Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Lecture XVII

The Evidence for Church's Thesis.

In most courses on recursion theory, some mention is usually made of the evidence for
Church's thesis. The evidence that is usually cited includes Turing's original analysis of the
notion of computability which led to his definition of Turing machines, the now very
considerable experience of recursion theorists in showing that intuitively computable
functions can be shown to be recursive, and the fact that a large class of formal notions of
computability have been proved equivalent. Here we shall discuss a piece of evidence for
Church's thesis of a different kind.

Letl be any r.e. set of axioms in a language that includes the language of arithmetic but
which may contain extra predicates and function symbols. Then the set of theorems of
will be r.e., and therefore any set or relation weakly representdbleilhbe r.e. (The
proof thatl™'s theorems form an r.e. set is just as before, except that the possibility of extra
function letters makes matters a bit more complicated. In particular, the universal
instantiation axiom will have to be given a more complicated set of restrictions.) Therefore,
one way to show that a set or relation is r.e. is to find a sultahlevhich it is weakly
representable.

For example, we may use this method to show that the factorial function is recursive, by
finding al” in which its graph is weakly representable. We fbrby adding to the
language of arithmetic the new unary function letter f and adding to the axioms of Q the
following new axioms:

f(0) = 0;
()(F(x) = (x)-(x)).

(We could give similar axioms, and include an axiom of existence and uniqueness) for a
two-place predicate letter instead of a function letter). It is easy enough to $eé that
f(o(n)) = 0(K) iff k = n!. (To see that k = n! impligs fi f(0(N)) = 0(K), argue by induction
onn. To see that fi f(O(n)) =0(K) implies k = n!, we need only show thats consistent;
but the standard model for the language of arithmetic, expanded by interpreting f as the
factorial function, is a model &%.) Thus the formula f(x) = y weakly represents the graph
of the factorial function if. We thus see how to show, in a wide range of cases, that a
function is recursive by defining it by a system of equations.

We can also use this idea to give an informal argument for Church's thesis. If we have a
set of discrete directions in classical mathematics, then it should be a corollary of our ability
to construct appropriate formalisms to codify mathematical practice that that set of

124

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

directions codifies a recursive procedure. A computation procedure is a set of instructions
which says what to do at any stage in the computation explicitly in terms of what went on at
the previous stage. Thus, given the state of a system at stage n of a computation, the state at
stage n+1 should follow as a matter of logic. Assuming that informal logical reasoning can
be carried out within a formal deductive system, it ought to be possible to give af set
axioms such that whenever A is a description of the state of the system at stage n of the
computation and B is a description of stage n+1, thexfi B. Thus, if | is a description

of the initial conditions, we should havel fi A whenever A is a description of the state of

the system at stage n, for any n. If A does indeed follow froinwe know that it will be
provable from them, by the completeness theorem. Moreover, since there are only finitely
many instructiond; ought to be finite, and therefore r.e. Thus, any relation weakly
representable ih will be r.e. If I(x) is a formula in the languagelothat says that the
computation starts with input n, and O(x) says that the computation eventually halts with
output x, then we should hal/di I(O(”)) [O(O(k)) whenever input n yields output k; thus

the formula I(x)] O(y) will weakly represent the graph of the function that the procedure
computes, and that function will therefore be partial recursive.

Besides being an argument for Church's thesis, the foregoing can be tightened up in
particular cases to yield a proof that all functions computable by some particular sort of
computation procedure are in fact partial recursive. For example, we could prove that all
functions computable by a Turing machine are in fact partial recursive, by setting up a
formal systeni” containing, besides the language of arithmetic, predicates relating to
squares on the machine's tape and axioms relating the state of the system at one time to its
state at the next time. This could be done by adding only finitely many extra predicates and
only finitely many new axioms, gowould certainly be r.e. Then we could write out a
formula I(x) which says that in its initial state, the tape contains marks representing the
number x; and a formula O(x) which says that when the machine halts, the tape contains
marks representing the number x. Then the formuld1(@)y) will weakly represent the
graph of the function that the machine computes.

Note that™ may contain, besides new predicates of numbers, names of new objects
besides the numbers; we may also @ian interpretation in which the domain contains
objects besides natural numbers. That domain may contain squares on a Turing machine's
tape, for example. We can still talk about the sys$temithin the language RE, sin€ds
still a collection of formulae, which we can code up as numbers, even though we are
thinking of " as being about objects other than numbers.

Relative Recursiveness.

We have already seen, in our study of 1-1 and many-one reducibility, ways in which one
decision problem can be "reduced" to another. If a set A is many-one reducible to a set B,

125

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

then if you had an "oracle" which told you, for any given number y, whethds ythen
you could tell effectively whether® A for any given x: simply computgx) (whereg@is
the function that reduces A many-one to B) and ask the oracle wipetherB.

In general, a set A is said to be reducible to a set B if we can find a computation
procedure for deciding membership in A which is allowed to use an oracle to B. In the case
of many-one reducibility, the way in which the oracle can be used is very limited: it can
only be consulted once in the course of the computation, for example. By allowing the
oracle to be used in different ways, we get broader reducibility notions; in this section, we
shall concentrate on the broadest such notion.

Let us say that a set & semi-computable from a positive oracle fe(&, issemi-
computable from a semi-computation gf iSthere is a semi-computation procedure for S
which is allowed to consult, at arbitrarily many times in the course of the computation, an
oracle that gives positive information abogt $hat is, when the oracle is asked a question
of the form "is X0 $?", it always answers "yes" ifX S,, but remains silent whenx S,.

The oracle reserves the right to take as long as it wants in answering any given question, so
if at any given time the oracle has not answered, the semi-computation procedure cannot
conclude that the answer is "no". The procedure can do other things while it is waiting for
the oracle to answer; it can also ask the oracle several questions at once (or ask it a question
before it has answered a previous question).

(Equivalently, rather than answering questions, the oracle could list the elements of S
not necessarily in order. Consulting the oracle about whethiexvould then amount to
waiting for x to appear in the listing 0p.SThis is the approach used by Hartley Rogers.)

Similarly, let us say that;Ss computable in Sif there is a computation procedure for
S; which has an oracle t@,S.e. an oracle which gives both positive and negative
information about § which it is allowed to consult at arbitrary points in the computation.
There is also a mixed notion: we say thaisSemi-computable in,3f there is a semi-
computation procedure for &hich has an oracle that gives both positive and negative
information about &

For all of these notions, we can allow, not just one oracle, but several oracles to several
different sets. That is, we can say that S is semi-computable from semi-computations for
Sy, ..., S if there is a semi-computation procedure for S with positive oracles to, §;
and similarly for the other notions.

Given the notion of being semi-computable in a semi-computation of a set, we can
define the other notions. For examplejsSsemi-computable inp$ust in case £is semi-
computable from semi-computations of &, and $ is computable in Sf both § and
-S; are semi-computable inp.SEquivalently, $is semi-computable in,S S; is semi-
computable from a semi-computation of the characteristic function qHgre we identify
the functionp with the set {{[n@n)]: N N}.)

Now let us give formal counterparts for these intuitive notions. Alongside the notion of
semi-computability in a semi-computation, we have the notion of enumeration reducibility:

126

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

we say that §is enumeration reducibleo S and write $<¢ S, if S; is definable in the
language RE[P], the result of adding to RE the unary predicate P and interpreting it as
applying to the elements 0f.SMore generally, S is enumeration reducible to the sets S
.., 3 if Sis definable in RE[R ..., R], the result of adding to RE the new unary predicates
Py, ..., B and interpreting each B =1, ..., n) as applying to the elements jof Bore
generally still, we could add new k-place predicates (for k > 1) and new function symbols to
RE and define a notion of enumeration reducibility to a collection of sets, relations, and/or
functions. We shall see that all of this reduces to the case of enumeration reducibility to a
single set.

We say that Sisr.e. InS if S; < S, -S (equivalently, iff § < the characteristic
function of $), and that $is recursive inor Turing reducible t&5, (S, <t) iff both §
and -Sarer.e.ing SoS <t Siffboth § < S, -S and -§ < S, -S. We do not
use a notation for "r.e. in" involvings®, for it will turn out that the relatio; isr.e. in Sis
not transitive.

