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Lecture XXII

The ω-rule.

Recall that Gödel's theorem gives us a universally quantified statement (x)A(x) all of whose
instances are provable but which is not itself provable.  Thus, while intuitively it might seem
like (x)A(x) follows from A(0), A(0'), ..., in fact, while all of the latter are provable, the
former is not provable.  However, it would be provable if we added to our formal system the
following rule, known as the ω-rule:  from A(0), A(0'), ... to infer (x)A(x).  In fact, this was
Hilbert's suggestion when he first heard about Gödel's result.

The ω-rule can't actually be applied in practice, since it has infinitely many premises and
so a proof using the ω-rule would be infinitely long.  Moreover, even if we can prove each
of the instances of (x)A(x), we may not be in a position to know that they are all provable.
For example, consider Goldbach's conjecture.  Supposing that it is in fact true, we can easily
prove each of its instances; nonetheless, we are not now in a position to know that all of its
instances are provable, since we are not now in a position to prove that the statement itself is
true.

Nonetheless, we can consider formal systems which contain the ω-rule, even if we
cannot actually use such systems.  If we add the ω-rule to an ordinary first-order deductive
system (Q, for example), then not only will there be no true but unprovable Π1 statements:
all true statements will be provable.  To see this, suppose we start out with a system which
proves all true sentences of Lim, and which is such that every sentence of the language of
arithmetic is provably equivalent to a Σn or Πn sentence, for some n.  If we add the ω-rule to
such a system, then we will be able to prove every true Σn or Πn sentence, and therefore
every true sentence whatsoever.  We show this by induction on n.  (For the sake of the
proof, we define a formula to be both Σ0 and Π0 if it is a formula of Lim.)  We know it
holds for n = 0, because by hypothesis all true sentences of Lim are provable.  Suppose it
holds for n, and let A be a Σn+1 formula.  Then A is (∃ x)B(x) for some Πn formula B(x).  If
A is true, then B(0(m)) is true for some m, so by the inductive hypothesis B(0(m)) is
provable in the system, so A is also provable.  Now let A be a Πn+1 formula.  Then A is
(x)B(x) for some Σn formula B(x).  If A is true, then B(0(m)) is true for all m, so by the
inductive hypothesis, B(0(m)) is provable for all m.  Now we apply the ω-rule:  from the
sentences B(0), B(0'), ..., we can infer the sentence (x)B(x), i.e. the sentence A, so A is
provable.

So as long as we stay within the first-order language of arithmetic, we can get around
the Gödel theorem by allowing our formal systems to include the ω-rule.  However, if we
consider richer languages (e.g. languages with quantifiers over sets of numbers, or with
extra predicates), we will not necessarily be able to get around the Gödel result in this way.
In fact, there are languages richer than the first-order language of arithmetic such that, even
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when we allow formal systems to contain an ω-rule, we get a Gödel-type result.  This was
first discovered by Rosser, but it was not until much later, when extensions of the
arithmetical hierarchy were being studied in the 50's, that his ideas were taken up again.

The Analytical Hierarchy.

We have already seen how to enrich the language of arithmetic by adding extra predicates
and function symbols.  We can also treat these new symbols as variables, and even quantify
over them.  The resulting formulae will then have two types of variables:  one type for
numbers and one type for sets (or functions); if a formula has n number variables and k set
variables, then it defines an n+k-place relation between numbers and sets, in which the first
n places are occupied by numbers and the remaining places are occupied by sets.  Similarly,
if there are k function variables, then the formula defines an n+k-place relation between
numbers and functions.  (The formula f(x) = y, for example, defines the 3-place relation
{<x, y, f>:  x, y ∈  N and f: N → N and f(x) = y}.)  When the variables are function
variables, their values are always total functions.

We could get by with only unary predicates, reducing functions and other predicates to
unary predicates via standard methods.  We could also use only unary function symbols.
That is, we could rewrite f(x1, ..., xn) as f([x1, ..., xn]), and replace sets by their characteristic
functions.  In principle it doesn't matter what we do, but it will turn out to be convenient to
require all the new variables to be unary function variables, so we shall do so.  We use lower
case Greek letters for function variables.

In the case of Σ0
1 formulae, a version of the monotonicity and finiteness theorems hold.

That is, if A(x1, ..., xn, α1, ..., αk) is a Σ0
1 formula, then <m1, ..., mn, f1, ..., fk> satisfies it iff

there are finite initial segments s1, ..., sk of f1, ..., fk, such that <m1, ..., mn, s1, ..., sk> satisfies
it.  (Unary functions on N can be seen as infinite sequences of numbers; an initial segment
of a function f is then a sequence <f(0), ..., f(x)> for some x.)  Actually, this way of putting
it isn't quite correct, because we require the values of the variables to be total functions, so
we must restate it as follows.  Let A* be the result of replacing αi(x) = y by (∃ z)(Seql(si, x)
∧  x < z ∧  [x, y] ∈  si) wherever it occurs in A.  (If function variables are embedded in A, we
iterate this process.)  Then <m1, ..., mn, f1, ..., fk> satisfies A iff for some finite initial
segments s1, ..., sk of f1, ..., fk, respectively, <m1, ..., mn, α1, ..., αk> satisfies A*.

Now let us consider formulae which may contain quantifiers over functions; a relation
between natural numbers and functions defined by such a formula is called analytical.  In
particular, a set of numbers defined by such a formula is called analytical.

A Σ1
n formula is a formula that consists of an alternating string of function quantifiers of

length n, beginning with an existential quantifier, followed by a single number quantifier of
the opposite type from the last variable quantifier in the string, followed by a formula of
Lim.  The definition of "Π1

n" is the same except that we require the first quantifier to be
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universal.  Thus, for example, the formula (α)(∃β )(x) α(x) = β(x) is a Π1
2 formula.  A

relation is Σ1
n or Π1

n if it is defined by a Σ1
n or Π1

n formula, respectively; a relation is ∆1
n if it is

both Σ1
n and Π1

n.  The hierarchy of Σ1
n and Π1

n sets is called the analytical hierarchy.  This
hierarchy was first studied by Kleene, who invented its name.

In general, a Σm
n or Πm

n formula is an alternating string of type-m quantifiers of length n
followed by a formula containing only quantifiers of type < m.  Quantifiers over numbers
are type-0, quantifiers over functions on N, sets of numbers, etc., are of type 1, quantifiers
over sets of sets of numbers are of type 2, etc.

The analytical relations are not to be confused with the analytic relations, i.e. the Σ1
1

relations.  When Kleene first studied the analytical hierarchy, a certain class of functions
had already been studied and were called "analytic"; it was only discovered later that these
functions are precisely the Σ1

1 functions.  To avoid conflicting notations, the term
"analytical" was chosen for the more inclusive class.  Nowadays, in order to avoid
confusion, the term "Σ1

1" is generally used instead of "analytic".

Normal Form Theorems.

An arithmetical formula is a formula that does not contain any quantifiers over functions
(though it may contain free function variables).  We would like to show that every formula
is equivalent to some Σ1

n or Π1
n formula (for some n), and in particular that every arithmetical

formula is equivalent to some Σ1
1 formula and to some Π1

1 formula.  At this point it should
be far from obvious that this is the case, since a formula can have several number
quantifiers, and a Σ1

n or Π1
n formula is only allowed to have a single number quantifier, and

that of the opposite type from the last function quantifier.  In this section we shall show how
to find a Σ1

n or Π1
n equivalent for any formula of the language of arithmetic.

Clearly, any formula can be put into prenex form.  (We consider a formula to be in
prenex form if it consists of a string of unbounded quantifiers followed by a formula of
Lim.)  However, the initial string of quantifiers that results may not alternate, and it may also
include number quantifiers.  So to put the formula in the desired form, we must move the
number quantifiers to the end of the string, collapse them to a single quantifier of the
opposite type from the last function quantifier, and make the string of function quantifiers
alternate.

First, let us work on moving the number quantifiers to the end.  To do this, it suffices to
show that any formula of the form (Qx)(Q'α)A is equivalent to a formula (Q'α)(Qx)A*,
where Q and Q' are quantifiers and A differs from A* only in the part that is in Lim:  if we
have this result, then we can apply it repeatedly to any prenex formula to produce an
equivalent prenex formula with all the number quantifiers at the end.  This is easy to show
when Q = Q':  (∃ x)(∃α )A is always equivalent to (∃α )(∃ x)A, and (x)(α)A is always
equivalent to (α)(x)A.  So the only difficult case is when Q ≠ Q'.
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Consider a formula of the form (x)(∃α )A.  This is true just in case for every number x
there is a function αx such that A(x, αx) holds.  Letting Φ(x) = αx, this implies that there is
a function Φ such that for all x, A(x, Φ(x)) holds; conversely, if such an Φ exists, then
obviously (x)(∃α )A(x, α) holds.  Φ is a higher-order function, and the quantifiers in our
formulae only range over functions from N to N, so we cannot rewrite (x)(∃α )A as
(∃Φ )(x)A(x, Φ(x)).  However, there is a way to get around this.  Suppose Φ maps numbers
onto functions; then let γ be the function from N to N such that γ([x, y]) = (Φ(x))(y).  Let
A*(x, γ) be the result of replacing all occurrences of α(t) in A by γ([x, t]), for any term t;
clearly, A and A* differ only in the part that is in Lim.  It is easy to see that A*(x, γ) holds
iff A(x, Φ(x)) holds.  Therefore, (x)(∃α )A holds iff there is a Φ such that for all x, A(x,
Φ(x)) holds, iff there is a γ such that for all x, A*(x, γ) holds, iff (γ)(∃ x)A*(x, γ) holds.  So
we have the desired result in this case.

There is only one remaining case, namely the case of formulae of the form (∃ x)(α)A(x,
α).  But (∃ x)(α)A(x, α) is equivalent to ~(x)(∃α )~A(x, α), which, as we have just seen, is
equivalent to ~(∃γ )(x)~A*(x, g), which is equivalent to (γ)(∃ x)A*(x, γ).  So we have proved
the following

Theorem:  Any formula is equivalent to a prenex formula in which all the unbounded
number quantifiers occur at the end.

