consider formulae which may contain quantifiers over functions; a relation
between natural numbers and functions defined by such a formula isaredlgtical In
particular, a set of numbers defined by such a formula is called analytical.

A Z% formula is a formula that consists of an alternating string of function quantifiers of
length n, beginning with an existential quantifier, followed by a single number quantifier of
the opposite type from the last variable quantifier in the string, followed by a formula of
Lim. The definition of I"IE;' Is the same except that we require the first quantifier to be
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universal. Thus, for example, the formug(([B )(x) a(x) = B(x) is aI‘I%formuIa. A
relation isz} or M} if it is defined by &} or M3 formula, respectively; a relationAs if it is
bothz} andrl. The hierarchy of’ andn} sets is called thenalytical hierarchy This
hierarchy was first studied by Kleene, who invented its name.

In general, & or MM formula is an alternating string of type-m quantifiers of length n
followed by a formula containing only quantifiers of type < m. Quantifiers over numbers
are type-0, quantifiers over functionsinsets of numbers, etc., are of type 1, quantifiers
over sets of sets of numbers are of type 2, etc.

The analytical relations are not to be confused witlatiadyticrelations, i.e. thé%
relations. When Kleene first studied the analytical hierarchy, a certain class of functions
had already been studied and were called "analytic"; it was only discovered later that these
functions are precisely tlﬁ functions. To avoid conflicting notations, the term
"analytical" was chosen for the more inclusive class. Nowadays, in order to avoid
confusion, the termzi" is generally used instead of "analytic".

Normal Form Theorems.

An arithmetical formula is a formula that does not contain any quantifiers over functions
(though it may contain free function variables). We would like to show that every formula

is equivalent to somE% or I'I% formula (for some n), and in particular that every arithmetical
formula is equivalent to son¥ formula and to som@? formula. At this point it should

be far from obvious that this is the case, since a formula can have several number
guantifiers, and 5,% or I'I%formula is only allowed to have a single number quantifier, and
that of the opposite type from the last function quantifier. In this section we shall show how
to find aZrl, or I‘Irl, equivalent for any formula of the language of arithmetic.

Clearly, any formula can be put into prenex form. (We consider a formula to be in
prenex form if it consists of a string of unbounded quantifiers followed by a formula of
Lim.) However, the initial string of quantifiers that results may not alternate, and it may also
include number quantifiers. So to put the formula in the desired form, we must move the
number quantifiers to the end of the string, collapse them to a single quantifier of the
opposite type from the last function quantifier, and make the string of function quantifiers
alternate.

First, let us work on moving the number quantifiers to the end. To do this, it suffices to
show that any formula of the form (Qx)¢QA is equivalent to a formula (Q)(Qx)A*,
where Q and Q' are quantifiers and A differs from A* only in the part that is in Lim: if we
have this result, then we can apply it repeatedly to any prenex formula to produce an
equivalent prenex formula with all the number quantifiers at the end. This is easy to show
when Q = Q": [(X)(Id )A is always equivalent taq )(CX)A, and (X)@)A is always
equivalent toq)(x)A. So the only difficult case is when£X)'.
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Consider a formula of the form ()}()A. This is true just in case for every number x
there is a function, such that A(xgpy) holds. Lettingd(X) = ay, this implies that there is
a function® such that for all x, A(xp(x)) holds; conversely, if such @mexists, then
obviously (x)(d )A(x, a) holds. @ is a higher-order function, and the quantifiers in our
formulae only range over functions frawito N, so we cannot rewrite (X@( )A as
(D )(X)A(x, P(x)). However, there is a way to get around this. Supfasaps numbers
onto functions; then lagtbe the function fronN to N such thay([x, y]) = (P(x))(y). Let
A*(x, y) be the result of replacing all occurrences @y in A by y([X, t]), for any term t;
clearly, A and A* differ only in the part that is in Lim. Itis easy to see that Aj{olds
iff A(x, ®(x)) holds. Therefore, (X)X )A holds iff there is & such that for all x, A(x,
®(x)) holds, iff there is & such that for all x, A*(xy) holds, iff {)(Cx)A*(x, y) holds. So
we have the desired result in this case.

There is only one remaining case, namely the case of formulae of the f)(a)A(x,
a). But (X)(a)A(X, a) is equivalent to ~(X) )~A(X, a), which, as we have just seen, is
equivalent to ~{ )(x)~A*(x, g), which is equivalent toyf((X)A*(X, y). So we have proved
the following

Theorem: Any formula is equivalent to a prenex formula in which all the unbounded
number quantifiers occur at the end.

Notice that, in moving from (X )A to ([P )(X)A(X, (X)), we have assumed the axiom of
choice: if the axiom of choice fails, then even though for every x thereisach that
A(x, a) holds, there may be no single function which takes x to an apprapriate

The initial string of function quantifiers may not yet alternate. However, using the
pairing function, we can collapse adjacent quantifiers of the same type into a single
guantifier, and by repeating this process, we can make the initial string alternate. That is, for
any formula A, B), let A*(y) be a formula that differs from A only in the Lim part, and
such that Aq, ) is equivalent to A*@, B]) for all a, B. (Such an A* is easy to find.)
Then (@ )(IB )A(q, B) is equivalent tol{§ )A*(y), and () (B)A(a, B) is equivalent to
(YA*(y). (Here we are assuming that our pairing function is onto.) Thus, we have the
following

Theorem: Any formula is equivalent to a prenex formula consisting of an alternating string
of function quantifiers followed by a first-order formula.

To get the desired result, we must show how to collapse the number quantifiers into a
single quantifier. We shall do this by proving that any first-order formula is equivalent to
both az} and a1} formula. Once we have done this, we can prove our main result as
follows. Let A be any formula, and take any prenex equivalent with all the function
guantifiers in front. Suppose the last function quantifier is existential, and let B be the first-
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order part of the formula. Then A is equivalent to a formutaJQ(d ,)B. Now let

(o h+)(X)C be aZ% equivalent of B; A is equivalent to (Q)...(d ) ([d 1+1)(X)C. We
can collapse the adjacent quantifieds{) and (d +1); thus A is equivalent to
(Qay)...(d y)(X)D, with D in Lim, i.e. A is equivalent toa}formula. If the last function
quantifier is universal we argue similarly, this time usim'qj@quivalent of B.

Theorem: Every first-order formula is equivalent to botBjzand a1} formula.

Proof. Let A be any first-order formula. We know already that we can take A to be either
Zg or I'Iﬁ, for some n. By adding vacuous quantifiers if necessary, we can assume that A is
N? for some n and that n is even. Thus, A is equivalent to a formula

(XD (Oy1)...(%m)(Cym)B with B in Lim. Now any formula (x){y)C(x, y) is equivalent to

(@ )(X)C(x, a(x)), as we can see using the same sort of argument we used before. (If
(@ )(X)C(x, a(x)) holds, then obviously (X))C(x, y) holds; conversely, if (Q¥)C(X, y)
holds, then[@ )(X)C(x, a(x)) holds, lettingx(x) = the least y such that C(x, y) holds.)
Iterating this, and moving the number quantifiers to the end, we see that A is equivalent to
(G 9)...(A m)(Xp)...(xm)B" for B'in Lim. We can collapse the existential function
guantifiers, and we can also collapse the universal number quantifiers using a bounding
trick. The result i€}, so A is equivalent to & formula.

To see that A is also equivalent tBlhformula, notice that the foregoing argument
shows that the formula ~A is equivalent to S(ii'n&)rmula (@ )(x)B, and so A itself is
equivalent to théa‘l% formula @)(CX)~B.

By the foregoing remarks, we finally have our main result.

Theorem: Every formula is equivalent to sorfié or 2 formula, for some n. Moreover, if
A is a formula consisting of an alternating string of quantifiers of length n, the first
guantifier of which is existential (universal), followed by a first order formula, then A is
equivalent to &2 (M3) formula.

(The trick of replacing (X)dy)C(x, y) by (@ )(X)C(x, a(x)) is due to Skolem. Notice
that, in contrast to the previous case, we have not assumed the axiom of choice, since we
defineda(x) to be the least y such that C(x, y). We were able to do this because we know
that our domain (viaN) can be well-ordered. Skolem's trick can be applied to any domain
that can be well-ordered; however, if the axiom of choice fails, then there will be domains
that cannot be well-ordered.)