There is a relativized form of Church's thesis: a g& &cursive in Siff S; is
computable in $(or in terms of semi-computability; & enumeration reducible t@ &
S, is semi-computable from a semi-computation f)r &s in the unrelativized form, there
is an easy direction which we can prove (i.e. that anything satisfying the formal notion
satisfies the informal notion) and a harder, converse direction which has not been proved.

Let us now check that the relations we have written wittl' are transitive. We have
already checked this far; and<,, so we only have to check it fgg and<t. Suppose S
<eSand $ < S3. Then S is defined by some formula A(x) in the language RE#d
S, is defined by some formula B(x) in the language REMhere B has as its extension
the set $and B has as its extension the sgt et C(x) be the formula obtained from
A(x) by replacing each occurrence of¥) by B(y), for any variable y. Jand B define the
same set, so A(x) and C(x) define the same set, namditSC(x) is a formula of RERP,
so S is definable in RE[f], i.e. § <¢ Ss.

Now suppose that1St S and S <t S3. Both § and -3 are<¢ S, -S,, and both &
and -S are<e Sz, -S3, S0 § and -§ are<e S, -S3, i.e. § <7 S3. (Actually, for this to
work, we need to use something slightly stronger than the transitidfyforf single sets:
we need that if X, Y, Z and both Y and Z ar, U, V, then X< U, V.)

However, this proof will not show that the relatiog. inis transitive. Suppose we tried
to show that this relation is transitive in this way. Given thas &e. in $ and that is
r.e.in §, we can conclude that 8¢ S, -S and that $<¢ S3, -S3. But to show that Sis
r.e.in §, we must show that;S¢ S, -S3, and we can't conclude this from the transitivity
of <¢, since we don't know that>8¢ S3, -S3. In other words, given both positive and
negative information abougSve only get positive information about, &nd we need
positiveand negativenformation about Sto get positive information aboui.S

If a set Sisr.e., then for all,S5, < S iff S; is r.e. This is simply because RE[P] has
the same expressive power as RE in this case, since the set P defines is already r.e.

127

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Similarly, if S is recursive, them &t S iff S; is recursive. Thus, all r.e. sets bgato each

other and collectively form a bottom element ingherdering; similarly, the recursive sets

form a bottom element in tl&- ordering. Observe that -K is not enumeration reducible to

K, since Kis r.e. but -K is not r.e.; however,<KK, since -t Sforany set S (87 S

by reflexivity, and whenever&t S, -S <t S by the definition oky). Notice also that
-Kisr.e. in K, since every set is r.e. in its complement, and that K is r.e. in &, since any r.e.
setisr.e. in any other set. But-Kis notr.e.in @, since -Kisr.e.in @ & N iff -K

is r.e. So transitivity fails for the relatiore. in

While the relatiorm.e. inis not transitive, it has the following "weak transitivity"
property: if Aisr.e.in B and B is recursive in C, then Aisr.e.in C. To see this, suppose A
isr.e.in Band Bt C. Then A<¢ B, -B and both B and -B arg C, -C; so by the
transitivity of<e, A< C, -C, i.e. Aisr.e.inC. If &rBand Bisr.e. in C, however, it does
not follow that Aisr.e.in C. (e.g. -KkrKandKisr.e.in @, but-Kis notr.e.in @.)
Nonetheless, if A, B and B is r.e. in C, it does follow that A is r.e. in C, again by the
transitivity of<e.

The relations and<t are also reflexive, as is easily seen.

Let us now prove some elementary facts about our reducibility notions. First of all, both
SiseSand S <t S imply that Sisr.e. in G, as is easily seen from the definitions. The
converses fail, however. We also have that{SS 0 S5 S 0O S <1 S, so the
relations<t, <, and<, are progressively stronger reducibility notions. (It is clear that S
<1 S implies § <, Sp; we shall see shortly that the other implication holds.)

SISsmS 0O § < S suppose &m S, and letp be a recursive function such that x
O S iff x) O S,. Let F(X, y) definap's graph in RE. Thend)(F(x, y) O P(y)) defines
S; in RE[P] (where P is givemny&s its extension in RE[P]). Also, we havesg S, O
S1Em S0 -$5-S). Soif § < S, then $< S, -S (since < S), and -3 <¢
S, -S (since -3 < -S)), S0 § <7 S. We therefore havei1Sn S 0 $ <1 S,. Letus
summarize what we have now proved:

S1S U SismS U SIsTS
O O
S1eS O Srein$S

In each case, the converse fails (though so far we have only proved this for thegase S

S0 S1<m'Sy). Also,

S$151S =« 551-S

0 0
S1 <m 52 And 'Sl <m '52
O O

ST = Sis7-3

128

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

The only part of this we haven't explicitly proved is the final equivalengg S, = -$ <t
-S,. However, this follows trivially from the definition &f;.

Notice that in proving that:&, S 0 $ <1 S, we actually showed that 81 S,
implies that $<¢ S, and -§ <¢ -S. When this relation obtains betweena®d $, let us
say that $is enumeration bireducibl®s $ and write $<ceS,. (Neither the term nor the
notation is standard, as the notion has not been explored in the literature.) It is easy to see
that § < S, implies both $<¢ S, and § <t S, but the converses do not obviously hold
(and in fact are false). We can thus extend our diagram:

S11S U S1smS O S15eS O SstS
O O
S15eS 0 Sire.inS

129

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Lecture XVIII

Recursive Union.

We will now show how the notion of enumeration reducibility to a relation, or to a function,
can be reduced to the notion of enumeration reducibility to a set. In fact, the most obvious
thing works here: if R is an n-place relation and S is a set, let Ri,={[%]: R(X4, ...,

Xn)}; then S<e R iff S<e R'. Similarly, if@is a total n-place function and F = {|x.., X,

y]: @X1, ..., %) = Y}, then S<e @iff S <¢ F. To show this is simply to show that the
languages RE@Pand RE[®] (resp. RE[f]) have the same expressive power, whéris P
interpreted as the relation R (respisfinterpreted as the functia), and I'%is interpreted

as the set R' (resp. as the set F). To show this, we simply show how a formula in either
language can be translated into the other language. For simplicity, we concentrate on the
case of the 2-place relation R. If A is a formula of BE[Et A* be the formula of RE[R

that comes from A by replacing all occurrences,R) by B([x, y]); and if Bis a

formula of RE[I%], let BT be the formula of REfPthat comes from B by replacing all
occurrences ofileo by Oy)(C2)(x = [y, z]O P}(y, z)). It then suffices to check that A is
equivalent to A* and that B is equivalent to Bf.

We can use this result to show that being r.e. in a relation or function (resp. Turing
reducibility to a relation or function) reduces to being r.e. in (resp. Turing reducibility to) a
set. Again, we focus on binary relations for simplicity. Suppose Sisr.e.in R;faéh S
-R, and the above proof will show thatSR', -R’, so Sis r.e. in R'; the converse is proved
similarly. (Matters are a bit delicate here, since -(R’) is not the same set as (-R)’; so we
really have to show that§ R', (-R)" iff S<¢ R, -R".) Now suppose& R. Then both S
and -S arer.e. in R, and so, as we have just seen, both S and -S are r.e. iIERR's0 S
Again, the converse is proved similarly.

We can also show that reducibility to several sets is nothing over and above reducibility
to a single set. What we really want is a pairing functiosetgif Ttis such a function,
then we want to show thatsg S;, S iff S < T(S1, $). (This is analogous to our use of a
recursive pairing function amumbergo reduce relations and functions to sets.) In fact, we
do have a suitable pairing function. For any se@8 $, we define theecursive union
of Sy and S (written S U S) to be the set {2n: Al S} O {2n + 1: n0 Sy}, It is easy to
verify that the function is indeed a pairing function on sets of natural numbers. In fact, it
is anontopairing function, i.e. every set S igs $S, for some $and $. S and S are
called theevenandodd partsof S, respectively.

The idea behind recursive union is one that is familiar from other branches of
mathematics: SU S is the union of disjoint copies of &nd $. It is different from
ordinary unions in the following striking way: whereas{5S;) =-S n -$, -(S U)
=-S5 U -S,. (Proof: the even part of {8) is{n: 2n0 -(SSU)} ={n: 2n O (Sy U

130

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

)} = -S3, and similarly for the odd part.)