Notice that, in moving from (x)(∃α )A to (∃Φ )(x)A(x, Φ(x)), we have assumed the axiom of
choice:  if the axiom of choice fails, then even though for every x there is an α such that
A(x, α) holds, there may be no single function which takes x to an appropriate α.

The initial string of function quantifiers may not yet alternate.  However, using the
pairing function, we can collapse adjacent quantifiers of the same type into a single
quantifier, and by repeating this process, we can make the initial string alternate.  That is, for
any formula A(α, β), let A*(γ) be a formula that differs from A only in the Lim part, and
such that A(α, β) is equivalent to A*([α, β]) for all α, β.  (Such an A* is easy to find.)
Then (∃α )(∃β )A(α, β) is equivalent to (∃γ )A*( γ), and (α)(β)A(α, β) is equivalent to
(γ)A*( γ). (Here we are assuming that our pairing function is onto.)  Thus, we have the
following

Theorem:  Any formula is equivalent to a prenex formula consisting of an alternating string
of function quantifiers followed by a first-order formula.

To get the desired result, we must show how to collapse the number quantifiers into a
single quantifier.  We shall do this by proving that any first-order formula is equivalent to
both a Σ1

1 and a Π1
1 formula.  Once we have done this, we can prove our main result as

follows.  Let A be any formula, and take any prenex equivalent with all the function
quantifiers in front.  Suppose the last function quantifier is existential, and let B be the first-
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order part of the formula.  Then A is equivalent to a formula (Qα1)...(∃α n)B.  Now let
(∃α n+1)(x)C be a Σ1

1 equivalent of B; A is equivalent to (Qα1)...(∃α n) (∃α n+1)(x)C.  We
can collapse the adjacent quantifiers (∃α n) and (∃α n+1); thus A is equivalent to
(Qα1)...(∃α n)(x)D, with D in Lim, i.e. A is equivalent to a Σ1

n formula.  If the last function
quantifier is universal we argue similarly, this time using a Π1

1 equivalent of B.

Theorem:  Every first-order formula is equivalent to both a Σ1
1 and a Π1

1 formula.
Proof:  Let A be any first-order formula.  We know already that we can take A to be either
Σ0

n or Π0
n, for some n.  By adding vacuous quantifiers if necessary, we can assume that A is

Π0
n for some n and that n is even.  Thus, A is equivalent to a formula

(x1)(∃ y1)...(xm)(∃ ym)B with B in Lim.  Now any formula (x)(∃ y)C(x, y) is equivalent to
(∃α )(x)C(x, α(x)), as we can see using the same sort of argument we used before.  (If
(∃α )(x)C(x, α(x)) holds, then obviously (x)(∃ y)C(x, y) holds; conversely, if (x)(∃ y)C(x, y)
holds, then (∃α )(x)C(x, α(x)) holds, letting α(x) = the least y such that C(x, y) holds.)
Iterating this, and moving the number quantifiers to the end, we see that A is equivalent to
(∃α 1)...(∃α m)(x1)...(xm)B' for B' in Lim.  We can collapse the existential function
quantifiers, and we can also collapse the universal number quantifiers using a bounding
trick.  The result is Σ1

1, so A is equivalent to a Σ1
1 formula.

To see that A is also equivalent to a Π1
1 formula, notice that the foregoing argument

shows that the formula ~A is equivalent to some Σ1
1 formula (∃α )(x)B, and so A itself is

equivalent to the Π1
1 formula (α)(∃ x)~B.

By the foregoing remarks, we finally have our main result.

Theorem:  Every formula is equivalent to some Π1
n or Σ1

n formula, for some n.  Moreover, if
A is a formula consisting of an alternating string of quantifiers of length n, the first
quantifier of which is existential (universal), followed by a first order formula, then A is
equivalent to a Σ1

n (Π
1
n) formula.

(The trick of replacing (x)(∃ y)C(x, y) by (∃α )(x)C(x, α(x)) is due to Skolem.  Notice
that, in contrast to the previous case, we have not assumed the axiom of choice, since we
defined α(x) to be the least y such that C(x, y).  We were able to do this because we know
that our domain (viz. N) can be well-ordered.  Skolem's trick can be applied to any domain
that can be well-ordered; however, if the axiom of choice fails, then there will be domains
that cannot be well-ordered.)

As with the arithmetical hierarchy, we can define the level of an analytical relation to be
the least inclusive Σ1

n, Π
1
n, or ∆1

n of which it is an element.  The above discussion gives us
ways of estimating the level of a given analytical relation.

All arithmetical relations are ∆1
1, as we have seen.  Moreover, if A is a Σ1

n formula, then
(∃α )A is equivalent to a Σ1

n formula since we can collapse (∃α ) with A's initial quantifier;
similarly, if A is a Π1

n formula, then (α)A is equivalent to a Π1
n formula.  In short, the Σ1

n and
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Π1
n relations are closed under existential and universal functional quantification, respectively.

Similarly, if A is Σ1
n, then so are both (x)A and (∃ x)A, and the same is true if A is Π1

n.  This
is because, as we have seen, we can always move number quantifiers inwards without
affecting the variable quantifiers.

It is also not hard to see that if A and B are Σ1
n (or Π1

n), then so are A ∧  B and A ∨  B.
We can show this by induction on n.  Since Σ1

0 = Π1
0 = {arithmetical relations}, this clearly

holds for n = 0.  Suppose it holds for n.  If A and B are Σ1
n+1, then they are (∃α )C and

(∃β )D for Π1
n formula C and D.  Then A ∧  B and A ∨  B are equivalent to (∃α )(∃β )(C ∧  D)

and (∃α )(∃β )(C ∨  D), respectively, which are Σ1
n+1, by the inductive hypothesis and

collapsing the quantifiers (∃α ) and (∃β ).  If A and B are Π1
n+1, we argue similarly.

Thus, the situation is similar to that of the arithmetical hierarchy, except that function
quantifiers and unbounded number quantifiers play the role here that bounded and
unbounded number quantifiers play in the arithmetical case.  Using a similar argument to
the one we gave there, we can see that if a relation is enumeration reducible to some Σ1

n

(resp. Π1
n) relations, then it is Σ1

n (resp. Π1
n).  It follows immediately that anything r.e. in a

∆1
n relation is itself ∆1

n; a fortiori, anything recursive in a ∆1
n relation is ∆1

n.

Exercise

1. Recall that A and B are recursively isomorphic (A ≡ B) iff there is a 1-1 total recursive
function φ whose range is N, and such that B = {φ(x): x ∈  A}.  Show that for all A and B,
A ≡ B iff A ≡1 B. The following sketches a method of proof.  If A ≡ B, then A ≡1 B follows
easily, so suppose A ≡1 B.  Let φ and ψ be 1-1 recursive functions such that x ∈  A iff φ(x)
∈  B and x ∈  B iff ψ(x) ∈  A, all x. Define, a sequence a1, a2, ... and a sequence b1, b2, ..., as
follows.  Suppose a1, ..., an and b1, ..., bn have been defined (where possibly n = 0).  If n is
even, then let an+1 be the least number distinct from a1, ..., an, and let bn+1 be such that an+1

∈  A iff bn+1 ∈  B and bn+1 is distinct from all of b1, ..., bn.  If n is odd, do the same thing in
reverse (i.e. let bn+1 be the least number distinct from b1, ..., bn, etc.).  Moreover, do this in
such a way that the function χ such that χ(an) = bn for all n ∈  N is recursive.  Conclude that
χ is a 1-1 total recursive function whose range is N, and such that for all x, x ∈  A iff χ(x) ∈
B, and therefore that A ≡ B.  Hint:  Informally, the problem reduces to finding an
appropriate bn+1 effectively from a1, ..., an, an+1 and b1, ..., bn (or an+1 from b1, ..., bn+1 and
a1, ..., an, if n is odd).  If φ(an) ∉  {b1, ..., bn}, then we can put bn+1 = φ(an).  However, we
may have φ(an) = bi for some i = 1, ..., n; show how to get around this.

A recursive isomorphism type is a ≡-equivalence class.  Conclude that 1-degrees are
therefore recursive isomorphism types, and that there is a 1-degree (which is also an m-
degree and a recursive isomorphism type) which consists of the creative sets.

Comment:  Dekker proposed that the notions studied by recursion theory should all be
invariant under recursive isomorphism.  While all the notions studied in this course are
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invariant under recursive isomorphism, there is at least one notion, that of a retraceable set,
which is not so invariant and which has been studied by recursion theorists. (Offhand, I
don't know whether this notion was proved to be not recursively invariant before Dekker's
proposal or only afterwards.)
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Lecture XXIII

Relative Σ's and Π's.

The absolute notions Σ0
n, Π

0
n, Σ

1
n, and Π1

n can be relativized, just as we relativized the notions
of recursiveness and recursive enumerability earlier.  Let us say that a set is Σ0

n in the unary
functions α1, ..., αn if it is definable by a Σ0

n formula of the language of arithmetic with extra
function symbols for the functions α1, ..., αn, and similarly for the notions Π0

n, Σ
1
n, and Π1

n

in α1, ..., αn.  So in particular, a relation between numbers, is Σ0
1 in β (∆0

1 in β) just in case it
is r.e. in β (recursive in β).