As with the arithmetical hierarchy, we can definel#velof an analytical relation to be
the least inclusiva:, M}, or Al of which it is an element. The above discussion gives us
ways of estimating the level of a given analytical relation.

All arithmetical relations arAl, as we have seen. Moreover, if A Eidormula, then
(@ )A is equivalent to i%formula since we can collapdd () with A's initial quantifier;
similarly, if A is arl} formula, thend)A is equivalent to & formula. In short, th&?} and
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N2 relations are closed under existential and universal functional quantification, respectively.
Similarly, if Ais Z& then so are both (x)A andi)A, and the same is true if Alﬂﬁ. This

is because, as we have seen, we can always move number quantifiers inwards without
affecting the variable quantifiers.

It is also not hard to see that if A and B Bfdor M?), then so are A1B and ALIB.

We can show this by induction on n. Sirifée= I'I(l) = {arithmetical relations}, this clearly
holds for n = 0. Suppose it holds for n. If A and BZﬂm_, then they arelg )C and

(B )D for I’I%formula C and D. Then AIB and ALIB are equivalent taq )([p )(C OID)
and (@ )([B )(C O D), respectively, which alﬁ}ﬂ, by the inductive hypothesis and
collapsing the quantifiersd ) and (B ). If Aand B ard‘l,%ﬂ, we argue similarly.

Thus, the situation is similar to that of the arithmetical hierarchy, except that function
guantifiers and unbounded number quantifiers play the role here that bounded and
unbounded number quantifiers play in the arithmetical case. Using a similar argument to
the one we gave there, we can see that if a relation is enumeration reducibleX) some
(resp.n}) relations, then it i&} (resp.Ml). It follows immediately that anything r.e. in a
Al relation is itselzl: a fortiori, anything recursive in At relation isA?.

Exercise

1. Recall that A and B arecursively isomorphi€A = B) iff there is a 1-1 total recursive
function@ whose range i, and such that B ={x): x [0 A}. Show that for all A and B,

A =B iff A =1 B. The following sketches a method of proof. IEA, then A=, B follows
easily, so suppose & B. Let@andy be 1-1 recursive functions such thai A iff ¢(x)

0 B and xO B iff Y(x) O A, all x. Define, a sequence, &, ... and a sequence, I, ..., as
follows. Supposesa..., g and R, ..., b have been defined (where possibly n =0). Ifnis
even, then leta, be the least number distinct from a., g, and let ;1 be such thata;

O A iff b1 O B and B4q is distinct from all of b, ..., k. If nis odd, do the same thing in
reverse (i.e. letfa; be the least number distinct from b., b, etc.). Moreover, do this in
such a way that the functignsuch thak(a,) = Iy, for all n[0 N is recursive. Conclude that
X is a 1-1 total recursive function whose rangs,iand such that for all x,X A iff x(x) O

B, and therefore that AB. Hint: Informally, the problem reduces to finding an
appropriate p.1 effectivelyfrom a, ..., &, a+1andhy, ..., I, (or a+1 from by, ..., b+1 and

ay, ..., & It nis odd). Ifgea,) O{by, ..., B}, then we can puth; = @a,). However, we
may havep(a,) =y for some i =1, ..., n; show how to get around this.

A recursive isomorphism type a=-equivalence class. Conclude that 1-degrees are
therefore recursive isomorphism types, and that there is a 1-degree (which is also an m-
degree and a recursive isomorphism type) which consists of the creative sets.

Comment: Dekker proposed that the notions studied by recursion theory should all be
invariant under recursive isomorphism. While all the notions studied in this course are
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invariant under recursive isomorphism, there is at least one notion, thatmaicaableset,
which is not so invariant and which has been studied by recursion theorists. (Offhand, |
don't know whether this notion was proved to be not recursively invariant before Dekker's
proposal or only afterwards.)
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Lecture XXIII

RelativeX's and1's.

The absolute notiorig), MY, 21, andn! can be relativized, just as we relativized the notions
of recursiveness and recursive enumerability earlier. Let us say that Eﬁéatthe unary
functionsay, ...,an if it is definable by zi,?formula of the language of arithmetic with extra
function symbols for the functions, ...,a, and similarly for the notiong°, =%, andn}
inay, ...,a,. So in particular, a relation between numbers! is B (A? in B) just in case it

is r.e. inf (recursive irf).

Another way of looking at this is as follows. Consider an arbitrary formula A(os,

Y1, -es Y, 01, .., 0p, B1, ..., Bg) Of the language of arithmetic (possibly with function
guantifiers), where the x's and y's are free number variables amg dred3's are free

function variables. The formula A defines an m+n+p+qg-place relation, with m+n places for
numbers and p+q places for functions. (Of course, any of m, n, p, and g may be 0.) Now
suppose we regard the y's g#'glas havindixedvalues (the numberg k.., k, and the

functions {, ..., ;, say). Relative to these fixed values, A defines an n+p-place relation. In
the case of the fixed number values, we can get the same effect by considering the formula
A* in which each variable;ys replaced by the numeiki); however, we cannot treat
functions in the same way, since we do not have a term in the language for each function.
(In fact, as long as we only have countably many terms in the language, we cannot have a
term for each function, since there are uncountably many functions.) Ignoring the y's and
k's, then, if the relation defined by A (with ti's treated as variables)ﬂ,% then the relation
defined by A with the values of tifiés fixed will bexCin fy, ..., f, (and similarly for10, =1
andrl).

Equivalently, an n+p-place relation Rﬁ%(or I'Iﬁ, etc.) inBy, ..., Bq iff there is an
n+p+g-placez? (or MY, etc.) relation R' such that R = {gX.., %, 01, ...,0p> <X, ..., %,
ay, ...,0p, By, ....Be> U R} Thus, we can characterize the relative notions directly in terms
of the corresponding absolute notions.

As with our other relative notions, we can reduce the general case to the case q = 1, this
time using a pairing function danctions There are several pairing functions that we could
use. For example, we could talgs,[3,] to be the functiofs such thaf(m) = [B1(m),

B2(m)]; alternatively, we could take it to be the functibsuch thaff(2n) =p,(n) and

B(2n+1) =Bx(n) for all n. (The latter has the advantage of beingrdopairing function.)

It is easy to verify that this successfully reduces the general case to the case of a single
function.

We say that a relation R$ iff there is a functiord such that R ii,? in 3. We define
PO st andP! similarly, andD is defined in the usual way. (So boldface letters are used for
the notions with function parameters, lightface letters for the notions without function
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parameters.) This notion is not very interesting if R is a relation between numbers, since in
that case R WilalwaysbeDf (sinceRis aIwayAf in its characteristic function). However,
this is not the case if some of R's places are occupied by functions (i.e. if p > 0).

Let's look a@ inthecasen=0and p =1 (i.e. the caﬁséts of functions). A set
S isS{ iff there is a 2-plac& relation R and a functiop such that S fa: <a, B> 0 R}.
We can also characterize Iﬁ%sets topologicallyBaire spaces the topological space
whose points are total functions frdvnto N and whose open sets are those sets S such that
for every functiorpin S, there is a finite initial segment sgduch that every function
extending s is also in S. To verify that this is indeed a topological space, we must show that
if two sets satisfy our characterization of the open sets then their intersection does as well,
and that if F is a family of sets satisfying that characterizationfireslso satisfies it.
Alternatively, we can characterize Baire space as follows. For any finite sequences, let O
{@: @is a total function which extends s}; then the sets of the foyford a basis for
Baire space.

Theorem: TheS‘{ sets are precisely the open sets of Baire space.

Proof: First, suppose S @ Then there is a 2-pla(2§ relation R between functions and
a particular functiof8 such that S =d: <a, B> [OR}. Suppose [ S, i.e<a, > 0OR.

By the monotonicity and finiteness propertiegpfelations, there is an initial segment s of
a such thaky, 3> [R for ally extending s, and therefoye 1S for all sucly. Sincea

was arbitrary, it follows that S is open.