It can then be shown thatsg S;, S Iff S<c S U S, and similarly that Sisr.e. i S
Siff Sisre.inQU Sy, andthat &1 S, S iff S<7t S U Sy, Using this it is easy to
show how to reduce the case of several sets to the case of one set by iterating the recursive
union function.

Observe that Sand $ are both 1-1 reducible tg 8 Sy: in the case of Shy the map
X - 2X, and in the case op By the map x> 2x + 1. It follows that $and S <, S, U
Sy thatgand $S<. S U Sy, that S and Sarer.e. in U Sy, and that $and S <t S U
S,. Thus, the set;3J S, is anupper boundf S; and $ with respect to all of these
reducibility notions.

In fact, something more is true: for any set S*1if$ <¢ S*, then U S < S*; and
the same holds fatr. For suppose$S <e S*; then we have a formula A(x) and a
formula B(x) of RE[P] that define;&nd S, respectively; then the formulaX)((A(x) Oy
=2x)0(B(x) Oy = 2x + 1)) defines U S, in RE[P]. Similarly, if g and $ are r.e. in
S* then S and $ are<q S*, -S*, SO U S; < S*, -S*, i.e. U Syisr.e. in S*. Now
suppose $and $ are Turing reducible to S*. They are r.e. in S*, s &y is r.e. in S*.
Also, -S, and -$ are both r.e. in S*, s0 (% $) =-S U-Sisre.inS* SoHu S,
<t S*.

Thus, besides being an upper bound 08l $, the set SU S, is aleastupper
bound of $and $ with respect t&e and<r, in the sense that whenevearé®d $ are both
reducible to a given set; 8 S is also reducible to it.

Enumeration Operators.

Let us concentrate on the relaten § <. S iff S1 is defined by some formula of RE[P];

let A(X) be such a formula. What set A(x) defines will depend on the extension of the new
predicate P; in fact, the set A(x) defines faractionof P's extension. Given any formula of
RE[P], we can therefore associate with it an operafoom sets to sets, such thigiS) =

the set defined by A(x) when P is given S as its extension. Such an operator is called an
enumeration operatorWe see that:&e S just in case §= Y(S,) for some enumeration
operatonp. Note also thap(S) < S for ally and S.

We can also allowp to have several arguments (by letting the corresponding formula
have several extra predicates), and we can allow its values to be relations (by letting the
corresponding formula have several free variables). So in general, for any n and k, each
formula A(x, ..., %) of RE[P,, ..., B] corresponds to an n-place enumeration operator from
sets to k-place relations. (Or we could allow the arguments themselves to be relations, by
considering formulae with extra non-unary predicates.) In general, we will be concerned
with the cases in which n = 1. We do not require that k > 0; when k = 0, the values of the
enumeration operator are truth values.

131

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Let us now verify two important properties of enumeration operators. The first is
monotonicity An operator is said to be monotonic if whenever$S,, P(S;) O Y(Sy).
(Whenuy takes as its values the truth values T and F, then we salyithatonotonic if
whenever $0 S andy(Sy) = T, then(Sp) = T.) The second fniteness An operator is
said to be finite if for all x and S,X Y(S) iff there is some finite@31 S such that X1
W(So).

Once we have proved monotonicity and finiteness for the case k = 0, the result will
follow for all k > 0. To see this, suppogas an enumeration operator corresponding to a
formula A(x, ..., %) of RE[P], and suppose 8§ S,. Suppose <a..., &> 0 P(S1). Then
<a, ..., &> satisfies A(x, ..., %) when P is interpreted asg, So the sentence @(@1),
o(an)) of RE[P] is true. By monotonicity for k = 0, ®(@1), ...,0(&)) remains true when P
is interpreted as;Sand so <@ ..., > still satisfies A(X, ..., %), I.e. <&, ..., &> O Y(Sy).
Since the n-tuple <sa..., > was arbitrary, it follows thap(S;) O Q(Sp). Similarly,
suppose finiteness holds for the case k = 0, and suppgse,<g b (S). Then <g ...,
a,> satisfies A(x, ..., %) When P is interpreted as S, s®&), ...,0(&)) is true; by
finiteness, AQ(a1), ...,0(&n)) is true when P is interpreted asf@ some finite §0 S, so

<a, ..., &> W (S).

Theorem: Monotonicity holds for enumeration operators.

Proof: By the foregoing discussion, we need only show that if A is a sentence of RE[P]
and A is true when P is interpreted astBen A remains true when P is interpreted-as S
whenever $1 S,. (To save words, let us say that A is tru&to mean that A is true when
P is interpreted as S.) We show this by induction on the complexity of RE[P] sentences.
Atomic sentences are either sentences of RE or sentences of theO(ﬂ})] Htbe former

are true or false independently of how P is interpreted, @8B)pis true in S iff O S, so
obviously the theorem holds forG@'(')). If the theorem holds for A and B, and /B is

true in §, then both A and B are true in &1d by the inductive hypothesis remain true in
S; therefore, ALB is true in $. The remaining cases offer no difficulty and are left to the
reader.

Theorem: Finiteness holds for enumeration operators.
Proof: Again, we only have to show that a sentence A of RE[P] is true when P is
interpreted as some set S iff A is true when P is interpretegifas sbme finite 1 S.
The "if" part is trivial, by monotonicity. We prove the "only if* part by induction on the
complexity of sentences. If a sentence is atomic, it is either a sentence of RE or of the form
P(O(n)). In the former case, the interpretation of P is irrelevant to its truth, so we cag take S
= @. Inthe latter case, if) is true in S, then A S, so we can take,$ {n}.

If A OOBis true in S, then either A or B is true in S; suppose A is. Then by the inductive
hypothesis, A is true ing3or some finite 00 S, so the sentencelAB is also true in &

If A OB s true in S, then both A and B are true in S, so by the inductive hypothesis

132

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

there are finite sets;SS, [1 S such that A and B are true in&hd S, respectively. So by
monotonicity, both A and B are true in the finite set$ 0 S, and so A B is true in
So.

If (IK)A(X) is true in S, then the case is like disjunction0() is true for some n, so
by the inductive hypothesis @((“)) is true in g for some finite $1' S; so [(X)A(X) is true
in .

If (x < 0(M)A(x) is true in S, then the case is like conjunction0)A(., AQN-1) are all
true in S, so by the inductive hypothesis they are true in finite gets S, respectively.

So by monotonicity, they are all true in the finite se& O ... [0 S,. So the sentence (x
<0(M)A(x) is itself true in $.

The set §is sometimes calledfaite supportfor the sentence.

We can use the last theorem to prove a normal form theorem for sentences or RE[P].
Let A be such a sentence. Ais true in S iff for some fijte S, A is true in & (And by
the discussion above, this also holds if A has free variables.) We can write out the right side
of the "iff" in RE[P]. Let s be some variable that does not occur in A, and let A* be the
result of replacing all occurrences of P(t) khy ¢, for t a term. A* is thus a formula of RE.
Let s P abbreviate the RE[P] formula (x < s){>)s 0 P(x)). Then A is equivalent to the
formula (5)(sJ POA*). Thus, the extra predicate P can be segregated off, as it were, so
that it only occurs in the conjunctsP.

The normal form theorem gives us an enumeration theorem: to get an enumeration of
the n-place relations definable in RE[P], we simply replace A* by the formula W¢e, s, X
Xp). If an n-place relation R is definable in RE[P], then it is definable by a normal form
formula (8)(sO PO A*(X 1, ..., %)), and A*(x, ..., %) is equivalent to WI(€), s, X, ..., %)
for some e, so R is defined by the formulg)(s0 POW(O(®), s, x, .., %)); S0 (B)(sC
POWC(e, s, X, ..., %)) (in which e is now a variable) defines an n+1-place relation that
enumerates the n-place relations definable in RE[P], since R was arbitrary. (e is an index of
the relation R here.) In fact, this also gives us an enumeration of the enumeration operators;
we will sometimes writ@) to denote the eth operator in this enumeration. (We could have
also proved an enumeration theorem by imitating the proof of the enumeration theorem for
RE.)