Another way of looking at this is as follows.  Consider an arbitrary formula A(x1, ..., xn,
y1, ..., ym, α1, ..., αp, β1, ..., βq) of the language of arithmetic (possibly with function
quantifiers), where the x's and y's are free number variables and the α's and β's are free
function variables.  The formula A defines an m+n+p+q-place relation, with m+n places for
numbers and p+q places for functions.  (Of course, any of m, n, p, and q may be 0.)  Now
suppose we regard the y's and β's as having fixed values (the numbers k1, ..., km and the
functions f1, ..., fq, say).  Relative to these fixed values, A defines an n+p-place relation.  In
the case of the fixed number values, we can get the same effect by considering the formula
A* in which each variable yi is replaced by the numeral 0(ki); however, we cannot treat
functions in the same way, since we do not have a term in the language for each function.
(In fact, as long as we only have countably many terms in the language, we cannot have a
term for each function, since there are uncountably many functions.)  Ignoring the y's and
k's, then, if the relation defined by A (with the β's treated as variables) is Σ0

n, then the relation
defined by A with the values of the β's fixed will be Σ0

n in f1, ..., fn (and similarly for Π0
n, Σ

1
n,

and Π1
n).

Equivalently, an n+p-place relation R is Σ0
n (or Π0

n, etc.) in β1, ..., βq iff there is an
n+p+q-place Σ0

n (or Π0
n, etc.) relation R' such that R = {<x1, ..., xn, α1, ..., αp>:  <x1, ..., xn,

α1, ..., αp, β1, ..., βq> ∈  R'}.  Thus, we can characterize the relative notions directly in terms
of the corresponding absolute notions.

As with our other relative notions, we can reduce the general case to the case q = 1, this
time using a pairing function on functions.  There are several pairing functions that we could
use.  For example, we could take [β1, β2] to be the function β such that β(m) = [β1(m),
β2(m)]; alternatively, we could take it to be the function β such that β(2n) = β1(n) and
β(2n+1) = β2(n) for all n.  (The latter has the advantage of being an onto pairing function.)
It is easy to verify that this successfully reduces the general case to the case of a single
function.

We say that a relation R is S0
n iff there is a function β such that R is Σ0

n in β.  We define
P0

n, S
1
n, and P1

n similarly, and D is defined in the usual way.  (So boldface letters are used for
the notions with function parameters, lightface letters for the notions without function
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parameters.)  This notion is not very interesting if R is a relation between numbers, since in
that case R will always be D0

1 (since R is always ∆0
1 in its characteristic function).  However,

this is not the case if some of R's places are occupied by functions (i.e. if p > 0).
Let's look at S0

1 in the case n = 0 and p = 1 (i.e. the case of S0
1 sets of functions).  A set

S is S0
1 iff there is a 2-place Σ0

1 relation R and a function β such that S = {α: <α, β> ∈  R}.
We can also characterize the S0

1 sets topologically.  Baire space is the topological space
whose points are total functions from N to N and whose open sets are those sets S such that
for every function φ in S, there is a finite initial segment s of φ such that every function
extending s is also in S.  To verify that this is indeed a topological space, we must show that
if two sets satisfy our characterization of the open sets then their intersection does as well,
and that if F is a family of sets satisfying that characterization then ∪ F also satisfies it.
Alternatively, we can characterize Baire space as follows.  For any finite sequence s, let Os =
{φ: φ is a total function which extends s}; then the sets of the form Os form a basis for
Baire space.

Theorem:  The S0
1 sets are precisely the open sets of Baire space.

Proof:  First, suppose S is S0
1.  Then there is a 2-place Σ0

1 relation R between functions and
a particular function β such that S = {α: <α, β> ∈  R}.  Suppose α ∈  S, i.e. <α, β> ∈  R.
By the monotonicity and finiteness properties of Σ0

1 relations, there is an initial segment s of
α such that <γ, β> ∈  R for all γ extending s, and therefore γ ∈  S for all such γ.  Since α
was arbitrary, it follows that S is open.

Next, suppose S is open.  Let F = {s: α ∈  S for all α extending s}.  Then S = {α: α
extends s for some s ∈  F}.  Since F is a collection of finite sequences, we can let G = {n ∈
N: n codes some element of F}, and let γ be G's characteristic function.  Then S is Σ0

1 in γ,
and therefore S0

1, since we can define S by the Σ0
1 formula (∃ s)(γ(s) = 0' ∧  s ⊆  α). (Here s

⊆ α  abbreviates the formula (n < s)(m < s)([n, m] ∈  s £ α(n) = m).)

Baire space is also homeomorphic to the irrational numbers under the usual topology.  The
onto pairing function mentioned earlier is a homeomorphism between Baire space and its
direct product with itself; since Baire space is homeomorphic to the irrationals, this shows
that the irrational plane is homeomorphic to the irrational line.  Thus, the situation is very
different from the case of the reals.

We can set up a similar topology on sets of natural numbers by identifying these sets
with their characteristic functions; if we restrict Baire space to functions into {0, 1}, the
result is a space which is homeomorphic to the Cantor set.  (That is, the set of all reals in the
interval [0, 1] whose base-3 expansions contain no 1's.)  It is also identical to the space 2ω,
where 2 is the space {0, 1} with the discrete topology.

Notice that since the S0
1 sets are precisely the open sets, the D0

1 sets are precisely the
clopen sets (i.e. sets that are both closed and open).  This is another difference between the
reals and the rationals:  whereas the only clopen subsets of R are R itself and Ø, clopen sets
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of irrationals exist in great abundance.

Another Normal Form Theorem.

Given a function α, let us define α–(n) to be some numerical code for the sequence <α(0), ...,
α(n-1)>.  It doesn't matter what particular code we choose; however, for definiteness, let us
say that α–(n) = 2α(0)+1.3α(1)+1.....pnα(n-1)+1, where in general pn is the nth prime.  (This is
essentially the coding scheme Gödel used.)  As Quine has remarked, coding systems are
not like matrimony, and we are free to switch back and forth between them as we please.

We now prove another normal form theorem, due to Kleene.

Theorem:  If S is an n+p-place Σ0
1 relation, then there is an n+p-place recursive relation R

such that S = {<x1, ..., xn, α1, ..., αp>: (∃ z)R(x1, ..., xn, α–1(z), ..., α–n(z))}.
Proof:  We shall prove the theorem for the case n = 0 and p = 1; the other cases are similar.
Let S be a Σ0

1 set of functions.  For some relation L(α, y) definable in Lim, S = {α:
(∃ y)L(α, y)}.  By monotonicity and finiteness, α ∈  S iff some initial segment of α is in S,
so S = {α: (∃ z)(∃ y)L(α–(z), y)}.  In fact, S = {α: (∃ z)(∃ y < z)L(α–(z), y)}:  if (∃ z)(∃ y <
z)L(α–(z), y) then certainly (∃ z)(∃ y)L(α–(z), y), and if L(α–(k), y), then let z > k, y; L(α–(z), y)
by monotonicity, so (∃ z)(∃ y < z)L(α–(z), y).  Let R'(z, s) ≡ (∃ y < z)L(s, z):  R' is a recursive
relation, and S = {α: (∃ z)R'(z, α–(z))}.  This is almost what we want.  Let R(s) ≡ R'(lh(s), s),
where lh(s) is the length of the sequence s; R is still recursive, and S = {α: (∃ z)R(α–(z))}.

This gives us a new normal form theorem for Π1
1 relations.

Theorem:  Every n+p-place Π1
1 relation is {<x1, ..., xn, α1, ..., αp>: (β)(∃ z)R(x1, ..., xn, α–

)1(z), ..., α–p(z), β–(z))} for some recursive relation R.
Proof:  Let S be any n+p-place Π1

1 relation.  Then S = {<x1, ..., xn, α1, ..., αp>: (β)T(x1, ...,
xn, α1, ..., αp, β)} for some n+p+1-place Σ0

1 relation T.  By what we just proved, there is a
recursive relation R such that T(x1, ..., xn, α1, ..., αp, β) iff ( ∃ z)R(x1, ..., xn, α–1(z), ..., α–p(z),
β–(z)); it follows that S is {<x1, ..., xn, α1, ..., αp>: (β)(∃ z)R(x1, ..., xn, α–1(z), ..., α–p(z), β–

)(z))}.

We can prove similar normal form theorems for the other Σ1
n's and Π1

n's.  The main thing to

note is that we have, so to speak, reduced the relation S, which may involve functions, to R, a
recursive relation among numbers.

There is a related result about the various S's and P's.
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Theorem:  An n+p-place relation S is S0
1 iff for some β and some recursive R, S = {<x1, ...,

xn, α1, ..., αp>: (∃ z)R(x1, ..., xn, α–1(z), ..., α–p(z), β–(z))}, iff for some n+p-place relation R
on N (not necessarily recursive), S = {<x1, ..., xn, α1, ..., αp>: (∃ z)R(x1, ..., xn, α–1(z), ..., α–

)p(z))}.
Proof:  The equivalence of the first two conditions is immediate.  Suppose S = {<x1, ..., xn,
α1, ..., αp>: (∃ z)R(x1, ..., xn, α–1(z), ..., α–p(z), α–(z))}, and let R' be the relation {< x1, ..., xn, α–

)1(z), ..., α–p(z)>: z ∈  N and R(x1, ..., xn, α–1(z), ..., α–p(z), β–(z))}; then S = {<x1, ..., xn, α1, ...,
αp>: (∃ z)R'(x1, ..., xn, α–1(z), ..., α–p(z))}.  Conversely, suppose S = {<x1, ..., xn, α1, ..., αp>:
(∃ z)R(x1, ..., xn, α–1(z), ..., α–p(z))} for some relation R on N.  Let β be the characteristic

function of the set {[x1, ..., xn, y1, ..., yp]: R(x1, ..., xn, y1, ..., yp)}.  Then S = {<x1, ..., xn,
α1, ..., αp>: (∃ z) β([x1, ..., xn, α–1(z), ..., α–p(z)]) = 1}, so S is Σ0

1 in β and is therefore S0
1.

Similar results hold for the other S's and P's.

The Hyperarithmetical Hierarchy.