Next, suppose S is open. Let F =¢s] S for alla extending s}. Then S =of a
extends s for somel$F}. Since F is a collection of finite sequences, we can let G {n
N: n codes some element of F}, andyi&le G's characteristic function. Then S‘l?s?n 2
and thereforézﬁ’, since we can define S by tﬁ%formula (B)y(s) =0'OsUa). (Here s
[ abbreviates the formula (n < s)(m < s)([n,M$ £a(n) = m).)

Baire space is also homeomorphic to the irrational numbers under the usual topology. The
onto pairing function mentioned earlier is a homeomorphism between Baire space and its
direct product with itself; since Baire space is homeomorphic to the irrationals, this shows
that the irrational plane is homeomorphic to the irrational line. Thus, the situation is very
different from the case of the reals.

We can set up a similar topology on sets of natural numbers by identifying these sets
with their characteristic functions; if we restrict Baire space to functions into {0, 1}, the
result is a space which is homeomorphic to the Cantor set. (That is, the set of all reals in the
interval [0, 1] whose base-3 expansions contain no 1's.) Itis also identical to the®space
where2 is the space {0, 1} with the discrete topology.

Notice that since théf sets are precisely the open setsnﬁeets are precisely the
clopen sets (i.e. sets that are both closed and open). This is another difference between the
reals and the rationals: whereas the only clopen subdetareR itself and @, clopen sets
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of irrationals exist in great abundance.

Another Normal Form Theorem.

Given a functioru, let us definéi(n) to be some numerical code for the sequen¢@)<...,

a(n-1)>. It doesn't matter what particular code we choose; however, for definiteness, let us

say thati(n) = 200+1.3a(1)+1.  .p,a(-1)+1 where in generalds the nth prime. (This is

essentially the coding scheme Godel used.) As Quine has remarked, coding systems are

not like matrimony, and we are free to switch back and forth between them as we please.
We now prove another normal form theorem, due to Kleene.

Theorem: If S is an n+p-placg? relation, then there is an n+p-place recursive relation R
such that S = {<x ..., %, 01, ...,0p>: ((Z)R(Xe, ..., %, T1(2), -...0n(2))}.

Proof: We shall prove the theorem for the case n = 0 and p = 1; the other cases are similar.
Let S be &9 set of functions. For some relatioruil, /) definable in Lim, S =4:

(Oy)L(a, y)}. By monotonicity and finitenessg, [ S iff some initial segment af is in S,

so S = fi: () ([I)L(T(2), y)}- Infact, S = fi: ((2)(y < 2)L@(2), )} if ()L <

z)L(T(2), y) then certainlyl{z)(Cy)L(T(2), y), and if LE(K), y), then let z > k, y; I(2), y)

by monotonicity, sol{z)(Ly < z)L@(z), y). Let R'(z, s¥ (y < z)L(s, z): R'is arecursive
relation, and S =d: ((z)R'(z,0(z))}. This is almost what we want. Let R&sR'(Ih(s), s),

where Ih(s) is the length of the sequence s; R is still recursive, and:§E{R@(2))}-

This gives us a new normal form theoremfigmelations.

Theorem: Every n+p-p|ac€|%relation IS {<X, ooy 0 01y o, 0> BY(E)R(K, -y X0, T
)1(2), ...,Gp(z),B(z))} for some recursive relation R.

Proof: Let S be any n+p-plad@! relation. Then S = {<x ..., %, a1, 0>l (B)T(Xy, -
Xp, A1, ...,0p, B)} for some n+p+1-p|ac§2 relation T. By what we just proved, there is a
recursive relation R such that T(x.., %, Ay, ...,0p, B) iff ((Z)R(X, ..., %, T1(2), ...,0p(2),
B(2)); it follows that S is {<X, ..., %, 01, ...,0p> BN EZ)RKe, ..\ X T1(2), -..,0p(2), B

)(@2)}-

We can prove similar normal form theorems for the aifjerandrls. The main thing to
note is that we have, so to speak, reduced the relation S, which may fomoh@ns to R, a
recursive relation amongumbers

There is a related result about the vari8gsandP's.
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Theorem: An n+p-place relation S @ iff for somef3 and some recursive R, S = {gX..,
Xp, 01, ..., 0p>1 ((Z)R(X, -, X0, T1(2), ...,Cip(z),[_B(z))}, iff for some n+p-place relation R
onN (not necessarily recursive), S = {X.., %, a1, ...,0p>: (Z)R(X, ..., %, T1(2), ...,T
)p(2))}-

Proof: The equivalence of the first two conditions is immediate. Suppose S = {<*,
ay, ...,0p> ((2)R(X, ..., %, T1(2), ...,0p(2), 0(2))}, and let R’ be the relation {gx..., %, @

)1(2), -..,0p(2)>: zO N and R(x, ..., %, T1(2), ...,ﬁp(z),[_B(z))}; then S ={<x, ..., %, 1, ...,
ap>: ()R, ..., %, T1(2), ...,0p(2))}. Conversely, suppose S = {gX.., %, g, ...,0p>
(C2)R(X, ..., %, T1(2), ...,0p(2))} for some relation R oN. Let[ be the characteristic
function of the set {[x, ..., %, Y1, --., Yol: R(X1, .- %, Y1, -, )} Then S ={<x, ..., %,
01, oy 0p> () B(X1, vy X, T2(2), -, Tp(2)]) = 1}, 50 S iEY in B and is therefors).

Similar results hold for the oth&s andP's.

The Hyperarithmetical Hierarchy.

Consider the hierarchy 0, 0', 0", .(WQ... of degrees. As we have seen, a set is arithmetical
just in case it is recursive in one of these degrees. We also know that not all sets are
arithmetical (e.g. the set of true sentences of the language of arithmetic), so there are sets
which are not recursive in any of these degrees; therefore, there is a degree d which is not
0 for any n. In fact, there are degrees d such that @ for all n: it is not too hard to

see that the degree of the set of true sentences is such a degree. This suggests that we
should be able to extend the hierarchy 0, 0', 0"(n),., Qinto the transfinite in some way.

In particular, it suggests that there ought to be a natural next degree, which we can call
0@), beyond all of the degree$)0 But what is 09? A natural answer would be th&p)ds
the least upper bound of the degrees 0, 0', 0", .... However, by a result due to Spector, that
collection of degrees does not have a least upper bound; so the most natural characterization
of 0@ will not work.

However, the situation is not quite as bad as it first appears. While there is no least
degree beyond 0, 0, 0", ..., theya least degree a such that a = d" forsome d > 0, 0, ....
(This result is due to Enderton, Putnam and Sacks.) We can defitelte the degree a.

In fact, 0@ is the degree of the set of true sentences of the language of arithmetic.

We can use this idea to extend the hierarchy still further. In general, we say that a set is
hyperarithmetical if it is recursive i for some ordinalr for which 0% is defined. We
can define the degree&®, 0w+3, etc. by »*) = 0w, Ow+a = Qw+Y' etc.; in general, if
0@ has been defined, we can defifed to be @)'. We can define the next degree
beyond all these, namel{#09, similarly to the way we defined®:. there is a least degree
a such that a = d" for some d ®)Q0@+3), ..., and we can definé@4 to be that degree a.

In fact, we can use this technique to defiffe for quite an extensive class of ordinals
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(known as theecursive ordinalg

The resulting extended hierarchy is calledrieerarithmetical hierarchy The
hyperarithmetical hierarchy was first studied by Martin Davis in his Ph.D. thesis at
Princeton. It was also invented independently by Mostowski and by Kleene (who coined
the expression "hyperarithmetical”). Most of the basic theorems about the hierarchy were
proved by Kleene and Spector.

Another approach is to define thet@@), for suitable a, and then IefDbe the degree
of @), On this approach, we can le®zbe {[m, n]: mO &n}; the degree of @) is
then @») as we defined it before. Obviously, this can be carried further into the transfinite.
For example, we could let@1) = &)’ whenever @) is defined, and we could define
@(w+w) for example, to be the set {{m, n]: @«*n)}. To define @»*), we can do
essentially the same thing, except this time it's a bit trickier: @&t @{[m, n]: mO
@@n)}, We could continue in this manner for quite some time, thinking of new definitions
of @) for limit ordinalsa as we need them, but we would like to give a uniform definition
of &) for all of the appropriata. We do so as follows.