The Enumeration Operator Fixed-Point Theorem.

We shall now prove that every enumeration operator has a least fixed point, and that this
fixed pointis r.e. This theorem is closely related to Kledmstgecursion

theorenmKleene stated his first recursion theorem in terms of partial recursive functions, but,
just as in the case of the second recursion theorem, we first give the version for r.e. sets and
relations. We will consider Kleene's form of the theorem at the end of the section.

133

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

A fixed point of a functiorpis an x such thag(x) = x, so in particular a fixed point of
an enumeration operatgris a set S such thg(S) = S. A set S is said to blsed(under
) if Y(S)OS. Sis said to bsoundif SO Y(S). So S is fixed iff S is both sound and
closed. If Sis a fixed point df, we say that S is tHeastfixed point of if SO S' for all
fixed points S' ofp.

Theorem: Every monotonic operator has a least fixed point.
Proof: We shall give two proofs of this theorem; the first is shorter, but the second gives us
more information about the least fixed point, and this information will be useful later.

Let G =n{S: Sis closed}. ({S: S is closed} is not empty, since we know that there is
at least one closed point, namBbly First, we show that G is closed. If Sis closed, then G
00 S by the definition of G, s¢(G) (1P (S) I S byy's monotonicity and S's closedness.
Soy(G) O S for all closed S, and therefapéG) O G by the definition of G, and G is
closed. Next, we show that G is sound. Noteyli&) is closed:y(G) I G as we have
seen, sa)(Y(G)) b (G) by monotonicity. Sincgy(G) is closed, G (G), so G is
sound. So G is a fixed point. Finally, G is the least fixed point: if S is a fixed point, then S
is closed, so GI S by the definition of G.

In the second proof, we construct a fixed point by transfinite induction. glzeZ& and
for all n, let $+1=Y(S). After we have constructed #r all N[0 N, we let Q= {S,: n
ON}. In general, if § has been defined, we set.$= Y(S,), and ifa is a limit ordinal
(i.e. an ordinal which is ndd+1 for anyp), we set § = 0{Sg: B < a}. We show by
induction ona that S is sound for altx; given the definition of § this means that, S’

So+1. Clearly, $is sound. If §is sound, i.e. $0 Sy+1, thenP(Sy) O Y(Se+1) by
monotonicity, i.e. g1 U Sy+2. Now leta be a limit ordinal, and supposg iS sound for
allB<a. LetxOS,. By the definition of § x 1 S for some <o, and § U S;. By
monotonicity P(Sg) Ll (Sy) = Si+1, and by the inductive hypothesig 8p (Sg), so xU
So+1. Since x was arbitrary o371 Sy+1.

So the sequence gSa an ordinal> is increasing. It can't be strictly increasing, since if
it were, a new natural number would be added,tat®ach stage; so at an uncountable
stage, uncountably many natural numbers would have been added, which is impossible.
(We can make this precise, as follows. Jf&SS,.1 for eacha, then Q41 - § must be
nonempty for eachi, so letg(a) be the least element 0f.3 - ;. Thengis a 1-1 function
from the ordinals intdN. So ifa is an uncountable ordinal, themmaps 8: B < o} 1-1
into N, which is impossible.) So the sequence must stop increasing eventually, that is there
must be a such that $= S\+1; indeed there must be a countable suclBut this means
thatY(S)) = S, i.e. S is a fixed point ofp.

Finally, we can show that $s the least fixed point by showing, by ordinal induction on
a, that if S' is any fixed point, ther, &1 S'; it follows that $ 0 S'.

134

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke
Exercises
1. Show that for all sets S;,2nd $, S< S, SIffS<L S US,.

2. Suppose S is a completely creative set, anjgldeta completely creative function for S
(i.e. for all x,p(x) OO0 S iff Y(x) O Wy). First, show that there is a recursive funci@n
such that W (x, sy= Wk - {as, ..., &}, where s codes {&..., &}, and a recursive functiog
such that Wy, yy = Wy U {y}. Next, definea andy* simultaneously, as followso(n, 0)
=¥x1(n, s), where s is the smallest code @f(D), ..., *(n-1)}; a(n, m+1) =x(a(n, m),
W(a(n, m))); Y*(0) = Y(0); andy*(n+1) = Y(a(n+1, @)), where g is the least q such that
Y(a(n+l, g)) is distinct from all ap*(0), ..., P*(n). Prove thatp* is total recursive, 1-1,
and a completely creative function for S.

Use this and previous exercises to show that the notions 1-complete, m-complete,
creative, 1-1 creative, completely creative, 1-1 completely creative and being anr.e.
nonrecursive set satisfying the effective form of Godel's theorem are all equivalent.

Remark: remember that | said that r.e. sets that arise naturally, as opposed to being
cooked up by recursion theorists, are all either recursive or 1-1 complete. The latter case can
be characterized in all the ways on the list above.

3. Use the method of axiomatizing in first-order logic, as given in class, to show that all
Turing-computable functions are recursive.

4. Recall the self-reference lemma with parameters from class: if A(x) is any formula, there
is a recursive functiow and a formula PS(X, y) that represapts Q, such that for all m,
Y(m) is the Godel number of the formulz)(PSQM), z) 0 A(z)), which is provably
equivalent in Q to AQ¥(M)). Use this to prove that every r.e. satitelyweakly
representable in every consistent r.e. extension of Q, as follows. beehny consistent r.e.
extension of Q and let S be any r.e. set. Let R(X, y) be a formula of Lim such that the
formula (¥)R(X, y) defines S. Let Pr(x, y) be a formula of Lim such thigtRr(x, y)
defines the set of theoremslaof Let A(x) be the formulal)(PS(x, z)J (Cy)(R(x, y) O (w
<y)~Pr(z, w))), where PS represents the funafisuch thatp(m) is the Gddel number of
the formula AQ(M). Show that A(x) weakly represents Jirand moreover that A(x)
defines S.

Remark: a previous exercise proved that every r.e. set is weakly representable in every
consistent extension of Q, but not that the weak representation was nice. Shepherdson gave
this as an alternative way of getting the earlier result, and then Kreisel pointed out that this
method gives a nice weak representation.

5. Consider the language that is like RE except that the bounded universal quantifier is
replaced by the ordinary unbounded universal quantifier. This can be calpexitines

135

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

language of arithmetid?L.

(a) Prove that the same sets and relations are definable in the (ordinary) language of
arithmetic, L, as are definable in PL.

Now consider the language Plﬂlébtained by adding to PL a single monadic predicate
P%, just as in the case of RE. Analogously to enumeration operators, we can define positive
arithmetical operators. Also, I¢{S) be the set of all (Gédel numbers of) true sentences of
PL[Pﬂ, where the extra predicaté B interpreted as S.

(b) Show that in contrast to the case of I%f,[ﬁS) is not a positive arithmetical
operator. Also show that every enumeration operator is a positive arithmetical operator.
Show as well that positive arithmetical operators need not in general be finite.

(c) Prove tha(S) is monotonic, and show how to deduce that every positive
arithmetical operator is monotonic.

(d) In class it was proved that every monotonic operator has a least fixed point. Prove
the following statements by similar methods: every monotonic operator has a unique largest
fixed point. Also, for every monotonic operator, every sound point S has a least fixed point
above S, and every closed point S has a largest fixed point below S.

Notice that by (c) the conclusions of (d) applytand to every positive arithmetical
operator. In particular, they all have least fixed points and largest fixed points.

(e) If P} is interpreted by any fixed point @f show that the language Plﬂl@ontains
its own truth predicate and its own satisfaction predicat@&Sa, ...,), for each k.

(f) The self-reference lemma for the language %L([ﬂ@r the case of formulae with one
free variable) says that for any formula of this language)Awith only x free and x
never bound, there is a formula G with Gddel number m such that, independently of the
interpretation of the extra predicalia BEA(O(m)) is always provable from the axioms of
Q, if we consider the theorems of Q derivable in the broad language of arithmetic
supplemented by the predicaﬁeR corollary is that @A(O(m)), where m is the Gddel
number of G, is always true, regardless of how the extra predicate is interpreted. Prove the
self-reference lemma for PLJP(In fact, all the forms of the self-reference lemma proved
in class for the language of arithmetic generalize over to this case in a similar manner.
However, here we only consider the form of the lemma we need for part (g).)