Consider the hierarchy 0, 0', 0'', ..., 0(n), ... of degrees.  As we have seen, a set is arithmetical
just in case it is recursive in one of these degrees.  We also know that not all sets are
arithmetical (e.g. the set of true sentences of the language of arithmetic), so there are sets
which are not recursive in any of these degrees; therefore, there is a degree d which is not ≤
0(n) for any n.  In fact, there are degrees d such that 0(n) < d for all n:  it is not too hard to
see that the degree of the set of true sentences is such a degree.  This suggests that we
should be able to extend the hierarchy 0, 0', 0'', ..., 0(n), ... into the transfinite in some way.

In particular, it suggests that there ought to be a natural next degree, which we can call
0(ω), beyond all of the degrees 0(n).  But what is 0(ω)?  A natural answer would be that 0(ω) is
the least upper bound of the degrees 0, 0', 0'', ....  However, by a result due to Spector, that
collection of degrees does not have a least upper bound; so the most natural characterization
of 0(ω) will not work.

However, the situation is not quite as bad as it first appears.  While there is no least
degree beyond 0, 0', 0'', ..., there is a least degree a such that a = d'' for some d > 0, 0', ....
(This result is due to Enderton, Putnam and Sacks.)  We can define 0(ω) to be the degree a.
In fact, 0(ω) is the degree of the set of true sentences of the language of arithmetic.

We can use this idea to extend the hierarchy still further.  In general, we say that a set is
hyperarithmetical if it is recursive in 0(α) for some ordinal α for which 0(α) is defined.  We
can define the degrees 0(ω+1), 0(ω+2), etc. by 0(ω+1) = 0(ω)', 0(ω+2) = 0(ω+1)', etc.; in general, if
0(α) has been defined, we can define 0(α+1) to be 0(α)'.  We can define the next degree
beyond all these, namely 0(ω+ω), similarly to the way we defined 0(ω):  there is a least degree
a such that a = d'' for some d > 0(ω), 0(ω+1), ..., and we can define 0(ω+ω) to be that degree a.
In fact, we can use this technique to define 0(α) for quite an extensive class of ordinals
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(known as the recursive ordinals).
The resulting extended hierarchy is called the hyperarithmetical hierarchy.  The

hyperarithmetical hierarchy was first studied by Martin Davis in his Ph.D. thesis at
Princeton.  It was also invented independently by Mostowski and by Kleene (who coined
the expression "hyperarithmetical").  Most of the basic theorems about the hierarchy were
proved by Kleene and Spector.

Another approach is to define the set Ø(α), for suitable a, and then let 0(α) be the degree
of Ø(α).  On this approach, we can let Ø(ω) be {[m, n]:  m ∈  Ø(n)}; the degree of Ø(ω) is
then 0(ω) as we defined it before.  Obviously, this can be carried further into the transfinite.
For example, we could let Ø(α+1) = Ø(α)' whenever Ø(α) is defined, and we could define
Ø(ω+ω), for example, to be the set {[m, n]:  m ∈  Ø(ω+n)}.  To define Ø(ω2), we can do
essentially the same thing, except this time it's a bit trickier:  let Ø(ω2) = {[m, n]:  m ∈
Ø(ω.n)}.  We could continue in this manner for quite some time, thinking of new definitions
of Ø(α) for limit ordinals α as we need them, but we would like to give a uniform definition
of Ø(α) for all of the appropriate α.  We do so as follows.

An ordinal is said to be recursive if it is the order type of some recursive well-ordering
of N.  For example, ω is recursive because it is the order type of <0, 1, 2, ...>, and ω+ω is
recursive because it is the order type of <0, 2, 4, ..., 1, 3, 5, ...>.  The recursive ordinals go up
quite far.  Of course, not every ordinal is recursive, since every recursive ordinal is countable
but not every ordinal is countable.  In fact, not all countable ordinals are recursive:  since
there are only countable many recursive well-orderings, there are only countably many
recursive ordinals, but there are uncountably many countable ordinals.  Once we have fixed
a recursive well-ordering R, individual natural numbers code the ordinals less than the order
type of R:  specifically, we let |n|R denote the order type of the set {m: m R n} ordered by
R.  (So m R n iff |m|R < |n|R.)

Let S be an arbitrary recursive set, and let R be an arbitrary recursive well-ordering.  We
define Hn as follows, for all n.  If |n|R = 0, then Hn = S.  If |n|R = α+1 and |m|R = α, then
Hn = (Hm)'.  Finally, if |n|R is a limit ordinal, let Hn = {[x, y]:  x ∈  Hy and x R y}.  A set is
said to be hyperarithmetical if it is recursive in Hn, for some n and some choice of R and S.
(This definition is quite close to the definitions of Kleene and Spector.)

Now it might seem as though Hn depends strongly on the choice of S and of R.
However, this is not really the case.  Suppose R and R' are recursive well-orderings of the
same order type, and S, S' are any two recursive sets; then whenever |m|R = |n|R', Hm and
Hn' are of the same Turing degree (where Hn' is Hn defined in terms of R' and S' rather than
R and S).  (The proof of this is due to Spector. The proof, by the way, is a nice illustration
of the use of the recursion theorem in the study of recursive ordinals.)  Thus, we may define
0(α) to be the degree of Hn, where α = |n|R, for any recursive ordinal α.

If R is allowed to be arithmetical, or even hyperarithmetical, then the order type of R is
still a recursive ordinal; that is, while R may not itself be recursive, there is a recursive well-
ordering R' which is isomorphic to R.  Moreover, if R and R' are allowed to be arithmetical,
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then Hm and Hn' are still of the same Turing degree, so the hierarchy is unaffected.  If R is
allowed to be hyperarithmetical, then the same sets get into the hierarchy, but the hierarchy
may go up at a different rate.

The characterization of the hyperarithmetical sets that we have just given is invariant, in
that while it involves S and R, which are extraneous to the hierarchy itself, the same
hierarchy is given by any choice of S and R.  A characterization in terms of double jumps
(sketched at the beginning of this section), on the other hand, is intrinsic in the sense that
such extraneous entities are not involved at all.  This is certainly a virtue of the latter
approach, although it relies on a rather more advanced result than the former approach,
namely that for suitable sequences a1 < a2 < ... of degrees there is a least d'' such that d > a1,
a2, ....

Another characterization of the hyperarithmetical sets is as follows.  Consider those
sequences <Sα:  α a recursive ordinal> such that S0 is recursive, Sα+1 = Sα' for all α, and
when α is a limit ordinal, Sα is an upper bound of {Sβ:  β < α}.  (It doesn't matter which
upper bound we choose.)  Then a set will be hyperarithmetical just in case for every such
sequence, it is recursive in some set in the sequence.  There are many other equivalent
characterizations of the hyperarithmetical sets.
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Lecture XXIV

Hyperarithmetical and ∆1
1 sets.

An important theorem about the hyperarithmetical sets, due to Kleene, is that they are all ∆1
1.

An even more important theorem, also due to Kleene (and whose proof is more difficult), is
the converse.  Thus, we have yet another characterization of the hyperarithmetical sets, this
time in terms of the analytical hierarchy.

We shall prove the easier half of this theorem.  In fact, we shall prove a somewhat
stronger result.  Let us say that a function φ is the unique solution of a formula A(α) if φ
satisfies A(α) and is the only function that does so.

Theorem:  If the characteristic function of a set S is the unique solution of an arithmetical
formula, then S is ∆1

1.
Proof:  Let φ be the characteristic function of S, and let A(α) be an arithmetical formula of
which φ is the unique solution.  Then S is defined by the formula (∃α )(A(α) ∧ α (x) = 0')
and also by the formula (α)(A(α) ⊃  α(x) = 0').  Since both A(α) ∧ α (x) = 0' and A(α) ⊃
α(x) = 0' are arithmetical formulae, the two formulae that define S are equivalent to Σ1

1 and
Π1

1 formulae, respectively.

Notice that this argument goes through under the weaker assumption that A(α) is a Σ1
1

formula.
Suppose S is hyperarithmetical; then there is a recursive well-ordering R of N such that

S is recursive in Hn for some n, where Hn = Ø when |n|R = 0, Hn = Hm' when |n| = |m|R+1,
and Hn = {[x, y]: x ∈  Hy and y R n} when |n|R is a limit ordinal.  Let ψ be the characteristic
function of {[m, n]: m ∈  Hn}.  If ψ is the unique solution to some arithmetical formula,
then that set is ∆1

1.  It follows easily (by the reasoning of the last section) that each Hn is ∆1
1,

so S is recursive in a ∆1
1 set and is therefore itself ∆1

1.  Therefore, we need only find an
arithmetical formula of which ψ is the unique solution.

Since R is r.e., there is an arithmetical formula B(x, y) that defines R, and let k be the R-
least element of N.  Define

Zero(n) =df. n = 0(k)

Succ(m, n) =df. B(m, n) ∧  (y)~(B(m, y) ∧  B(y, n))
Limit(n) =df. ~Zero(n) ∧  ~(∃ m)Succ(m, n).

These formulae hold just in case |n|R = 0, |n|R = |m|R+1, and |n|R is a limit ordinal,
respectively.  Next, define
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Jump(m, n, α) =df. (z)(α([z, n]) = 0' ≡ (∃ e)(∃ m)(z = [e, m] ∧  (∃ s)[W(e, m, s) ∧
(k)((0(2k) ∈  s ⊃  α([k, m]) = 0') ∧
(0(2k)+0' ∈  s ⊃  α([k, m]) = 0))]))

Let φ be a function into {0, 1} and let M and N be the sets {x: φ([x, m]) = 1} and {x: φ([x,
n]) = 1}, respectively.  With a little work, we can see that Jump(m, n, φ) holds iff N = M'.
We are now ready to define A(α):  let A(α) be the formula

(x)[(α(x) = 0 ∨ α (x) = 0') ∧  (α(x) = 0' ⊃  (∃ y)(∃ n) x = [y, n]) ∧
(y)(n)(x = [y, n] ⊃

{Zero(n) ⊃  α(x) = 0 ∧
Limit(n) ⊃  (α(x) = 0' ≡ (α(y) = 0' ∧  B(K2(y), n))) ∧
(m)(Succ(m, n) ⊃  Jump(m, n, α))})].