An ordinal is said to beecursiveif it is the order type of some recursive well-ordering
of N. For examplep is recursive because it is the order type of <0, 1, 2, ...>pa&ods
recursive because it is the order type of <0, 2, 4, ..., 1, 3, 5, ...>. The recursive ordinals go up
quite far. Of course, not every ordinal is recursive, since every recursive ordinal is countable
but not every ordinal is countable. In fact, not all countable ordinals are recursive: since
there are only countable many recursive well-orderings, there are only countably many
recursive ordinals, but there are uncountably many countable ordinals. Once we have fixed
a recursive well-ordering R, individual natural numbers code the ordinals less than the order
type of R: specifically, we let jpflenote the order type of the set {m: m R n} ordered by
R. (So m R niff |ny < |nk.)

Let S be an arbitrary recursive set, and let R be an arbitrary recursive well-ordering. We
define H, as follows, for all n. If |g=0, then H=S. If |[ng =a+1 and |mg = q, then
Hn = (Hy)'. Finally, if [nk is a limit ordinal, let | = {[x, y]: x OHyand x Ry}. Asetis
said to beéhyperarithmeticalf it is recursive in H, for some n and some choice of R and S.
(This definition is quite close to the definitions of Kleene and Spector.)

Now it might seem as though,ldepends strongly on the choice of S and of R.
However, this is not really the case. Suppose R and R' are recursive well-orderings of the
same order type, and S, S' are any two recursive sets; then whengwenknHn, and
H,' are of the same Turing degree (whefeis$iH, defined in terms of R' and S' rather than
R and S). (The proof of this is due to Spector. The proof, by the way, is a nice illustration
of the use of the recursion theorem in the study of recursive ordinals.) Thus, we may define
0@ to be the degree ofjHwherea = |nk, for any recursive ordinal.

If R is allowed to be arithmetical, or even hyperarithmetical, then the order type of R is
still a recursive ordinal; that is, while R may not itself be recursive, there is a recursive well-
ordering R' which is isomorphic to R. Moreover, if R and R' are allowed to be arithmetical,
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then H, and By are still of the same Turing degree, so the hierarchy is unaffected. If R is
allowed to be hyperarithmetical, then the same sets get into the hierarchy, but the hierarchy
may go up at a different rate.
The characterization of the hyperarithmetical sets that we have just givesriant, in
that while it involves S and R, which are extraneous to the hierarchy itself, the same
hierarchy is given by any choice of S and R. A characterization in terms of double jumps
(sketched at the beginning of this section), on the other hanttjnsic in the sense that
such extraneous entities are not involved at all. This is certainly a virtue of the latter
approach, although it relies on a rather more advanced result than the former approach,
namely that for suitable sequencesa < ... of degrees there is a least d" such that;d > a
Another characterization of the hyperarithmetical sets is as follows. Consider those
sequences S a a recursive ordinal> such tha iS recursive, &1 = &' for alla, and
whena is a limit ordinal, § is an upper bound of S 3 < a}. (It doesn't matter which
upper bound we choose.) Then a set will be hyperarithmetical just in caserfgguch
sequence, it is recursive in some set in the sequence. There are many other equivalent
characterizations of the hyperarithmetical sets.
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Lecture XXIV

Hyperarithmetical and? sets.

An important theorem about the hyperarithmetical sets, due to Kleene, is that thepsiare all
An even more important theorem, also due to Kleene (and whose proof is more difficult), is
the converse. Thus, we have yet another characterization of the hyperarithmetical sets, this
time in terms of the analytical hierarchy.

We shall prove the easier half of this theorem. In fact, we shall prove a somewhat
stronger result. Let us say that a functpe theunique solutiorof a formula A¢) if @
satisfies A¢) and is the only function that does so.

Theorem: If the characteristic function of a set S is the unique solution of an arithmetical
formula, then S &l

Proof: Let@be the characteristic function of S, and let)A§e an arithmetical formula of
which @ is the unique solution. Then S is defined by the formdla(A(a) Co (x) =0')

and also by the formulaxf(A(a) O a(x) =0'). Since both Aq) [ (x) =0' and A@) O

a(x) = 0" are arithmetical formulae, the two formulae that define S are equivaEnanal

I'I% formulae, respectively.

Notice that this argument goes through under the weaker assumptionothast a\ﬁ
formula.

Suppose S is hyperarithmetical; then there is a recursive well-ordering Buch that
S is recursive in kifor some n, where H= @ when | = 0, H, = Hyy' when |n| = |mjf+1,
and H, = {[x, y]: x O Hy and y R n} when |glis a limit ordinal. Letp be the characteristic
function of {{m, n]: mO Hy}. If Y is the unique solution to some arithmetical formula,
then that set iA%. It follows easily (by the reasoning of the last section) that eaﬁﬂ%,
so S is recursive in&; set and is therefore itséif. Therefore, we need only find an
arithmetical formula of whicly is the unique solution.

Since R is r.e., there is an arithmetical formula B(x, y) that defines R, and let k be the R-
least element of N. Define

Zero(n) 5. n =0K)
Succ(m, n) g. B(m, n)U (y)~(B(m, y)LIB(y, n))
Limit(n) =4¢. ~Zero(n)J ~(Cm)Succ(m, n).

These formulae hold just in cas&|n|0, |nk = |[mk+1, and |y is a limit ordinal,
respectively. Next, define
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Jump(m, np) =gr. (2)@([z, n]) =0'=  (C&)(EM)(z = [e, m]T (CB)[W(e, m, s
(K)((0ZK) O sOa(k, m) =0 O
(0(2K)+0' O s O a([k, m]) =0))]))

Let @ be a function into {0, 1} and let M and N be the setsgkx, m]) = 1} and {x: ¢([X,
n]) = 1}, respectively. With a little work, we can see that Jump(ig), Imolds iff N = M".
We are now ready to defined); let A() be the formula

([(a(x) =0 Lo (x) =07) O (a(x) =0" T (y)(th) x = [y, n) U
W)(N)(x =1[y, n]O
{Zero(n) O a(x) =00
Limit(n) O (a(x) =0' = (a(y) =0' OB(Kx(y), n))) O
(m)(Succ(m, nd Jump(m, na))}].

Now let us verify thatp is the unique solution of &{. First, we show thap satisfies
A(a). W is afunction into {0, 1} which only takes the value 1 on arguments that code pairs,
so the first line of the formula is satisfied. Let x = [y, n] be given. 43tf}, then H = @,
so y[ H, andy([y, n]) = 0, so the third line is satisfied. Ifgn$ a limit ordinal, then Ki=
{[z, w]: z O Hy and w R n} = {u:y(u) = 1 and K(u) R n}, so the fourth line holds.
Finally, if |nk = [mk+1, then H = H,,, so the last line holds as well.

Conversely, supposgsatisfies A@¢). Then Ranggf [1 {0, 1}, and@(x) = 0 when x is
a nonpair. Let G={y: @[y, n]) = 1} for all n; we will show by transfinite induction on
[nk that G, = H,, from which it follows thatp= . If |[nk = 0, theng([y, n]) = 0 for all y,

S0 G, = @ = H, If Ing = |mk+1, then Jump(m, i) holds and G= G; by the
inductive hypothesis, = Hn, SO G, = Hy' = Hy. Finally, if |nk is a limit ordinal, then
Gn={z, w]: @[z, w]) =1 and |w§ < |[nk} ={[z, w]: z O G, and |w4 < |nk} = (by the
inductive hypothesis) {[z, w]: ZI Hy, and |w4 < |nk} = H. This completes the proof.

The definition of A¢) is complicated, but the idea is simple. The sequengendH
N> is defined in terms of itself; specifically, eachibldefined in terms of various,or
Img < [nk. So we can define the functignin terms of itself in a similar way; if we do
things right, the result will be an arithmetical formulapyith  as its unique solution.