(g) Consider a sentence G such thaPfgo(M)) (where m is the Godel number of G)
is true, regardless of the interpretation bfﬂ?uch a sentence exists by (f). Prove that there
is at least one fixed point 8f @ such that if %is interpreted by $G is true, and another
fixed point $ such that if Bis interpreted by £ G is false. Prove that G is true i B
interpreted by the largest fixed pointg@énd false if %is interpreted by the least fixed
point of @. (This shows that there are at least two distinct fixed points and that in fact the
largest and the least fixed points are distinct. In fact, the number of fixed points is the
cardinality of the continuum.)

Remark: this finally shows that a language even with unbounded quantifiers of both

136

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

kinds, and with an expressive power greater than or equal to the language of arithmetic, can
express its own truth and satisfaction predicates, as long as it lacks negation. Any
interpretation of f’in PL by a fixed point has these properties. We have seen that there is
more than one such interpretation éxf'Pne same argument could be used for I%E[fat
it is less interesting there, becaadiehe languages REﬂ?and RE itself, contain their own
truth and satisfaction predicates.

The construction is related to one | have discussed elsewhere, but differs in that it is for
classical languages without negation.

137

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Lecture XIX

The Enumeration Operator Fixed-Point Theorem (Continued)

We could adapt either proof that every monotonic operator has a least fixed point to give us
additional information. For example, for any sound point S, there is a least fixed point S'
such that $1S'. We can show this either by letting GI£S": S' is closed and S S'} in
the first proof, or by letting = S in the second proof. Also, for any closed point S', there
is agreatestfixed point SO0 S'. Again, we can imitate the first proof (switching "closed"
and "sound" and making similar changes throughout) or fiddle with the second proof
(letting <S> be a decreasing sequence WiglFS).

In the second proof, we know that a fixed point is reached at some countable stage. If
the operatoy is finite, then it is reached at stage

Theorem: If Y is a monotonic and finite operator, then the ggt@n the proof of the last
theorem ig)'s least fixed point.

Proof: We only have to show that,$ S,+1; since § U Sy+1, we just have to show that
S+ Sy Let xO Sy+1=P(Sy). By finiteness, we can find a finite X S, such that x
[P (X). Since X is finite, X S, for some n <v. By monotonicity, X1 Q(S;). But S,+1

=(Sy), s0 xU S0 S

Since enumeration operators are finite and monotonic, we know already that each
enumeration operator has a least fixed point, and that it is constructed ly.stBgshow
that this fixed point is r.e., we need to generalize the generated sets theorem slightly.

When a set is generated from a basis set and a collection of rules in the sense of the
usual generated sets theorem, the rules are finite in number and each has a fixed finite
number of premises. However, since we can code up finite sets of numbers as individual
numbers, we can make sense of an r.e. generating rule hasriglde finite number of
premises. Specifically, we can identify such a rule with a binary relation R(s, x), where s
codes a finite set of premises and x is the conclusion. We can formulate an appropriate
notion of proof sequence for such a relation; specifically, we may say that.<%> is a
proof sequence for R if for evergni there is a finite set s such that all elements of s are in
<Xy, ..., %> before xand R(s, }. Then naturally we define the set generated by R to be the
set of all numbers that have proof sequences. Aslong as R is r.e., the notion of proof
sequence will be r.e., and therefore the set generated by R will also be r.e. We leave the
details to the reader.

Enumeration Operator Fixed Point Theorem Every enumeration operator has a least

138

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

fixed point (namely §), and that fixed pointis r.e.
Proof: Lety be an enumeration operator, and |gb8 as above. Let R be the relation {<s,
x>: s codes a set S such thailx (S)}. Risr.e., as is easily seen (if A is the RE[P]
formula corresponding t, then R is defined by the formula A’ obtained from A by
replacing P(t) by tI s throughout). Let G be the set generated by R, which is therefore r.e.
We show that G =$

First, GO S,. We show by induction on the length of proof sequences that if x occurs
on a proof sequence, thenlS,,. Let <x, ..., %> be a proof sequence for R. Then R(s,
Xn), Where s codes a finite set @bxi < n. By the inductive hypothesis, s codes a subset S
of S,y S0 by monotonicity(S) [(Sp) = S Since x O (S), % 0 S

Next, S, 0 G. We show by induction on nthgt8G. =00 G. Suppose 3]
G, and let X1 S\+1 =Y(Sy). By finiteness, X1 (S) for some finite $1 S,. Since §+1
[0 G, we can find proof sequences for all the elements of S; by stringing them together, we
can find a proof sequence for x. SalG.

Kleene's first recursion theorem is stated in terms of partial recursive functions. An
enumeration operator that maps partial functions into partial functions is cpheiibh
recursive operatgrKleene showed that every partial recursive operator has a least fixed
point, and that this fixed point is a partial recursive function. We can prove this using the
enumeration operator fixed point theorem as follows. By identifying partial functions with
their graphs, and identifying relations with sets of coded pairs, we can see that any partial
recursive operatap has a least fixed point R, where R is anr.e. relation. To see that R is
single valued, we use the fact that R i$ Ry = @ is single valued; if ks single valued,
then since y is a partial recursive operat@tR Y(Rp) is single valued; so each B
single valued. Suppose [x, y] and [x[ZR,. Then for some m, n, [x, Y] Ry, and [, z]

[R, Let p=max(m, n); then [X, y], [X, Z] Ry. Since Ris single valued, y = z. SqR
is single valued.

The First and Second Recursion Theorems.

Here are the two recursion theorems:

(1) For all enumeration operatapsthere is a least set S such thé®) = S, and moreover
Sisr.e.
(2) For all recursive functiong there is an e such thatW Wie,).

Neither of these theorems implies the other. On the one hand, the second recursion theorem

implies that every enumeration operator has an r.e. fixed point, but not that it has a least
fixed point. To see this, lgt be any enumeration operator, and let A be a formula of RE[P]

139

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

corresponding to it. Let A*(e, x) be the formula of RE obtained from A by replacing P(x)
by W(e, x) throughout. Then A*(e, x) defines the relation {<e, iZ:J(W¢)}, so that
relation is r.e. Using thefSheorem, we can find a recursive functipsuch that We) =
W(We) for all e. To find an r.e. fixed point fdr, apply (2) to find an e such that.\W

Wge) = W(We). We need not be the least fixed point, however.

On the other hand, we can use (1) to prove (2) only in a special case. Sipuoe(2)e
is a function on numbers rather than sets, it is quite possible thatvWand Wye) #

W for some e and f; in that case, the "operator” & &\WVge) will not even be well-
defined, let alone an enumeration operator. However, let us say that a fgnstion
extensionalf for all e and f, if W = W then Wye) = Wyry. Then the operator F@QV=
We) is well-defined. It turns out that wheneweis extensional, there is an enumeration
operatonp such thath(We) = W) for all e. We can thus apply (1) ¢oto obtain an e
such that W= (Wg) = Wiye).

If we only applied (2) with extension@lin practice, then this would not be much of a
limitation. However, there are important applications of (2) in wiishnonextensional, or
at least in which there is no good reason to thinkglgextensional; the study of recursive
ordinals is an example of this.

(1) and (2) have many applications in common. For example, we can use (1), as we
used (2), to prove that certain functions defined in terms of themselves are recursive. Take
the factorial function, for example. We can define a partial recursive operator as follows:
Y(@) =X, wherex(0) = 0 andx(n+1) =@(n)-(n+1). Itis easy to check thdtis a partial
recursive operator; applying the version of (1) for such operators, we see that there is a
partial recursivep such that?(¢) = ¢, so thatp(0) = 0 andp(n+1) =@(n)-(n+1), i.e.g(n) =
n! for all n. (In fact, this proof that the factorial function is recursive boils down to the
proof we gave earlier in terms of the generated sets theorem; the opeisatenlly a kind
of generating rule.) (1) and (2) are called recursion theorems because of these common
applications.

The Intuitive Reasons for Monotonicity and Finiteness.