Now let us verify that ψ is the unique solution of A(α).  First, we show that ψ satisfies
A(α).  ψ is a function into {0, 1} which only takes the value 1 on arguments that code pairs,
so the first line of the formula is satisfied.  Let x = [y, n] be given.  If |n|R = 0, then Hn = Ø,
so y ∉  Hn and ψ([y, n]) = 0, so the third line is satisfied.  If |n|R is a limit ordinal, then Hn =
{[z, w]: z ∈  Hw and w R n} = {u: ψ(u) = 1 and K2(u) R n}, so the fourth line holds.
Finally, if |n|R = |m|R+1, then Hn = Hm', so the last line holds as well.

Conversely, suppose φ satisfies A(α).  Then Range(φ) ⊆  {0, 1}, and φ(x) = 0 when x is
a nonpair.  Let Gn = {y: φ([y, n]) = 1} for all n; we will show by transfinite induction on
|n|R that Gn = Hn, from which it follows that φ = ψ.  If |n|R = 0, then φ([y, n]) = 0 for all y,
so Gn = Ø = Hn.  If |n|R = |m|R+1, then Jump(m, n, φ) holds and Gn = Gm'; by the
inductive hypothesis, Gm = Hm, so Gn = Hm' = Hn.  Finally, if |n|R is a limit ordinal, then
Gn = {[z, w]: φ([z, w]) = 1 and |w|R < |n|R} = {[z, w]: z ∈  Gw and |w|R < |n|R} = (by the
inductive hypothesis) {[z, w]: z ∈  Hw and |w|R < |n|R} = Hn.  This completes the proof.

The definition of A(α) is complicated, but the idea is simple.  The sequence <Hn: n ∈
N> is defined in terms of itself; specifically, each Hn is defined in terms of various Hm for
|m|R < |n|R.  So we can define the function ψ in terms of itself in a similar way; if we do
things right, the result will be an arithmetical formula A(α) with ψ as its unique solution.

S1
n and P1

n sets of functions are called projective, and the S1
n-P

1
n hierarchy is called the

projective hierarchy.  The study of the projective hierarchy and related notions is called
descriptive set theory.  Projective sets were studied years before Kleene studied the
analytical hierarchy, and Suslin proved an analog of Kleene's result that ∆1

1 =
hyperarithmetical.  (Specifically, he showed that the Borel sets are precisely the D1

1 sets.)  A
unified result, of which the results of Suslin and Kleene are special cases, is called the
Suslin-Kleene theorem.

Kleene was originally unaware of this earlier work on projective sets.  People then
noticed analogies between this work and that of Kleene; later on, it was seen that not only
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are the theories of projective sets and analytical sets analogous:  in fact, they are really part
of the same theory.  Kleene originally called the analytical sets "analytic"; unfortunately,
"analytic" was already a term of descriptive set theory for the S1

1 sets.  To avoid confusion,
Kleene's term was replaced by "analytical".  Nowadays, to avoid confusion, most people say
"S1

1" instead of "analytic".

Borel Sets.

The Borel sets are defined as follows:  all open sets of Baire space are Borel; the
complement of a Borel set is Borel; and if <Sn: n ∈  N> is any countable sequence of Borel
sets, then ∪ nSn is also Borel.  (It follows that ∩nSn is Borel, since ∩nSn = -∪ n-Sn.)

The Borel sets form a hierarchy, called the Borel hierarchy, defined as follows.  The
first level consists of the open sets and the closed sets, that is, the S0

1 sets and the P0
1 sets.

The next level consists of countable unions of closed sets and countable intersections of
open sets, or in other words, the S0

2 and P0
2 sets.  (Countable unions of open sets are already

open, and countable intersections of closed sets are already closed.)  We can see that the S0
2

sets are precisely the countable unions of closed sets, as follows.  We know already that the
P0

1 sets are precisely the closed sets.  On the one hand, suppose S is S0
2; then S is {α:

(∃ x)(y)R(x, y, α, β)} for some fixed β and some Π0
1 relation R.  For each n, let Sn = {α:

(y)R(n, y, α, β)}; then S = ∪ nSn, and each Sn is P0
1 and therefore closed, so S is a countable

union of closed sets.  Conversely, suppose S = ∪ nSn, where each Sn is closed and therefore
P0

1.  For each n, Sn = {α: (y) α–(y) ∈  Xn} for some set Xn of numbers, by our normal form
theorem for P0

1.  Let R be the relation {<x, n>: x ∈  Xn}; then α ∈ ∪ nSn iff ( ∃ n)(y)R(α–(y),
n), so ∪ nSn is S0

2.  So the S0
2 sets are precisely the countable unions of closed sets, from

which it follows that the P0
2 sets are precisely the countable intersections of open sets.  In

general, the S0
n  sets are the countable unions of P0

n-1 sets and the P0
n sets are the countable

intersections of S0
n-1 sets, by the same argument.

The various S0
n's and P0

n's do not exhaust the Borel hierarchy:  we can find a countable

collection of sets which contains sets from arbitrarily high finite levels of the hierarchy, and
whose union does not occur in any of these finite levels.  We therefore need another level
beyond these finite levels.  Let us call a set S0

ω if it is a countable union of sets, each of

which is S0
n for some n, and P0

ω if it is a countable intersection of sets, each of which is P0
n

for some n.  In general, for countable infinite ordinals α we define a set to be S0
α if it is the

union of a countable collection of sets, each of which is P0
β for some β < α, and P0

α if it is

the intersection of a countable collection of sets, each of which is S0
β for some β < α.  It

turns out that new Borel sets appear at each level of this hierarchy.  On the other hand, it is
easy to see that every Borel set appears eventually in the hierarchy.  For suppose not:  then
there is some countable family F of sets in the hierarchy such that ∪ F is not in the
hierarchy.  For each S ∈  F, let rank(S) = the least ordinal α such that S ∈  P0

α.  Then
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{rank(S): S ∈  F} is a countable collection of countable ordinals, and it therefore has a
countable upper bound α.  But then ∪ S ∈ S0

α.

Notice that there are two equivalent ways to characterize at least the finite levels of the
Borel hierarchy.  One is purely topological:  the S0

1 sets are the open sets, the P0
1 sets are the

closed sets, the S0
2 sets are countable unions of closed sets, the P0

2 sets are countable

intersections of open sets, etc.  This is the way the Borel hierarchy was originally conceived,
before analogies with recursion theory were noticed.  The other is in terms of definability:  a
set is S0

1 iff it is definable by a S0
1 formula with a single function parameter, etc.  The S, P

notation was borrowed from recursion theory; the original notation (still quite standard
outside of logic) was more baroque.  Countable unions of closed sets were called Fσ,
countable intersections of open sets were called Gδ, countable unions of Gδ's were called
Gδσ, etc.

It is fairly easy to show that all Borel sets are D1
1.  To prove this, it suffices to show that

all open sets are D1
1, and that D1

1 is closed under complements and countable unions.  That
D1

1 is closed under complements is immediate from its definition.  Suppose S is an open
set; then S is {α: R(α, β)} for some fixed β and some Σ0

1 relation R; we know already that
any Σ0

1 relation is ∆1
1, so S is D1

1.  Finally, suppose {Sn: n ∈  N} is a countable family of D1
1

sets.  In particular, each Sn is P1
1.  Each Sn is {α: (β)(∃ x)Rn(α–(x), β–(x))} for some relation

Rn on N.  Let R be the relation {<y, z, n>: Rn(y, z)}; ∪ nSn = {α: (∃ n)(β)(∃ x)R(α–(x), β–(x),
n))}.  But we know already that the P1

1 relations are closed under number quantification, so
∪ nSn is P1

1.  The proof that ∪ nSn is S1
1 is similar.

Borel sets are analogous in a number of ways to the hyperarithmetical sets.  In
particular, we can imitate the Borel hierarchy in the case of sets of numbers.  It would not do
to have the family of sets be closed under countable unions, since then as long as every
singleton is included, every set whatsoever will be included.  However, if we replace unions
with recursive unions, we can get around this difficulty.  Specifically, we can set up a system
of notations for sets of numbers as follows.  Let [0, m] code the set {m}; if n codes a set S,
let [1, n] code the set -S; finally, if every element of We is already the code of some set, let
[2, e] code the set ∪ {S: S is coded by some element of We}.  We might call the sets that

receive codes under this scheme the effective Borel sets, and the hierarchy that they form the
effective Borel hierarchy.  It turns out that the effective Borel sets are precisely the
hyperarithmetical sets.

Π1
1 Sets and Gödel's Theorem.

It turns out that there are close analogies between the Π1
1 sets and the recursively

enumerable sets (and also between the ∆1
1 sets and the recursive sets).  For example,

consider the following extension of the notion of a computation procedure.  We can
consider, if only as a mathematical abstraction, machines which are capable of performing
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infinitely many operations in a finite amount of time.  (For example, such a machine might
take one second to perform the first operation, half a second to perform the second one, and
so on.)  Such a machine will always be able to decide a Π0

1 set, for such a set is of the form

{x: (y)R(x, y)} for some recursive relation R, and so the machine can run through all the y's,
checking in each case whether R(x, y) holds, and then concluding that x is in the set or that
it isn't.  Using similar reasoning, we can see that any arithmetical set can be decided by such
a machine.  In fact, if the notion is made precise, it will turn out that the ∆1

1 sets are precisely
those sets that can be decided by such a machine, and that the Π1

1 sets are those that can be

semi-computed by one.
Another way in which the Π1

1 sets are analogous to r.e. sets concerns representability in
formal systems.  Specifically, if we consider formal systems with the ω-rule, then it will turn
out that all the sets weakly representable in such systems are Π1

1, and conversely that any
Π1

1 is weakly representable in such a system.
We could also characterize the Π1

1 sets via definability in a language:  analogously to the

language RE, we could set up a language with conjunction, disjunction, unbounded number
quantifiers, and universal function quantifiers, in which precisely the Π1

1 sets would be

definable.
As in the arithmetical hierarchy, we have the following theorem.