St andP? sets of functions are callguojective and theSi-P2 hierarchy is called the
projective hierarchy The study of the projective hierarchy and related notions is called
descriptive set theoryProjective sets were studied years before Kleene studied the
analytical hierarchy, and Suslin proved an analog of Kleene's resuﬂﬁthat
hyperarithmetical. (Specifically, he showed that the Borel sets are precisBﬁS/SdaB.) A
unified result, of which the results of Suslin and Kleene are special cases, is called the
Suslin-Kleene theorem

Kleene was originally unaware of this earlier work on projective sets. People then
noticed analogies between this work and that of Kleene; later on, it was seen that not only
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are the theories of projective sets and analytical sets analogous: in fact, they are really part
of the same theory. Kleene originally called the analytical sets "analytic"; unfortunately,
"analytic" was already a term of descriptive set theory foBifwts. To avoid confusion,
Kleene's term was replaced by "analytical”. Nowadays, to avoid confusion, most people say
"S}" instead of "analytic".

Borel Sets.

TheBorel setsare defined as follows: all open sets of Baire space are Borel; the
complement of a Borel set is Borel; and if;<8[ N> is any countable sequence of Borel
sets, theril,S, is also Borel. (It follows that S, is Borel, sincenyS, = --S.)

The Borel sets form a hierarchy, called Bwrel hierarchy defined as follows. The
first level consists of the open sets and the closed sets, that3stte and the? sets.

The next level consists of countable unions of closed sets and countable intersections of
open sets, or in other words, %andPg sets. (Countable unions of open sets are already
open, and countable intersections of closed sets are already closed.) We can sﬁthat the
sets are precisely the countable unions of closed sets, as follows. We know already that the
P? sets are precisely the closed sets. On the one hand, suppﬁg;etﬁeis Sis:

(X)(Y)R(X, v, a, B)} for some fixedB and somé‘l‘f relation R. For each n, le; S {a:

(yY)R(n, y,a, B)}; then S =0,S,, and each Sis P and therefore closed, so S is a countable
union of closed sets. Conversely, supposd 5Sq, where each 3s closed and therefore

P?. For each n, = {a: (y) (y) O X,} for some set % of numbers, by our normal form
theorem foP{. Let R be the relation {<x, n>:X X}; thena (11 S, iff (Ch)(y)R@(Y),

n), solS,is S5. So theS) sets are precisely the countable unions of closed sets, from
which it follows that thePg sets are precisely the countable intersections of open sets. In
general, th& sets are the countable union$ff sets and the? sets are the countable
intersections o8 ; sets, by the same argument.

The various®s andP®s do not exhaust the Borel hierarchy: we can find a countable
collection of sets which contains sets from arbitrarily high finite levels of the hierarchy, and
whose union does not occur in any of these finite levels. We therefore need another level
beyond these finite levels. Let us call aggif it is a countable union of sets, each of
which isSC for some n, an@? if it is a countable intersection of sets, each of whiél is
for some n. In general, for countable infinite ordinalse define a set to k& if it is the
union of a countable collection of sets, each of whitﬂg for someB < o, andP? if it is
the intersection of a countable collection of sets, each of wh@n‘dn: someB <a. It

turns out that new Borel sets appear at each level of this hierarchy. On the other hand, it is
easy to see that every Borel set appears eventually in the hierarchy. For suppose not: then
there is some countable family F of sets in the hierarchy suchfhiatnot in the

hierarchy. For eachSF, let rank(S) = the least ordiralsuch that $1 Pg. Then
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{rank(S): SO F} is a countable collection of countable ordinals, and it therefore has a
countable upper bourwd But thendS O .

Notice that there are two equivalent ways to characterize at least the finite levels of the
Borel hierarchy. One is purely topological: $fesets are the open sets, I.'?%sets are the
closed sets, th8) sets are countable unions of closed sets?3isets are countable
intersections of open sets, etc. This is the way the Borel hierarchy was originally conceived,
before analogies with recursion theory were noticed. The other is in terms of definability: a
set isS{ iff it is definable by & formula with a single function parameter, etc. $he
notation was borrowed from recursion theory; the original notation (still quite standard
outside of logic) was more baroque. Countable unions of closed sets were galled F
countable intersections of open sets were calip@diintable unions of £ were called
G5, €tc.

It is fairly easy to show that all Borel sets mie To prove this, it suffices to show that
all open sets aj, and thaDj is closed under complements and countable unions. That
D% is closed under complements is immediate from its definition. Suppose S is an open
set; then S isd: R(a, B)} for some fixedp and sometf relation R; we know already that
any>{ relation isA}, so S isD1. Finally, suppose {$ n 0 N} is a countable family ob}
sets. In particular, each B8 P%. Each Sis {a: (B)(IX)Rn(T(X), B(X))} for some relation
Rn,onN. Let R be the relation {<y, z, n>,8, 2)}; 0,5, = {a: ((N)B)(X)R@(X), B(X),

n))}. But we know already that tH#} relations are closed under number quantification, so
OnShis PL. The proof thafl,S, is St is similar.

Borel sets are analogous in a number of ways to the hyperarithmetical sets. In
particular, we can imitate the Borel hierarchy in the case of sets of numbers. It would not do
to have the family of sets be closed under countable unions, since then as long as every
singleton is included, every set whatsoever will be included. However, if we replace unions
with recursive unions, we can get around this difficulty. Specifically, we can set up a system
of notations for sets of numbers as follows. Let [0, m] code the set {m}; if n codes a set S,
let [1, n] code the set -S; finally, if every element qof igvalready the code of some set, let
[2, e] code the séf{S: S is coded by some element ofWWe might call the sets that
receive codes under this schemedfiiective Borel setend the hierarchy that they form the
effective Borel hierarchylt turns out that the effective Borel sets are precisely the
hyperarithmetical sets.

N1 Sets and Gédel's Theorem.

It turns out that there are close analogies betwedﬂitbets and the recursively

enumerable sets (and also betweem\reets and the recursive sets). For example,
consider the following extension of the notion of a computation procedure. We can
consider, if only as a mathematical abstraction, machines which are capable of performing
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infinitely many operations in a finite amount of time. (For example, such a machine might
take one second to perform the first operation, half a second to perform the second one, and
so on.) Such a machine will always be able to decm%saat, for such a set is of the form
{X: (Y)R(X, y)} for some recursive relation R, and so the machine can run through all the y's,
checking in each case whether R(x, y) holds, and then concluding that x is in the set or that
itisn't. Using similar reasoning, we can see that any arithmetical set can be decided by such
a machine. In fact, if the notion is made precise, it will turn out thaﬁ%tlaets are precisely
those sets that can be decided by such a machine, and figstts are those that can be
semi-computed by one.

Another way in which thél] sets are analogous to r.e. sets concerns representability in
formal systems. Specifically, if we consider formal systems wittothde, then it will turn
out that all the sets weakly representable in such systerﬁ%,amd conversely that any
N1 is weakly representable in such a system.

We could also characterize tﬁé sets via definability in a language: analogously to the

language RE, we could set up a language with conjunction, disjunction, unbounded number
guantifiers, and universal function quantifiers, in which precisely‘lﬁmts would be

definable.
As in the arithmetical hierarchy, we have the following theorem.

Enumeration Theorem: For all n > 0 and all n and p, there is an m+1+p-pﬂaﬂpe

relation that enumerates the m+p-p|ﬁkﬁ€relations, and similarly foi,%.

Proof: In what follows, we us€ o abbreviate % ..., %n, andﬁ to abbreviat;, ..., [Bp.

Let S be any m+p-plade? relation. S is {<x B>: (a)((2)R@A(2), X, P1(2), ..Bp(2))} for

some recursive relation R. Since Risr.e., Ref&some e, S =

<X, B>: (@)((2)W(e,a(2), %, B1(2), .Bp(2))}. So the relation {<e; xB>: (@)(C)W(e,

a(z), X, Pi(2), ...,Ep(z))} enumerates the m+p-pla5é relations. Moreover, that relation is

itself I‘I%, since it comes from an arithmetical relation by universal function quantification.
Just as we derived the general enumeration theorem for the arithmetical hierarchy from

the special case (fo we can derive the present theorem from the caﬁé. ofFor example,

consider the case of m+p-plaaé relations with n odd. Any such relation is?,<[§>:

(o) (@ )...(M n-1)S(X, [3 a)} for somel‘l% relation S (where naturally abbreviates,

...,0p-1). But then by the enumeration theoremﬁl%rrelations, this is {Zx[§>:

(a)([d 5)...(d h-1)R(e, %, E a)} for some e, where R isla% enumeration of the

m+p+(n-1)-placd\O(,,) relations. So the relation {<e, \O(, \O@, )>:

(@1)(@ 2)...(@ n-)R(e, % B, d)} is all enumeration of the m+p-pla€t relations. The

other three cases are treated similarly.