We have shown, in terms of our formalism, that enumeration operators are monotone and
finite; we can also give intuitive proofs of the corresponding claims about the intuitive
notion of semi-computability. Let P be a semi-computation procedure which consults an
oracle; let us say that P semi-computes askEb® S if, whenever P is given an oracle to
S,, it answers "yes" to input n iff@ S;. In this case, let us writg § P($). We want to
show that if $ 0 S, then P(9) U P(S), and that if il P(S), then n] P(S) for some
finite S0 S.

Suppose] P(S). Then whenever P is given an oracle {@&d gets input n, P halts
after a finite amount of time with answer "yes". Since P halts after a finite amount of time,

140

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

P only asks the oracle finitely many questions, so a finite amount of information about S1
suffices for P to decide thatthP(S). Moreover, this information is positive information,
since the oracle only gives "yes" answers to P's questionsg EqkS1 S;: the oracle

gives an answer "yes" to the questionI'$;,?"}; then S is finite, $ [0 $;, and the
information in Q suffices for P to decide thathP(S). It follows that I P(&) and that
nP(S) when S O S, if Pis given an oracle to the set(®r $) and given input n,

then it will proceed as it did when given an oraclegaSking it exactly the same questions,
and it will get the same "yes" answers, which suffice to make P halt and give an answer

yes".
We can use this fact to prove a normal form theorem for semi-computabilityisif S

semi-computable in a semi-computation gftSen $ = P(S$) for some P, and by our

monotonicity and finiteness result[hP(S) iff n [P(§) for some finite $11 S,. Now,

the relation riJ P(S) (holding between n andySs clearly a semi-computable relation,

since we can transform P into a procedure P* that semi-computes it: whenever P consults

the oracle about whether n is an element of the set in question, let P* invoke a semi-

computation procedure for the relationlisy. Note that P* is a semi-computation

proceduravithoutoracles. We have thus shown that whenever & ses8mi-computable

in a semi-computation ofSthere is a semi-computable relation R such that{a: (O

finite S)(So U S OR(n, $))}. If the unrelativized version of Church's thesis is true, then

R must be r.e., and therefore there is.arrelation such that;S= {n: (Ofinite)(S 0 S

OR(n, §))}. But this holds precisely when, 8¢ S,. So the unrelativized version of

Church's thesis implies the relativized version.

Degrees of Unsolvability.

Suppose a binary relatianis reflexive and transitive; then the relatigrdefined by & b

iff a < b and kx a, is an equivalence relation. To verify this, we must shov#tisat

reflexive, symmetric, and transitive. Thails symmetric is immediate from the definition

and does not depend on any properties Gf's reflexivity follows from that of. Finally,

if a=b and = c, then & b and k= ¢ by the definition o0&, so a< ¢ by<'s transitivity, and
similarly c< a, so & c. We have shown that all of our reducibility notions are reflexive

and transitive, so in each case the relation of interreducibility is an equivalence relation. We
write A =¢ B for A< B & A <¢ B, and similarly foE4, =y, and=r. The equivalence

classes are callatkgrees of unsolvabilitpr simplydegrees In particular, th&e-, =1-, =

and=t- equivalence classes are cakgdimeration degree$-degreesm-degreesand

Turing degreesrespectively. (We use lowercase letters to denote degrees.) The idea
behind this terminology is that when a set A is reducible to a set B, B is harder to compute
than A, i.e. the decision problem for B has a higher degree of difficulty than that of A. (Or
the semi-decision problem, in the case of enumeration degrees.) Degrees, especially Turing

141

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

degrees, have been studied extensively.

Let us write deg(A) (degr(A), etc.) for the enumeration degree (Turing degree, etc.) of a
set A, i.e. the degree of which A is a member. We can place an ordering on degrees
corresponding to the reducibility relation between sets: we say théAjlegdeg(B) iff A
<t B (and similarly for other kinds of degrees). It is easy to checktisatell-defined,
and that it partially orders the degrees. Whe&dénotes this relation between degrees, we
do not write a subscript: if a and b are both degrees of the same sort, then there is only one
less-than relation which is defined between them, so if we know what sort of degrees a and
b are, "a< b" is unambiguous. There is a least enumeration degree (under this ordering),
namely the degree consisting of the r.e. sets. There is also a least Turing degree, namely the
one consisting of the recursive sets.

If < is one of our reducibility relations, we define A < B to meanB\and not B< A.
Equivalently, A < B iff A< B and not A= B. Similarly, if a and b are degrees, we say that a
<bifa<band not x a, or equivalently if & b and & b; note that Deg(A) < Deg(B) iff
A<B.

The Jump Operator.

Recall that A< B, C iff A<¢B U C, so in particular, Aisr.e.in B iff & B, -B iff A < B
U -B. Recall also that A B <, C iff A < C and B C. It follows that A<t B iff A U -A
<e¢BU -B.

Recall our enumeration of the sets enumeration reducible to a set S, namely the relation
given by (k)(s0 SOW(e, X, s)). Given a set S, we define S* to be the set {[e, B
O SOW(e, m, s))}. S* captures all the sets enumeration reducible to S, and is itself
enumeration reducible to S, since we have in effect just defined S* in RE[P], with P
interpreted as S.

Let us prove some basic properties of the * operator. First of all, for all AsdfSA
then A<y S*. For suppose A S; then A has some index e in the enumeration of the sets
<e S, so for all m, nid A iff ([)(sO SOW(e, m, s)) iff [e, m[] S*, so A<y S* by the
map m- [e, m]. It follows, by taking A = S, that§ S* for all S. Since &; S* implies
S<e S* we have S S* and S*<. S, i.e. S S*. We also have the following
equivalences:

A<)SY* e A S* = A< S* = A< S.
We have A< S*0 A<y S*O A < S*immediately. A<e S* [0 A <¢ S because S%
S. Finally, A<, SO A <1 S* as we saw earlier.

In practice, we will forget about the exact definition of * and apply these equivalences
directly. There are alternative definitions of * which would also yield these facts. The idea

142

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

behind our definition of * is that S* encodes an enumeration of all thesBtdo get this
effect, we could have taken S* to be {[e, m]: m satisfies the formula of RE[P] whose Gd&del
number is e}. Or, since we can reduce satisfaction to truth, we could have taken S* to be
the set of Gddel numbers of true sentences of RE[P]. Both of these sets are recursively
isomorphic to S* as we actually defined it.

Another important equivalence involving * is the following:

A <. B = A* <1 B*.

For suppose A B. Then since A¢ A* and B=¢ B*, A* <, B*; but then A*<; B*. On
the other hand, suppose &%t B*. Then A*<. B by the equivalences for *, and scAB
since A= A*,

While S* is alwayse S, -S* isnever<, S. The proof is analogous to the proof that K
is not recursive. Suppose -§¢S, and let A = {m: [m, m[S*}; A <. -S*, so by the
transitivity of<g, A <¢ S. A has some index e; so for all m 1 iff [e, m] [0 S*, and in
particular, €1 A iff [e,] O S*; but el] A iff [e, e] O S* by the definition of A,
contradiction.

We now define S' to be the set{SS)*. S'is called theimpof S. (While the
operation * is not a standard part of recursion theory, the jump operation is very standard.)
Justas S&. S, S'isr.e.in S: (8-S)*<c SU -S by the properties of *, i.e. (6-S)* is
re.inS,i.e. S'isr.e.in S. However, -S'is neverr.e.in S: if-S'isr.e. in S, therS){S
<e SU -S, which we have just seen to be impossible. So S'is never recursive in S.
However, &1 S'": by the basic properties of *, (SS) < (SU -S)*, so S5 S' and -&¢
S'. So S'is always of a higher Turing degree than S.

As in the case of *, the exact definition of ' is less important than its basic properties.
We could have defined S' to be {[e, m]: m satisfies the formula of RBfPwith Godel
number e}, where fand B are interpreted as S and -S, respectively. We could also have
defined S' to be the diagonal set {e: e satisfies the formula of|RE]Rvith Godel
number e}. In this way, we see that S' can be viewed as a relativization of K to the set S.

As with *, we have the following equivalences involving "

A<1S' e A< S'= A< S'= Aisre.inS.
In general, we will forget about the definition of ' and work directly from these equivalences.
Since Aisr.e. in S iff A¢ SU -S, this follows directly from our equivalences for * by
replacing S by & -S.