Enumeration Theorem:  For all n > 0 and all n and p, there is an m+1+p-place Π1
n

relation that enumerates the m+p-place Π1
n relations, and similarly for Σ1

n.

Proof:  In what follows, we use x
→

 to abbreviate x1, ..., xm, and β
→

 to abbreviate β1, ..., βp.

Let S be any m+p-place Π1
1 relation.  S is {<x

→
, β

→
>: (α)(∃ z)R(α–(z), x

→
, β–1(z), ..., β–p(z))} for

some recursive relation R.  Since R is r.e., R = We for some e, S =

{<x
→

, β
→

>: (α)(∃ z)W(e, α–(z), x
→

, β–1(z), ..., β–p(z))}.  So the relation {<e, x
→

, β
→

>: (α)(∃ z)W(e,

α–(z), x
→

, β–1(z), ..., β–p(z))} enumerates the m+p-place Π1
1 relations.  Moreover, that relation is

itself Π1
1, since it comes from an arithmetical relation by universal function quantification.

Just as we derived the general enumeration theorem for the arithmetical hierarchy from

the special case of Σ0
1, we can derive the present theorem from the case of Π1

1.  For example,

consider the case of m+p-place Π1
n  relations with n odd.  Any such relation is {<x

→
, β

→
>:

(α1)(∃α 2)...(∃α n-1)S(x
→

, β
→

, α
→

)} for some Π1
1 relation S (where naturally α

→
 abbreviates α1,

..., αn-1).  But then by the enumeration theorem for Π1
1 relations, this is {<x

→
, β

→
>:

(α1)(∃α 2)...(∃α n-1)R(e, x
→

, β
→

, α
→

)} for some e,  where R is a Π1
1 enumeration of the

m+p+(n-1)-place Π\O(1,1) relations.  So the relation {<e, \O(x,
→

), \O(β,
→

)>:

(α1)(∃α 2)...(∃α n-1)R(e, x
→

, β
→

, α
→

)} is a Π1
n enumeration of the m+p-place Π1

n relations.  The

other three cases are treated similarly.

(A similar theorem, called the parameterization theorem, holds for S1
n and P1

n relations;
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in that case, relations have functions rather than numbers as indices.)
 We can use the enumeration theorem to prove the following.

Hierarchy Theorem:  For all n, Σ1
n ≠ Π1

n.
Proof:  Let R be a Π1

n enumeration of the Π1
n 

sets of numbers, and let D = {x: R(x, x)}.
Then D is clearly Π1

n, so -D is Σ1
n.  But -D is not Π1

n, for if it were, we would have -D = {x:
R(e, x)} for some e, and so e ∈  -D iff R(e, e) iff e ∈  D.  So -D ∈  Σ1

n - Π
1
n.

So in particular, there is a set D ∈ Σ 1
1 - Π

1
1.  This D is analogous to K; we may as well call it

KΠ.
Most of our earlier discussion of Gödel's theorem can be duplicated in the present case.

(Of course, if a system has the ω-rule, or in general has Π1
1 inference rules, it may decide

every arithmetical statement.  However, this is not to say that it decides every second-order
statement.)  Just as we showed that any system with an r.e. set of axioms and r.e. rules has
an r.e. set of theorems, we want to show that the set of theorems generated by a finite set of
Π1

1 rules is Π1
1.

First, let us associate with each rule of inference with the relation {<x, α>: x follows by
the rule from premises in the set with characteristic function α}, and say that a rule is Π1

1 if
the corresponding relation is.  Thus, the ω-rule is to be identified with the relation
{<(x)A(x), α>: α is the characteristic function of some set that contains A(0(n)) for all n}.
Let χ be a recursive function such that for all formulae A(x), if m is the Gödel number of
(x)A(x), then χ(m, n) = the Gödel number of A(0(n)); then the ω-rule is Π1

1, since the
corresponding relation is defined by the formula (y) α(y) ≤ 0' ∧  (n) α(χ(x, n)) = 0'.  If S is
a set of sentences, then we can get the effect of taking all of the sentences in S as axioms by
having the single rule from any set of premises to infer any sentence in S.  This rule
corresponds to the relation defined by (y) α(y) ≤ 0' ∧  x ∈  S, which is Π1

1 if S is.  Finally, if
R1, ..., Rn are P11 rules, then the relation R = {<x, α>: R1(x, α) ∨  ... ∨  Rn(x, α)} is a Π1

1

relation, and a sentence is a theorem of the formal system consisting of the rules R1, ..., Rn

just in case it is a theorem of the single rule R.  Thus, if we can show that the set of
theorems of a single Π1

1 rule is itself Π1
1, it will follow that the set of theorems of a system

with a Π1
1 set of axioms, a finite number of Π1

1 rules, and the ω-rule is Π1
1.

Given a rule R, let ψ be the following operator on sets:  ψ(S) = {x: R(x, S's
characteristic function)}.  Let φ be the corresponding operator on functions:  if α is the
characteristic function of a set S, then φ(α) = the characteristic function of ψ(S) = the
characteristic function of {x: R(x, α)}.  If R is a rule of inference in any reasonable sense,
then ψ will be monotonic, since ψ(S) = the set of sentences that follow via R from sentences
in S:  if S ⊆  S' and A follows from some sentences in S, then A also obviously follows
from some sentences in S' as well.  The set of theorems of R is the least fixed point of ψ.
Recall that the least fixed point of ψ is the set ∩{S: ψ(S) ⊆  S} = {x: (S)(ψ(S) ⊆  S ⊃  x ∈
S)}.  In terms of the operator φ, this set is {x: (α)((y)[(φ(α))(y) = 1 ⊃  α(y) = 1] ∧ α  is a
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characteristic function ⊃  α(x) = 1)}.  Since (φ(α))(y) = 1 iff R(x, α), this set is defined by
the formula (α)([(y)(R(x, α) ⊃  α(y) = 0') ∧ (y) α(y) ≤ 0'] ⊃  α(x) = 0').  We must check
that this formula is indeed Π1

1.  Since R is Π1
1 and R(x, α) occurs in the antecedent of a

conditional, the formula (y)(R(x, α) ⊃  α(y) = 0') is Σ1
1.  However, that formula itself occurs

in the antecedent of a conditional, so the formula [(y)(R(x, α) ⊃  α(y) = 0') ∧ (y) α(y) ≤ 0']
⊃  α(x) = 0' is Π1

1.  Finally, when (α) is added, the formula remains Π1
1.  We therefore have

the following

Theorem:  If a formal system has Π1
1 set of axioms and a finite number of Π1

1 rules
(possibly including the ω-rule), then the set of theorems of the system is itself Π1

1.

The definition of "weakly represents" for such formal systems is the same as for
ordinary formal systems.  Let S be a set of numbers which is weakly representable in some
such system.  Then S = {n: A(0(n)) is a theorem} for some formula A(x).  Let χ be a
recursive function such that χ(n) = the Gödel number of A(0(n)); then χ reduces S 1-1 to
the set of theorems of the system, and so S is Π1

1.  So any set weakly representable in such
a system is Π1

1.
Conversely, we can find formal systems in the second-order language of arithmetic

which weakly represent all the Π1
1 sets, just as all the r.e. sets are weakly representable in Q.

In particular, if Γ is such a system, then the set of theorems of the system, being Π1
1, is

weakly representable in the system itself.  We can use this fact to construct a sentence that
says '"Gödel heterological" is Gödel heterological', and prove that the sentence is true but
unprovable if the system is consistent.

If Γ is a system all of whose theorems are true, then we can show directly that Γ is
incomplete, by showing that the set of theorems of Γ is not the set of true sentences.  For if
it were, then the set of true sentences of the language would be Π1

1 and therefore definable in
the language itself.  But then by the usual argument satisfaction would also be definable,
which is impossible because the language has negation.

If Γ is Π1
1-complete (i.e. if every true Π1

1 sentence is provable) and consistent, then we
can get a closer analog of Gödel's theorem.  Let S be any Π1

1 set of numbers that is not Σ1
1;

KΠ would do, for example.  Then there is a Σ1
1 formula A(x) that defines -S.  Just as we did

in the original Gödel theorem, we can prove that there are statements of the form A(0(n))
that are true but unprovable in the system.

Arithmetical Truth is ∆1
1.

We have proved that all hyperarithmetical sets are ∆1
1; since we know already that not all

hyperarithmetical sets are arithmetical, it follows that there are ∆1
1 sets that are not

arithmetical.  There is also a direct proof of this, due to Tarski.  We know that the set of true
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arithmetical sentences is not arithmetical; we can use Tarski's famous definition of truth to
show that this set is ∆1

1.
We showed that for a set to be ∆1

1 it is sufficient that its characteristic function be the
unique solution of some arithmetical formula (or even Σ1

1 formula) A(α).  Recall the usual
inductive definition of truth:

0(m) = 0(n) is true iff m = n;
A(0(m), 0(n), 0(p)) is true iff m + n = p;
M(0(m), 0(n), 0(p)) is true iff m.n = p;
~A is true iff A is not true;
(A ⊃  B) is true iff either A is not true or B is true;
(x)A(x) is true iff for all n, A(0(n)) is true.

We can obtain A(α) by writing out this definition in the language of arithmetic, replacing "x
is true" by "α(x) = 1".  From our previous work, we have arithmetical formulae Sent(x),
At(x) and TrAt(x) which define the set of sentences of the language of arithmetic, the set of
atomic sentences, and the set of true atomic sentences, respectively.  We can therefore write
A(α) as follows:

(x)[α(x) ≤ 0' ∧  (α(x) = 0' ⊃  Sent(x)) ∧
(At(x) ⊃  (α(x) = 0' ≡ TrAt(x))) ∧
(y)(z)(i){(Neg(x, y) ⊃  α(x)+α(y) = 0') ∧

(Cond(x, y, z) ⊃  [α(x) = 0' ≡ (α(y) = 0 ∨  α(z) = 0')]) ∧
(UQ(x, y, i) ⊃  [α(x) = 0' ≡ (n)(w)(Subst2(y, w, i, n) ⊃  α(w) = 0')])}]

Where Neg(x, y) holds iff x is the negation of y, Cond(x, y, z) holds iff x is the conditional
(y ⊃  z), and UQ(x, y) holds iff x is the result of attaching the universal quantifier (xi) to x.
We leave it to the reader to verify that this works.