(A similar theorem, called thearameterization theorepholds forSt andP? relations;
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in that case, relations have functions rather than numbers as indices.)
We can use the enumeration theorem to prove the following.

Hierarchy Theorem: For all n,z} # M3,

Proof: Let R be a'lrl, enumeration of thEIrl,sets of numbers, and let D = {x: R(X, x)}.
Then D is clearly1}, so -D isZ}. But -D is noff1}, for if it were, we would have -D = {x:
R(e, x)} for some e, and sae-D iff R(e, e) iff ed D. So -DO - M.

So in particular, there is a setd % I'I%. This D is analogous to K; we may as well call it
KT,

Most of our earlier discussion of Godel's theorem can be duplicated in the present case.
(Of course, if a system has tterule, or in general ha's’.% inference rules, it may decide
every arithmetical statement. However, this is not to say that it decides every second-order
statement.) Just as we showed that any system with an r.e. set of axioms and r.e. rules has
an r.e. set of theorems, we want to show that the set of theorems generated by a finite set of
MNj rules isMi.

First, let us associate with each rule of inference with the relatior$<x follows by
the rule from premises in the set with characteristic funci}jpand say that a rule E} if
the corresponding relation is. Thus, threule is to be identified with the relation
{<(X)A(X), a>: a is the characteristic function of some set that contaiﬁ@]))(for all n}.
Letx be a recursive function such that for all formulae A(x), if m is the Gédel number of
(X)A(X), thenx(m, n) = the Godel number of B(); then thew-rule isMj, since the
corresponding relation is defined by the formulao(§)) < 0' O (n) a(x(x, n)) =0'. IfSis
a set of sentences, then we can get the effect of taking all of the sentences in S as axioms by
having the single rulom any set of premises to infer any sentence ifitfss rule
corresponds to the relation defined bydfy) <0' OOx O S, which isI'I% if Sis. Finally, if
Ry, ..., Ry are Brules, then the relation R = {<&>: Ry(X, a) ... OR(x, a)} is a i
relation, and a sentence is a theorem of the formal system consisting of the,rule&R
justin case it is a theorem of the single rule R. Thus, if we can show that the set of
theorems of a singlg] rule is itselff], it will follow that the set of theorems of a system
with an} set of axioms, a finite number @f rules, and thex-rule isMi.

Given arule R, leg) be the following operator on set$(S) = {x: R(x, S's
characteristic function)}. Lep be the corresponding operator on functionsx i the
characteristic function of a set S, thgn) = the characteristic function giS) = the
characteristic function of {x: R(q)}. If R is a rule of inference in any reasonable sense,
theny will be monotonic, sincéy(S) = the set of sentences that follow via R from sentences
in S: if SO S' and A follows from some sentences in S, then A also obviously follows
from some sentences in S' as well. The set of theorems of R is the least fixed {point of
Recall that the least fixed point ¢fis the sen {S: Y(S)I S} = {x: (S)W(S)T SO x O
S)}. In terms of the operatqy, this set is {x: ¢)((Y)[(@(a))(y) =10a(y) =1] [0 isa
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characteristic functiofl a(x) = 1)}. Since @a))(y) = 1 iff R(x, a), this set is defined by
the formula @)([(Y)(R(x, a) O a(y) =0") O(y) a(y) < 0] O a(x) =0"). We must check
that this formula is indeed}. Since R ig1} and R(xa) occurs in the antecedent of a
conditional, the formula (y)(R(qa) O a(y) =0") is Z%. However, that formula itself occurs
in the antecedent of a conditional, so the formula [(y)(R(X] a(y) =0") O(y) a(y) <0']
Oa(x)=0"Is I'I%. Finally, when ¢) is added, the formula remaiﬁé. We therefore have
the following

Theorem: If a formal system ha31 set of axioms and a finite number®f rules
(possibly including theox-rule), then the set of theorems of the system is Iﬂs"lelf

The definition of "weakly represents" for such formal systems is the same as for
ordinary formal systems. Let S be a set of numbers which is weakly representable in some
such system. Then S ={n: @((‘)) is a theorem} for some formula A(x). Letbe a
recursive function such thg{n) = the Godel number of A(n)); theny reduces S 1-1to
the set of theorems of the system, and sd'§.isSo any set weakly representable in such
a system i13,

Conversely, we can find formal systems in the second-order language of arithmetic
which weakly represent alll tm;} sets, just as all the r.e. sets are weakly representable in Q.
In particular, ifl" is such a system, then the set of theorems of the systeml‘l}eiag
weakly representable in the system itself. We can use this fact to construct a sentence that
says "Gdodel heterological” is Gddel heterological’, and prove that the sentence is true but
unprovable if the system is consistent.

If I is a system all of whose theorems are true, then we can show diredilysthat
incomplete, by showing that the set of theorenisisfnot the set of true sentences. For if
it were, then the set of true sentences of the language Wo[lﬁjalmi therefore definable in
the language itself. But then by the usual argument satisfaction would also be definable,
which is impossible because the language has negation.

If I"is ﬂ%—complete (i.e. if every trulé% sentence is provable) and consistent, then we
can get a closer analog of Godel's theorem. Let S bBEhsst of numbers that is nb;

KM would do, for example. Then there iEia‘ormuIa A(x) that defines -S. Just as we did
in the original Godel theorem, we can prove that there are statements of the(iﬁ?)h A(
that are true but unprovable in the system.

Arithmetical Truth is\l,

We have proved that all hyperarithmetical setsﬁé;reince we know already that not alll
hyperarithmetical sets are arithmetical, it follows that therAjsets that are not
arithmetical. There is also a direct proof of this, due to Tarski. We know that the set of true
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arithmetical sentences is not arithmetical; we can use Tarski's famous definition of truth to
show that this set isf.

We showed that for a set to it is sufficient that its characteristic function be the
unique solution of some arithmetical formula (or eZ¢formula) A@). Recall the usual
inductive definition of truth:

o(m) = o(N) is true iff m = n;

A(o(m), o), o(P)) is true iff m + n = p;

m(o(m), o(n), o(P)) is true iff mn = p;

~A is true iff A is not true;

(A O B) is true iff either A is not true or B is true;
(X)A(X) is true iff for all n, AQ(N)) is true.

We can obtain A{) by writing out this definition in the language of arithmetic, replacing "x

is true" by ‘ti(x) = 1". From our previous work, we have arithmetical formulae Sent(x),

At(x) and TrAt(x) which define the set of sentences of the language of arithmetic, the set of
atomic sentences, and the set of true atomic sentences, respectively. We can therefore write
A(a) as follows:

O[a(x) <0 O(a(x) =0 O Sent(x))
(At(x) O (a(x) =0' = TrAt(x))) O
@) (){(Neg(x, y) D a(x)+a(y) =0) O
(Cond(x, y, z)d [a(x) =0"=(a(y) =00a(z) =01)])) O
(UQ(x, y, ) T [a(x) = 0" = (n)(w)(Subsi(y, w, i, n) 1 a(w) = 0")])}]

Where Neg(x, y) holds iff x is the negation of y, Cond(X, y, z) holds iff x is the conditional
(y 0 2), and UQ(X, y) holds iff x is the result of attaching the universal quantifjeo (x.
We leave it to the reader to verify that this works.

Once we know that aﬂ% sets are hyperarithmetical, it will turn out that the set of truths
of the language of arithmetic is also hyperarithmetical. We can also give a direct proof that
this set is hyperarithmetical; in fact, it turns out to be recursively isomorphic to thg set H
where |} = w, that is, it appears at the first level of the hyperarithmetical hierarchy that is
beyond the arithmetical sets.
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Lecture XXV

The Baire Category Theorem.

A subset S of Baire space is said talbasdf for any finite sequence s, there isanl S
that extends s. (This definition coincides with the general definition of "dense" for
topological spaces.)