We also have the following:

A<stB e ASiB' '« A5y B' = A" B

143

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

A'51B = A"y B' = A'<B'is immediate from the above. A B = A'<;B'is a
special case of &, B = A* <1 B*, replacing A and B by AJ -A and BuU -B,
respectively. Notice also that#y B implies that A<y B' (A<t B0 A'<; B'0 A' <1 B).
However, the converse is false.

It follows immediately from this that & B [0 A' = B', whetheE, is =4, =, or=r. Let
us write thisas A& n TBO A'=; i 7B'. If ais the degree of A (under one of these
three reducibilities), then we define a' to be the degree of A'. We see that a' is well defined,
because if B1deg(A), then B, A (r=1, m, or T), so B5 A, i.e. Deg(B') = Deg(A"). It
also follows from the above that wheneverla a'< b'.

Thus, we see that the jump operator is an order-preserving map on the degrees. It can
also be regarded as ambeddingf the T-degrees into the 1-degrees, i.e. an isomorphism
of the structure <{T-degrees¥> onto a subset of the structure <{1-degress}, More
precisely, the map Dg@A) — Deqg(A") is such an embedding. This is simply because
Degr(A) < Degr(B) iff A <t B iff A' <1 B' iff Degy(A") < Degi(B'). In fact, the same
argument shows that the map Q@g — Deg(A*) is an embedding of the enumeration
degrees into the 1-degrees.

There is also an embedding of the Turing degrees into the enumeration degrees. We
have already seen thatsh B iff A U -A <¢ B U -B; it follows that the map Dg¢A) —

Degy(A U -A) is well-defined and is also an embedding. An enumeration degree in the
range of this embedding is calledal. Clearly, an enumeration degree is total just in case it
contains a set of the form&A-A. An enumeration degree is also total iff it contains the
graph of a total function (hence the name).

Let f be the embedding Dg@\) — Degy(A U -A), and let g be the embedding REY
- Deqg(A*). If we compose f and g, the result is an embedding h of the Turing degrees
into the 1-degrees. Moreover, h is precisely the map([®B¢g- Deg(A) which we have
already seen to be an embedding.

144

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Lecture XX

More on the Jump Operator.

As we have seen, there is a least T-degree, namely 0, the set of all recursive sets. Using the
jump operator, we can form an increasing sequence of degrees: 0, 0', 0", In general, we
write 0 (thenth jumpof 0) for the result of applying ' to 0 n times. We know that this
sequence is strictly increasing, i.e. 0 < 0'< 0" ..., since A’ is never recursive in A.

If a and b are degrees, where a = deg(A) and b = deg(B), we défibdo be deg(AU
B). For any of the four kinds of degrees we have been considefihly,iawell-defined
and is an upper bound of a and b (i.e.2ah] b). Moreover, if a and b are either Turing
or enumeration degrees| b is the least upper bound of a and b, i.e. for all degrees ¢, if a,
b<c,thendlb<c.

First, let us verify that &l b is well defined, i.e. that the degree ol 8 does not
depend on which sets A and B we pick from the degrees a and b. That is, we must show
that if A=, A; and B=, By, then AUB = A1UB; (forr=1, m, T, e). We assume that A
=, A1 and B=; By, and show that A B <, A1 U B; (as the proof that AU B; < AUB
will be exactly the same). We know already from our previous work thaBAt A1 U B,
iff both A and B arest A; U By, iff both A and B aret A;, B1. But A<t A4, B; since A
<t A1 by hypothesis, and similarly 8r A;, B;. The same holds fa. So consider the
caser =m. Ay A1 and B<y, By, so letg andy be recursive functions such tlgatA <,
A1 andy: B <, By, Letx be the recursive function such thx@2n) = 2p(n) andx(2n+1) =
29(n)+1;x: AU B <, AU By Finally, if@andy are 1-1, thery is also 1-1, so A B<;
AU B1.

Next, since AU B is an upper bound of A and B in all of our reducibility notions,
Deg(A) and Deg(B) are< Deg(A U B) for all A and B, i.e. a, b all b. Finally, as we
saw, A, Bt Cimplies AUB <7 C, so a, ik cimplies el b<cifa, b, and c are
enumeration degrees or Turing degrees.

We say that a partially ordered set isugper semilatticé any two elements of it have
a least upper bound, andbaver semilatticaf any two elements have a greatest lower
bound. A partially ordered set which is both an upper and a lower semilattice is called a
lattice. Thus, we see that the degrees form an upper semilattice; however, it turns out that
they do not form a lower semilattice, and hence do not form a lattice.

It is easy to check that the operdibis associative and commutative, and that for;all a
., &, & O ...0 &, is the least upper bound af a., . (These facts depend only on the
fact that &1 b is the least upper bound of a and b.) Thus, any finite set of degrees has a
least upper bound. It does not follow, however, that every set of degrees has a least upper
bound. In fact, this is not the case: if F is a family of degrees, then for F to have a least
upper bound, it is necessary and sufficient that there be a finiteé &ich that for all & F

145

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

there is a o] E with a< b. Thus, in particular, the sequence 0, 0', 0", ... has no least upper
bound, since no such E exists.

Notice that 0' is the degree of @' (since 0 is the degree of &), and that @' is a 1-1
complete set. To see this, note that @' U (E)* = {odds}* = {[e, m]: ((5)(sI {odds}

OW(e, m, s))}; so if Alis any r.e. set, the relation R given by R(x, y)iffA Oy [IN is
r.e., and therefore has an index e: so for all mj, Aiff for some (or any) s, R(m, s), iff
W(e, m, s) for some such s, iff [e, M]&'. So A<; @' by the map m- [e, m]. Thus, we
see that 0' is the degree of a 1-1 complete set.

Any set S(10' is calledT-completeor simplycomplete 0' contains sets which are not
1-complete; for example, Post's simple set is an element of 0. In fact, Post invented this set
in an attempt to solve what is knownRxsst's problem the problem of finding an r.e. set
which is neither recursive nor complete (or showing that there is no such set). A Turing
degree is said to be a®. degreef it contains an r.e. set; so Post's problem is equivalently
stated as the problem of whether there are any r.e. degrees other than 0 and 0'. Post failed
in his search for such degrees, and it was conjectured by some that 0 and O are the only r.e.
degrees there are. However, the problem was solved in 1956 by Friedberg and Mucnik
(working independently). They proved this by finding two incomparable r.e. sets, i.e. sets A
and B such that neither £y B nor B<t A. It follows that their degrees a and b are
incomparable in the orderirg since 0 and 0' are comparable, it follows that a can be
neither O nor O', since then it would be comparable with b.

Clearly, 0< a< 0' for any r.e. degree a (since<dA <t @' for any r.e. set A); however,
there are degrees between 0 and 0" which are not r.e. (Itis easy to see that not all sets
recursive in @' are r.e.. &5 @' for example; it turns out that there are set@' which are
not everer any r.e. sets.) Itis relatively easy to produce incomparable degrees between 0
and 0', but harder to produce r.e. degrees with this property.

It turns out (though we shall not prove this) that the jump operator is first-order
definable from the relation. That is, the graph of the jump operator is definable in the
interpreted first order language whose domain consists of all the Turing degrees, and in
which there is only a single binary relation which is interpreted astilation between
degrees.

The Arithmetical Hierarchy.

A 2, formula(for n> 1) is a formula consisting of a block of unbounded quantifiers,
followed by a block of bounded quantifiers, followed by a quantifier-free formula, where the
block of unbounded quantifiers begins with an existential quantifier, is of length n, and
alternates between existential and universal quantifiers. (Thus, for exdmp@([(z) x +

y = zis aX3 formula.) We also writeZ;" for "%,". Since any formula of Lim is

equivalent to a formula which consists of a string of bounded quantifiers followed by a

146

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

guantifier-free formula, every, formula is equivalent to a formula consisting of a string of
n alternating quantifiers (of which the first is existential) followed by a formula of Lim. A
1, formula(or I'Ig) begins with a universal quantifier; otherwise the definition is the same.
We sometimes call a formulg, (or y) if it is equivalent to &, (I, formula.