Once we know that all ∆1
1 sets are hyperarithmetical, it will turn out that the set of truths

of the language of arithmetic is also hyperarithmetical.  We can also give a direct proof that
this set is hyperarithmetical; in fact, it turns out to be recursively isomorphic to the set Hn,
where |n|R = ω, that is, it appears at the first level of the hyperarithmetical hierarchy that is
beyond the arithmetical sets.
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Lecture XXV

The Baire Category Theorem.

A subset S of Baire space is said to be dense if for any finite sequence s, there is an α ∈  S
that extends s.  (This definition coincides with the general definition of "dense" for
topological spaces.)

Theorem:  The intersection of a countable family of dense open sets is nonempty.
Proof:  Let O1, O2, ... be dense open sets.  We shall construct a function α ∈ ∩ nOn as
follows.  Let s0 be the empty sequence.  If sn has been defined, let α ∈  On+1 be such that α
extends sn; this is possible because On+1 is dense.  Since On+1 is open, there is an initial
segment t of α such that every function extending t is in On+1.  Let sn+1 be some finite
sequence that properly extends both sn and t.

We have thus defined a sequence s0, s1, ... of finite sequences such that i > j implies that
si properly extends sj, and such that any function extending sn (for n > 0) is an element of
On.  Let α = ∪ nsn; α is a total function.  Moreover, since α extends each sn, α ∈  On for all
n, i.e. α ∈ ∩ nOn.

This is a special case of a more general theorem, known as the Baire Category Theorem.
(The proof of the general theorem is essentially the same as the present proof.)  Notice that
for the theorem to go through, it suffices that each On contain some dense open set, since if
for all n On' is a dense open subset of On, then we can apply the theorem to find α ∈
∩nOn', whence α ∈ ∩ nOn.  (Any set containing a dense set is itself dense, so if On contains
a dense open set at all, the interior or On (i.e. the union of all the open sets contained in On)
will be a dense open set.  Thus, we can take On' to be the interior of On.)  Notice also that
O1 need not be dense, but merely nonempty and open, since then we can let s1 be any
sequence all of whose total extensions are in O1.)

The Baire Category Theorem turns out to have many applications in logic, and if there is
a single most important principle in logic, it is probably this theorem.  It is usually applied
in the following way.  Suppose we want to show that there is a function that satisfies a
certain condition C.  If we can break C down into a countable family of conditions, then we
can find such a function if we can find a single function that satisfies all of those conditions
simultaneously.  If we can arrange things so that each of these conditions is dense and open
(or contains a dense open condition), then the theorem guarantees that such a function
exists.

Cohen's famous proof of the independence of the continuum hypothesis can be seen as
an application of the category theorem.  The theorem can also be seen as a generalization of
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Cantor's diagonal argument.  In particular, we can use it to show that there are uncountably
many total functions on N.  To see this, let F be any countable family of such functions, and
for each α ∈  F, let Oα = {β: β ≠ α}.  Each Oα is open, since two functions are different iff
they disagree on some initial segment, and each Oα is dense, since any finite sequence can
be extended to a function different from α.  It follows that there is a function β such that β
∈  Oα for each α ∈  F, i.e. such that β ∉  F.  (This application of the category theorem really
boils down to Cantor's own proof, since in the latter a function outside F is constructed
stage by stage in just the same way that the function α is constructed in the former.)

Incomparable Degrees.

Let us now consider an application of this theorem.  For all we have said so far, the Turing
degrees might be linearly ordered.  It turns out that they are far from being linearly ordered;
in this section, we shall construct a pair of incomparable degrees, i.e. degrees a and b such
that neither a ≤ b nor b ≤ a.

Call a pair of functions recursively incomparable if neither is recursive in the other.  To
find a pair of incomparable degrees, it suffices to find a pair of recursively incomparable
functions, for then those functions will be of incomparable degrees.  Recall that a function α
is recursive in β just in case α is definable in the language RE with an extra function
symbol for β.  Let us define Weβ to be the relation {<k, p>: (∃ s)(s is an initial segment of β
and W(e, s, k, p))}, and let us identify functions with their graphs.  Then α is recursive in β
just in case α = We

β for some e, and α is nonrecursive in β iff α ≠ We
β for all e.  Thus, α

and β will be recursively incomparable if they satisfy all of the conditions α ≠ We
β and β ≠

W e
α simultaneously; to find such α and β, we need only show that those conditions contain

dense open conditions.

Theorem:  There are incomparable Turing degrees.
Proof:  For any e, let Ae = {[α, β]: α ≠ We

β} and Be = {[α, β]: β ≠ We
α}.  If each of the

Ae's and Be's has a dense open subset, then we can apply the Baire category theorem to
obtain α and β such that [α, β] is in Ae and Be for each e, from which it follows that α and
β are recursively incomparable.  We show that Ae has a dense open subset; the proof that
Be does is the same.

Let Ae' = {γ ∈  Ae:  (∃ s)(s is an initial segment of γ, and any function extending s is in
Ae}.  Ae' is open, for let γ ∈  Ae' and let s ⊆ γ  be such that any function extending s is in Ae;
then any function extending s is also in Ae'.  (In fact, Ae' is the interior of Ae.)  We need
only show that Ae' is dense.

Let s be any finite sequence, and let s1 and s2 be the even and odd parts of s,
respectively (that is, if s = <x0, ..., xn>, with n = 2m, then s1 = <x0, x2, ..., x2m> and s2 =
<x1, x3, ..., x2m-1>, and similarly if n = 2m+1); we need to show that some function
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extending s is in Ae'.  It suffices to find an s' extending s (or extended by s) such that any
function extending s' is in Ae.  Notice that if γ = [α, β], then γ extends s iff α extends s1
and β extends s2.

Case 1:  We
β ⊆  s1 for all β extending s2.  In that case, Weβ ≠ α whenever α and β

extend s1 and s2, because any such α is total and therefore properly extends s1, so we can
let s = s'.

Case 2:  We
β ⊆/  s1 for some β extending s2.  Fix β, and let <k, p> ∈  We

β - s1.  Let s2' be
an initial segment of β such that W(e, s2', k, p ); then <k, p> ∈  We

β' for all β' extending s2'.
We can find an extension s1' of s1 such that <k, p> ∉ α ' for all α' extending s1:  either s1'
has a kth element that is different from p, in which we can let s1' = s1, or s1' has no kth
element, in which we can let s1' be an extension of s1 whose kth element is different from p.
Let s' be an extension of s such that the even and odd parts of s' extend s1' and s2'.  Then
whenever [α, β] extends s', [α, β] ∈  Ae, as required.

We can also give a direct proof that does not appeal directly to the category theorem.

Second Proof:  We construct finite sequences s0, s1, s2, ... and t0, t1, t2, ... such that α =
∪ nsn and β = ∪ ntn are total functions; we then show that α and β are recursively
incomparable.

Let s0 = t0 = Ø.  Suppose sn and tn have been defined.  If n = 2m, we proceed as
follows.  If Wm

β ⊆  sn for all extensions β of tn, then let sn+1 and tn+1 be any finite sequences
that extend sn and tn.  Otherwise, find an extension tn' of tn and a pair <k, p> such that W(e,
tn', k, p), and let sn' be an extension of sn such that α(k) ≠ p for all extensions α of sn', as in
the first proof.  Let sn+1 = sn' and tn+1 = tn'.  If n = 2m+1, then do exactly the same, except
reversing the roles of s and t.

Now let α = ∪ nsn and β = ∪ ntn.  If α is recursive in β, then α = Wm
β for some m; but α

and β extend s2m and t2m, and it is clear from the construction of the s's and t's that α ≠ Wm
β

for any such α and β.  So α is not recursive in β, and by same argument β is not recursive
in α, i.e. α and β are recursively incomparable.

The construction of the s's and t's in this proof is not effective, since if it were, α and β
would be recursive and therefore recursively comparable.  In particular, we cannot
effectively decide whether Wmβ ⊆  sn for all extensions β of tn, since that would involve
surveying all the infinitely many extensions of tn.  However, if we had an oracle which gave
us the answer to this question, we could use it to effectively construct α and β, so α and β
would be recursive in the oracle.  We can therefore modify the proof to place an upper
bound on the Turing degrees of α and β.

Theorem:  There are incomparable Turing degrees below 0'.
Proof (sketch):  It suffices to show that the functions α and β constructed in the above
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proof are recursive in 0'.  Consider the relation R = {<s, t, m>: Wm
β ⊆  s for all β extending

t}.  The relation -R is r.e., since <s, t, m> ∈  -R just in case (∃ t' extending t)(∃ k)(∃ p)(W(m, t',
k, p) ∧  <k, p> ∉  s).  It follows that both R and -R are recursive in 0'.  Let φ be a partial
function which uniformizes the r.e. relation {<s, t, [t', k, p]>:  t' extends t ∧  W(m, t', k, p) ∧
<k, p> ∉  s}.

We can then construct sn and tn effectively in terms of R and φ.  Specifically, we set s0

= t0 = the code of the empty sequence.  If n = 2m, we set sn+1 = sn^<0> (i.e. the
concatenation of sn with the unit sequence <0>) and tn+1 = tn^<0> if R(sn, tn, m) holds.  If
R(sn, tn, m) doesn't hold, let [t', k, p] = φ(sn, tn).  Then t' extends tn, and for any β extending
t', <k, p> ∈  Wm

β - sn.  We then let tn+1 = t' and let sn+1 be some extension of sn such that the
kth element of sn+1 exists and is different from p.  (sn+1 can obviously be found
effectively.)  If n = 2m+1, we do the same, but with the roles of s and t reversed.