Theorem: The intersection of a countable family of dense open sets is nonempty.
Proof: Let O, O, ... be dense open sets. We shall construct a furection ,O,, as
follows. Let g be the empty sequence. |lfres been defined, latld O+, be such that
extends g this is possible becausg @is dense. Since 9 is open, there is an initial
segment t oft such that every function extending t is ip.© Let $+1 be some finite
sequence that properly extends bothrl t.

We have thus defined a sequengess ... of finite sequences such that i > j implies that
s properly extends;,sand such that any function extendipdfer n > 0) is an element of
On. Leta =05, o is a total function. Moreover, sinoceextends each,sa [ O, for all
n, i.e.a On On.

This is a special case of a more general theorem, known RaitkeCategory Theorem
(The proof of the general theorem is essentially the same as the present proof.) Notice that
for the theorem to go through, it suffices that eagleddtainsome dense open set, since if
for all n Oy is a dense open subset gf @en we can apply the theorem to fandl
nnOn', whencax [h ,On. (Any set containing a dense set is itself dense, spabftains
a dense open set at all, the interior gi(i&. the union of all the open sets containedjn O
will be a dense open set. Thus, we can takéoDe the interior of ) Notice also that
O1 need not be dense, but merely nonempty and open, since then we che Bty
sequence all of whose total extensions aresip O

The Baire Category Theorem turns out to have many applications in logic, and if there is
a single most important principle in logic, it is probably this theorem. It is usually applied
in the following way. Suppose we want to show that there is a function that satisfies a
certain condition C. If we can break C down into a countable family of conditions, then we
can find such a function if we can find a single function that satisfies all of those conditions
simultaneously. If we can arrange things so that each of these conditions is dense and open
(or contains a dense open condition), then the theorem guarantees that such a function
exists.

Cohen's famous proof of the independence of the continuum hypothesis can be seen as
an application of the category theorem. The theorem can also be seen as a generalization of
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Cantor's diagonal argument. In particular, we can use it to show that there are uncountably
many total functions oN. To see this, let F be any countable family of such functions, and
foreacha O F, let @ = {B: B# a}. Each Q is open, since two functions are different iff
they disagree on some initial segment, and egdl @ense, since any finite sequence can

be extended to a function different fream It follows that there is a functighsuch thaf

[0 Oy for eacha O F, i.e. such the® O F. (This application of the category theorem really
boils down to Cantor's own proof, since in the latter a function outside F is constructed
stage by stage in just the same way that the funatisrconstructed in the former.)

Incomparable Deqgrees.

Let us now consider an application of this theorem. For all we have said so far, the Turing
degrees might be linearly ordered. It turns out that they are far from being linearly ordered,;
in this section, we shall construct a pair of incomparable degrees, i.e. degrees a and b such
that neither & b nor b< a.

Call a pair of functiongecursively incomparablg neither is recursive in the other. To
find a pair of incomparable degrees, it suffices to find a pair of recursively incomparable
functions, for then those functions will be of incomparable degrees. Recall that a fanction
is recursive i3 just in case is definable in the language RE with an extra function
symbol forB. Let us define \§'to be the relation {<k, p>{E)(s is an initial segment f
and W(e, s, k, p))}, and let us identify functions with their graphs. @hsmecursive i3
just in casex = WE for some e, and is nonrecursive i iff a # WE for all e. Thusg
andp will be recursively incomparable if they satisfy all of the conditmmssWE andp #
W¢ simultaneously; to find suah and3, we need only show that those conditions contain
dense open conditions.

Theorem: There are incomparable Turing degrees.

Proof: For any e, let A= {[a, B]: a 2 WE} and B. = {[a, B]: B # WY}. If each of the

Ae's and B's has a dense open subset, then we can apply the Baire category theorem to
obtaina andf3 such thatd, ] is in Ac and B for each e, from which it follows thatand

[3 are recursively incomparable. We show thahA&s a dense open subset; the proof that
Be does is the same.

Let A¢ ={y OAg (B)(s is an initial segment gf and any function extending s is in
Agl. Ac is open, for ley A and let 4 be such that any function extending s is in A
then any function extending s is also ig. AIn fact, AS' is the interior of A) We need
only show that A is dense.

Let s be any finite sequence, and leisd s be the even and odd parts of s,
respectively (that is, if s = €X..., ¥y, with n = 2m, thens= <xQ, X2, ..., Xm> and ¢ =
<X1, X3, ..., Xm-1>, and similarly if n = 2m+1); we need to show that some function
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extending s is in A It suffices to find an s’ extending s (or extended by s) such that any
function extending s' is in A Notice that ify = [a, (], theny extends s iffx extends g
andp extends s

Case 1: WE O s, for all B extending s In that case, 8# o wheneven andf3
extend g and g, because any suchis total and therefore properly extengss® we can
lets =s.

Case 2: WE [0 s; for someB extending s Fix 3, and let <k, pXIWB - 5. Let $' be
an initial segment dB such that W(e,2 k, p ); then <k, p=1 W8 for all B' extending 5.
We can find an extension' ®f s, such that <k, p:o ' for all o' extending & either g
has a kth element that is different from p, in which we can'lets, or §' has no kth
element, in which we can lef e an extension of svhose kth element is different from p.
Let s’ be an extension of s such that the even and odd parts of s' ¢x@ddss Then
whenever ¢, B] extends s',d, B] [ A, as required.

We can also give a direct proof that does not appeal directly to the category theorem.

Second Proof We construct finite sequences s, &, ... andg, ty, tp, ... such thatt =
Onsy andp = Oty are total functions; we then show thiaandf3 are recursively
incomparable.

Let =1ty = . Suppose,aand t, have been defined. If n = 2m, we proceed as
follows. If WS, O s, for all extension$ of t,, then let .1 and f+1 be any finite sequences
that extend,sand . Otherwise, find an extensiof of t, and a pair <k, p> such that W(e,
ty, K, p), and let;$ be an extension of, such thati(k) # p for all extensions of s, as in
the first proof. Letg 1=’ and t+1=1t,. If n =2m+1, then do exactly the same, except
reversing the roles of s and t.

Now leta = 0,8, andp = Oyt If o is recursive i, thena = W§, for some m; butx
andp extend sy, and by, and it is clear from the construction of the s's and t'sxt#atvs
for any sucho andf. Soa is not recursive i, and by same argumeBiis not recursive
in a, i.e.a andp are recursively incomparable.

The construction of the s's and t's in this proof is not effective, since if itavarei
would be recursive and therefore recursively comparable. In particular, we cannot
effectively decide whether Qv s, for all extension$ of t,, since that would involve
surveying all the infinitely many extensions @f However, if we had an oracle which gave
us the answer to this question, we could use it to effectively constaunctf3, soa andf3
would be recursive in the oracle. We can therefore modify the proof to place an upper
bound on the Turing degreescofindp.

Theorem: There are incomparable Turing degrees below 0'.
Proof (sketch) It suffices to show that the functioasand constructed in the above
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proof are recursive in 0'. Consider the relation R = {<s, t, m& V¢ for allp extending
t}. The relation -R isr.e., since <s, t, M>R just in caself' extending t)(k)(Cp)(W(m, t',
k, p) O<k, p>0Os). It follows that both R and -R are recursive in 0. ¢Lls¢ a partial
function which uniformizes the r.e. relation {<s, t, [t', k, p]>: t' extend$W(m, t', k, p)_
<k, p>0 s}.

We can then construct and t, effectively in terms of R angl  Specifically, we sefys
= tp = the code of the empty sequence. If n =2m, we,set%,"<0> (i.e. the
concatenation of,awvith the unit sequence <0>) andit= t,"<0> if R(s, t,, m) holds. If
R(s, t, m) doesn't hold, let [t', k, p]@(s,, t,). Then t' extendg,tand for any3 extending
t', <k, p>0 WE - 5. We then let 1 = t' and let .1 be some extension of such that the
kth element of .1 exists and is different from p. (g can obviously be found
effectively.) If n =2m+1, we do the same, but with the roles of s and t reversed.