So we see that the maps n → sn and n → tn are recursive in 0'.  α and β are therefore
also recursive in 0', since α(n) = the nth member of the sequence s2(n+1) and β(n) = the nth
member of the sequence t2(n+1).

This theorem was originally proved by Kleene and Post.  Notice that it does not show that
there are any incomparable r.e. degrees, since a degree can be below 0' without containing
any r.e. sets.  In fact, the proof that incomparable r.e. degrees exist is a souped-up version
of the proof we just gave.

We can also get a refinement of these results:

Theorem:  For any nonrecursive degree a, there is a degree incomparable with a.
Proof:  Let α be a total function of degree a; we need to find a function β recursively
incomparable with α.  For all e, let Ae = {β: α ≠ We

β} and Be = {β: β ≠ We
α}; it suffices to

show that each Ae and each Be has a dense open subset.  Be is dense and open already, as is
easily seen.  Let Ae' be the interior of Ae as before, i.e. Ae' = {β: (∃ s ⊆ β )(β')(if β' extends s
then α ≠ We

β'}.  We need only show that Ae' is dense.
Let s be any finite sequence; we need to show that Ae' contains some function extending

s, i.e. that there is a sequence s' extending s such that for all β extending s', α ≠ We
β.

Suppose this is not the case; then for all s' extending s there is a β extending s' such that α
= We

β.  In that case, α = {<k, p>: (∃ s')(s ⊆  s' ∧  W(e, s', k, p))}.  (Suppose <k, p> ∈ α ; since
there is a β extending s such that α = We

β, there is an s' extending s such that W(e, s', k, p).
On the other hand, if s' extends s and W(e, s', k, p), then <k, p> ∈  We

β for all β extending s';
since We

β = α for some such β, it follows that <k, p> ∈ α .)  But in that case, α is an r.e.
relation and is therefore a recursive function, contradicting our assumption that a is a
nonrecursive degree.

We can refine this a bit further and show that for any nonrecursive degree a, there is a
degree b below a' that is incomparable with a.  The proof of this is like the proof that there
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are incomparable degrees below 0'.  (Notice that this result does not directly imply that there
are incomparable degrees below 0', because we cannot take a = 0.)

The Separation Theorem for S1
1 Sets.

In this section, we show that every D1
1 set is Borel.  In fact, we shall prove something

stronger.  Call a pair (S1, S2) Borel separable if there is a Borel set which contains S1 and
is disjoint from S2.  We shall prove a theorem due to Lusin, namely that any disjoint pair of
S1

1 sets is Borel separable.  If S is D1
1, then (S, -S) is a disjoint pair of S1

1 sets, so there is a
Borel set B which separates S from -S; but then S = B, and therefore S is Borel.

Notice that a set S is Borel inseparable from a set T iff there is no Borel set B with S ⊆
B ⊆  -T.  We begin by proving the following.

Lemma:  If S = ∪ nSn and S is Borel inseparable from T, then there is an n such that Sn is
Borel inseparable from T.
Proof:  Suppose Sn is Borel separable from T for each n.  For each n, let Bn be a Borel set
such that Sn ⊆  Bn ⊆  -T.  Then ∪ nSn ⊆  ∪ nBn ⊆  -T.  But then S = ∪ nSn is Borel separable
from T, since ∪ nBn is Borel.

Corollary: If the sets of two countable unions are pairwise Borel separable, then the two
unions are Borel separable.

Theorem:  Any two disjoint S1
1 sets are Borel separable.

Proof:  Let S1 and S2 be any two S1
1 sets, and assume that S1 and S2 are Borel inseparable.

We show that S1 ∩ S2 ≠ 0.  Since S1 and S2 are Σ1
1, there are relations R1 and R2 on N

such that

S1 = {β1: (∃α 1)(x)R1(α–1(x), β–1(x))},
S2 = {β2: (∃α 2)(x)R2(α–2(x), β–2(x))}.

We construct four infinite sequences <a1
(n)>, <b1

(n)>, <a2
(n)>, <b2

(n)>, where a1
(n), etc. are

sequences of length n.  First, set a1
(0) = b1

(0) = a2
(0) = b2

(0) = the empty sequence.  If s and t are
finite sequences, let

S1
s, t = {β1: (∃α 1)(s ⊆  α1 ∧  t ⊆ β 1 ∧  (x)R1(α–1(x), β–1(x)))}

and define S2
s, t similarly.  In particular, let S1

(n) = S1
a1

(n), b1
(n) and S2

(n) = S2
a2

(n), b2
(n).  Then

S1
(n) = {β1: (∃α 1)(α–1(n) = a1

(n) ∧  β–1(n) = b1
(n) ∧  (x)R1(α–1(x), β–1(x)))}
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and similarly for S2
(n).  Now suppose a1

(n), b1
(n), etc. have been defined and S1

(n) is Borel
inseparable from S2

(n), and define a1
(n+1), etc. as follows.  Notice that S1

(n) = ∪ {S1
s, t: s and t

are sequences of length n+1 that extend the sequences a1
(n) and b1

(n), respectively}, so by our
lemma, we can find such s and t so that S1

s, t is Borel inseparable from S2
(n).  Let a1

(n+1) = s
and b1

(n+1) = t for some such s and t.  So S1
(n+1) is Borel inseparable from S2

(n).  Similarly,
we can find sequences s and t of length n+1 which extend a2

(n) and b2
(n) and such that S2

s, t

is Borel inseparable from S1(n); let a2(n)= s and b2(n)= t for some such s and t.  S1
(n+1) and

S2
(n+1) are therefore Borel inseparable.

Thus, the S1
(n)'s and S2

(n)'s are progressively narrower subsets of S1 and S2 that are Borel
inseparable if S1 and S2 themselves are.  Moreover, a1

(n) properly extends a1
(m) when n > m,

and similarly for b1, a2, and b2; so we can define α1 = ∪ na1
(n), β1 = ∪ nb1

(n), and similarly for
α2 and β2.

Observe that β1 = β2.  For suppose not; then β1(n) ≠ β2(n) for some n.  Let p = β1(n),
and let O = {β: β(n) = p}.  O is open, as is easily seen, and is therefore Borel.  However,
S1

(n+1) ⊆  O and S2
(n+1) ⊆  -O, so S1

(n+1) and S2
(n+1) are Borel separable, contradiction.

We now show that S1 intersects S2 by showing that β1 ∈  S1 ∩ S2.  To prove this, it
suffices to show that (x)R1(α–1(x), β–1(x)) and (x)R2(α–2(x), β–2(x)).  We prove the former;
the proof of the latter is the same.  Suppose ~(x)R1(α–1(x), β–1(x)).  Then for some n, ~R1(α–

)1(n), β–1(n)).  By our definition of a1
(n) and b1

(n), this just means that ~R1(a1
(n), b1

(n)).  It
follows that S1

(n) = Ø.  But then S1
(n) is a Borel set that separates itself from S2

(n), which is
impossible. This concludes the proof.

We have already seen that all Borel sets are D1
1; we have therefore established Suslin's

theorem:  D1
1 = Borel.  This is an unusually simple proof for such a sophisticated result.

Notice that it is similar in flavor to the proof of the existence of incomparable degrees; in
particular, the function β1 is constructed via a stage-by-stage process.

Exercises

1. Consider the language of arithmetic with one extra predicate P(x).
(a) Consider a system in this languaßge whose axioms are an r.e. set of the language of

arithmetic containing Q. Add the axioms P(0(n)) for each n∈ S, where S is any set. No
axioms except these contain the extra predicate P. Assume that the resulting system is ω-
consistent. On these assumptions, characterize the sets weakly representable in the system
and prove the characterization.

(b) Make the same assumptions as in (a) except that now we have P(0(n)) for each n∈ S
and ~P(0(n)) for each n∉ S. Characterize the weakly representable sets and prove the
answer.
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(c) Under the assumptions of (b), characterize the strongly representable (binumerable)
sets, and prove the answer.

2. Consider a system in the second order language of arithmetic (i.e., the language of
arithmetic supplemented with variables and quantifiers for 1-place number theoretic
functions), with a Π1

1 set of axioms containing at least the axioms of Q, and with the ω-rule
added to the usual logical rules.

(a) Under the assumption that all the axioms are true, define a statement analogous to
'"Gödel heterological" is Gödel heterological' and show that it is true but undecidable.

(b) Show that every true Π1
1 sentence is provable. Use this to show that if all of the

axioms are true, then the sets weakly representable in the system are precisely the Π1
1 sets.

(Hint: Prove the contrapositive (i.e., that if a Π1
1 sentence is not provable, then it is not true)

by a method similar to the proof of the S1
1 separation theorem and its corollary the Suslin

characterization of the D1
1 sets. You may assume in your proof that the system contains any

reasonable axioms, over and above those in the language of arithmetic, to handle function
quantifiers; in particular, relevant axioms might include (m)((n)(α(m)=n⊃ A(α)))⊃ A(α).)

(c) Let A(x) be a Σ1
1 formula with one free number variable. Using (b), show that if the

system is consistent and the set defined is not Π1
1, then some sentence of the form A(0(n))

is true but unprovable.
(d) Show that if the system is consistent (not necessarily true), then the statement

'"Gödel heterological" is Gödel heterological' of part (a) must be true but unprovable.

3. Let R be any binary relation on the natural numbers. Suppose that for any partial
recursive function φ there is a total recursive function ψ such that R(ψ(x),φ(x)) whenever
φ(x) is defined. Prove that, under this hypothesis, for any total recursive function χ there is a
number m such that R(m,χ(m)). Show that immediate consequences of this principle for
suitable choices of R are: the self-reference lemma, that every maximal enumeration has the
fixed-point property, and that there are two disjoint r.e. sets without recursive separation.