So we see that the maps-ns, and n- t, are recursive in O'a andf} are therefore
also recursive in 0', sincgn) = the nth member of the sequengg:s)andB(n) = the nth
member of the sequencgnt)

This theorem was originally proved by Kleene and Post. Notice that it does not show that
there are any incomparable r.e. degrees, since a degree can be below 0" without containing
any r.e. sets. In fact, the proof that incomparable r.e. degrees exist is a souped-up version
of the proof we just gave.

We can also get a refinement of these results:

Theorem: For any nonrecursive degree a, there is a degree incomparable with a.
Proof: Leta be a total function of degree a; we need to find a funfti@cursively
incomparable witlu. For all e, let A= {B: a # W8} and B = {B: B # W%}, it suffices to
show that each Aand each Bhas a dense open subset.idBlense and open already, as is
easily seen. Let Abe the interior of Aas before, i.e. A= {B: ((ELB )(B)(if B' extends s
thena # WE}. We need only show thats dense.

Let s be any finite sequence; we need to show tfia@oAtains some function extending
s, i.e. that there is a sequence s' extending s such thatf@xsdinding s'o # WE.
Suppose this is not the case; then for all s' extending s theesigending s' such that
= WE. Inthat casex = {<k, p>: (5")(sO0 s'OW(e, s', k, p))}. (Suppose <k, i® ; since
there is &3 extending s such that= Wg, there is an s' extending s such that W(e, s', k, p).
On the other hand, if ' extends s and W(e, s', k, p), then €kVig&for all B extending s';
since & = a for somesuchp, it follows that <k, p>t .) But in that casey is an r.e.
relation and is therefore a recursive function, contradicting our assumption that a is a
nonrecursive degree.

We can refine this a bit further and show that for any nonrecursive degree a, there is a
degree b below a' that is incomparable with a. The proof of this is like the proof that there
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are incomparable degrees below 0. (Notice that this result does not directly imply that there
are incomparable degrees below 0', because we cannot take a = 0.)

The Separation Theorem 18} Sets.

In this section, we show that evedy set is Borel. In fact, we shall prove something
stronger. Call a pair (§S) Borel separablef there is a Borel set which contains&hd
is disjoint from $. We shall prove a theorem due to Lusin, namely that any disjoint pair of
St sets is Borel separable. If S0g, then (S, -S) is a disjoint pair 8f sets, so there is a
Borel set B which separates S from -S; but then S = B, and therefore S is Borel.

Notice that a set S is Borel inseparable from a set T iff there is no Borel set Blwith S
B O -T. We begin by proving the following.

Lemma: If S =0,S,and S is Borel inseparable from T, then there is an n suchitlsat S
Borel inseparable from T.

Proof: Suppose Sis Borel separable from T for each n. For each n,J&teBa Borel set
such that 00 B, O -T. Thend,S, O OB, O -T. But then S £1,,S, is Borel separable
from T, sincel],B,, is Borel.

Corollary: If the sets of two countable unions are pairwise Borel separable, then the two
unions are Borel separable.

Theorem: Any two disjointS} sets are Borel separable.

Proof: Let § and $ be any twcS} sets, and assume thatéhd $ are Borel inseparable.
We show that §n S, # 0. Since $and $ arezi, there are relations;Rnd B onN

such that

Sy = {B1: (6 1)(X)Ry(T1(X), El(x))}’
Sz = {B2: ([ 2)(X)Ra(T2(x), B2(X))}-

We construct four infinite sequenced¥g <t{V>, <dV>, <>, where &), etc. are

sequences of length n. First, st a B0 = 4 = B = the empty sequence. If sand t are
finite sequences, let

S* = {By: (@ 1)(s O ag OtP 1 O (X)Ry(@1(X), Ba(X)))}

and define & 'similarly. In particular, let® = 2™ b and &V = 2™ B"  Then

SV = {Ba: (@ 1)(@1(n) = 4" OBx(n) = B 0 (Ru(@1(x), Ba()))}
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and similarly for ). Now suppose{d, B, etc. have been defined ariy & Borel
inseparable from8, and define &%), etc. as follows. Notice thaf’=[{S;>% s and t
are sequences of length n+1 that extend the sequéfcascal", respectively}, so by our
lemma, we can find such s and t so thdt's Borel inseparable frond% Let "Y=s
and "V = t for some such s and t. S§'®is Borel inseparable fronf% Similarly,

we can find sequences s and t of length n+1 which ex{®raha K" and such that$

is Borel inseparable from®); let (M= s and b= t for some such s and t{"8) and
Si™1 are therefore Borel inseparable.

Thus, the §'s and §"'s are progressively narrower subsetsdr®l $ that are Borel
inseparable if and $ themselves are. Moreove{Pproperly extends{® when n > m,
and similarly for l, &, and B; so we can define; = Dnaﬁn), B1= Dnbﬁ“), and similarly for
02 andf,.

Observe tha, = 3. For suppose not; thg¥i(n) # Bo(n) for some n. Let p B1(n),
and let O = §: B(n) = p}. Oisopen, as is easily seen, and is therefore Borel. However,
sY 00 and §Y 0 -0, so §*V and §'*Y are Borel separable, contradiction.

We now show thatSntersects Sby showing thaB; [0 S; n' S,. To prove this, it
suffices to show that (x)f1(x), B1(X)) and (X)R(@2(x), B2(X)). We prove the former;
the proof of the latter is the same. Suppose ~(®#Rx), B1(x)). Then for some n, <R
)a(n), Ba(n)). By our definition of @ and K, this just means that @Y, BY). It
follows that §" = @. But then & is a Borel set that separates itself frdff, &hich is
impossible. This concludes the proof.

We have already seen that all Borel setd¥reve have therefore established Suslin's
theorem: D% = Borel. This is an unusually simple proof for such a sophisticated result.
Notice that it is similar in flavor to the proof of the existence of incomparable degrees; in
particular, the functiof, is constructed via a stage-by-stage process.

Exercises

1. Consider the language of arithmetic with one extra predicate P(x).

(a) Consider a system in this languafl3ge whose axioms are an r.e. set of the language of
arithmetic containing Q. Add the axiom©fY) for each AIS, where S is any set. No
axioms except these contain the extra predicate P. Assume that the resulting system is
consistent. On these assumptions, characterize the sets weakly representable in the system
and prove the characterization.

(b) Make the same assumptions as in (a) except that now we I@éﬂ/)&) fof each nIS
and ~P()(n)) for each AIS. Characterize the weakly representable sets and prove the
answer.
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(c) Under the assumptions of (b), characterize the strongly representable (binumerable)
sets, and prove the answer.

2. Consider a system in the second order language of arithmetic (i.e., the language of
arithmetic supplemented with variables and quantifiers for 1-place number theoretic
functions), with a'li set of axioms containing at least the axioms of Q, and witt-tlde
added to the usual logical rules.

(a) Under the assumption that all the axioms are true, define a statement analogous to
"Gddel heterological" is Godel heterological' and show that it is true but undecidable.

(b) Show that every truai sentence is provable. Use this to show that if all of the
axioms are true, then the sets weakly representable in the system are predﬂﬂegetlae
(Hint: Prove the contrapositive (i.e., that iﬂésentence is not provable, then it is not true)
by a method similar to the proof of tﬁéseparation theorem and its corollary the Suslin
characterization of th% sets. You may assume in your proof that the system contains any
reasonable axioms, over and above those in the language of arithmetic, to handle function
quantifiers; in particular, relevant axioms might include (m)gm)=n_A(a)))UA(a).)

(c) Let A(x) be aZ% formula with one free number variable. Using (b), show that if the
system is consistent and the set defined iﬂilpﬂhen some sentence of the forn@(&'@)
is true but unprovable.

(d) Show that if the system is consistent (not necessarily true), then the statement
"Gddel heterological” is Godel heterological' of part (a) must be true but unprovable.

3. Let R be any binary relation on the natural numbers. Suppose that for any partial
recursive functiompthere is a total recursive functignsuch that Rp(x),@(x)) whenever

@(x) is defined. Prove that, under this hypothesis, for any total recursive fugdehtiere is a
number m such that R(g{m)). Show that immediate consequences of this principle for
suitable choices of R are: the self-reference lemma, that every maximal enumeration has the
fixed-point property, and that there are two disjoint r.e. sets without recursive separation.
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