A set or relationis said to b&,, (M) if it is defined by &, (1, formula. A set or
relation is said to b4, if it is bothZ, andll,. Sometimes we usg, (My, An) to denote the
set of allz, (M, Ap) sets; thus we writA, =%, n I, for example. As we have already
seen, thery, N, andA; are the sets of r.e., co-r.e., and recursive sets, respectively.

There are two basic facts about i€l hierarchy that we shall prove in this section.

The first is that every arithmetical set (i.e. every set definable in the language of arithmetic)
belongs to this hierarchy (which is why it is called the "arithmetical hierarchy"); the second
is thatz,, andl,, get more inclusive as n increases. Before doing this, we shall prove an
enumeration theorem for this hierarchy.

Note that S& ,iff -S OI1 , and ST1 ,iff -S[E . To see this, supposd s |,
and let A be &, formula that defines it. Then ~A defines -S; but ~A is equivalenfip a
formula, since we can push the negation sign through the initial string of quantifiers,
changing universals to existentials and vice versa, and then through the bounded quantifiers.
So -S is defined by @y, formula, i.e. -ST1 . Similarly, we can show that if 31 , then
-S[E . It follows from this that\, = {S: S, -S[E } ={S: S, -SO1 }.

Note also that if S i&, then Sis alsbl .1 if Ais aZz, formula defining S, and z is a
variable not occurring in A, then (2)A id k.1 formula which also defines S. ((z) is a
vacuous quantifier here.) Similarly, if Sdgthen S i1 If Ais aZ, formula that
defines S, then let A' come from A by adding a vacuous quantifier onto the end of A's string
of unbounded quantifiers; then A" i&g:; formula that defines S. Thus; O An+1, and
by similar reasoningl, O Ap+1.

Suppose.,, = Zn+1 andll, =My for some n. Then @5, O Mpyq andlMy, O 24, it
follows that>, O My, andM, O %, i.e.Z, =M. Thus, if we can show thaf, # N, it will
follow that>, 0 1 or M, O Mp4q (here we use Al B to mean A B & A #B). In fact,
both will follow: if SO Zh4+1 - 2, then -S Mpyq - My, 02, O Zp4q impliesiy O My,
and by the same reasoning the converse holds. We knoky that;; we only have to
show tha&, # N, for n > 1.

Now let us prove the enumeration theorem we mentioned above.

Theorem: For all n, thex,, (IN,)) sets can be enumerated ky,d[1,) relation.

Proof: Suppose A is a, formula and that n is odd, so that A's string of unbounded
guantifiers ends in @l Then A is [Xy)...((Xp)R(X1, ..., %, ¥) for some formula R of Lim.
Consider the; formula (Xn)R(X4, .., %, ¥). This formula is equivalent to \WE), x4, ...,
Xn-1, Y) for some e, and the formula W(e, X., %-1, ¥) (where e is now a variable) is itself
equivalent tol(x,)T(e, X, ..., %, ¥) for some formula T of Lim. It follows that A is
equivalent to th&, formula (Xy)...([x,) T(0(®), x4, ..., %,). Since A was arbitrary, we see

147

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

that everyz, formula is equivalent to &, formula of the form((xy)...(x) T(0(&), x4, ...,

Xn, Y). Thus, the formuldk,)...(X)T(e, %, ..., %, Y) (Where e is now a variable) defines
an enumeration of thg, sets. Thus, for all odd n, there is a binafyelation that
enumerates thg, sets. The same proof shows that if n is even, then there is aBjpary
relation that enumerates thig sets. We can cover the remaining cases as follows. If nis
even and R is A, enumeration of thEl, sets, then the relation -R3g, and moreover -R
enumerates the, sets: if 312, then -S1T1,, so -S = {x: R(e, x)} (for some e) and S =
-{x: R(e,)} = {x: -R(e, x)}; similarly, if n is odd and R is &, enumeration of thg, sets,
then -R is d1,, enumeration of thEl, sets. We can therefore conclude that for all n, there
is aX, relation that enumerates thgsets and &l,, relation that enumerates thg sets.

(There is also &, (I,,) enumeration of th&, () k-place relations, for all k; we could
either generalize the proof in the case k = 1, or use the pairing function.)
We are now ready to prove the desired

Hierarchy Theorem: Z, # I, for all n.

Proof: Let n be given, and let D = {x: R(X, X)}, where R is an enumeratidq.oD [%,
so -DO M, However, -D0 2 if -D O %, then -D = {x: R(e, x)} for some e, sa&-D
iff R(e, e) iff ed D, contradiction.

Thus, the arithmetical hierarchy goes up without end. Note that this is a direct

generalization of the proof thag # N4, i.e. the proof that there is a nonrecursive r.e. set.
The arithmetical hierarchy gives us a way to classify the sets that occur in it. By the

levelof a set in the hierarchy, we mean the least inclusive of the variolg,déts andA,

of which it is an element. That is, if S is any set in the hierarchy and n is the least n such

that S 2, (1 My, then we call S properBy,, properlyll,, orA,, as S is an element bf, -

Mp, Mnp - 25, OrAn.

148

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

The Arithmetical Hierarchy

Next, we prove a theorem which implies that every arithmetical set belongs to the
hierarchy, and which allows us to make good estimates of the level of a given set.

Theorem: If a set or relation is definable in RE[P..,], where R, ..., R, are interpreted
asz, sets, then it is itsek,,.

Proof: We prove this by showing that every formula of RE[P, Ry is equivalent to

somez,, formula. The proof is a double induction: we prove the theorem by an induction
on n, and for each particular n, we prove that it holds for n by induction on the complexity
of RE[P,, ..., Ry formulae.

Note that if the theorem holds for n, then a conjunction, disjunction, universal
guantification, or bounded existential quantification df.gdormula isl1,,. To see this,
suppose that A and B ark,. Then ~(AB) is equivalent to ~A1~B, where ~A and ~B
areZ,; so by the theorem, ~A~B, and hence ~(AIB), isZ,,, and therefore AIB isI.
Similarly, if A is I, then ~(X)A is equivalent taX)~A, and ~A is¥,, so by the theorem
(X)~Ais Zp, so (X)A isl1,,. The other cases are similar.

n=1. Ais aformula of RE[R..., Ry, where R, ..., B, are interpreted a5, sets; so A
is equivalent to the formula A’ obtained from A by replacing eably BX; formula that
defines its extension. By the normal form theorem for RE, A', and hence also A, is
equivalent to &, formula.

n> 1. we now prove the induction step by an induction on the complexity of RE[P
Py formulae. Let A be such a formula.

149

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

A is atomic: then either A is an atomic formula of RE or a formifig;n either case,
A is equivalent to &, formula.

A =B 0OC: then B and C are equivalentipformulae (y1)B' and (y»)C', so A is
equivalent to [(y;)(Oy2)(B' U CY). This in turn is equivalent tai)(Cy; < y)([Oy2 < y)(B'O
C"). Now since B' and C' af&,.4, it follows (by the inductive hypothesis on n and the
remarks at the beginning of the proof) thaty(< y)(Oy> <y)(B'0C") is alsd1,.1. That is,
(Oy1 < y)([y2 < y)(B'OC" is equivalent to sonf@,., formula D, so (y)(Oy1 < y)(Oy2 <
y)(B' I C"), and hence A, is equivalent to fyeformula (y)D.

A=B0OC: B and C are equivalentIg formulae (Oy)B' and (0y)C', where B' and C'
arell,.1; so Ais equivalent tdfy)(B' I C'), and again B1C' isl),.1, SO A iSZ,.

A = (y)B. Then B is equivalent to%, formula (z)B', so A is equivalent to
(Oy)(2)B', where B' is &l,.1 formula; this in turn is equivalent talg)(Cy < w)((z < w)B',
and again({y < w)((z < w)B' isly.1, so the whole formula is,.

A = (x <t)B: then A is equivalent to (x < E})B' for somd,,.1 formula B', which is in
turn equivalent tolv)(x < t)(Oy < w)B'; again, (X < ti{y < w)B' isl1,.1, so the whole
formula isZ,.

Notice that the proof is really just an elaboration of the proof of the normal form theorem
for RE.
We now have:

Theorem: All arithmetical sets and relations &gfor some n.

Proof: We show, by induction on the complexity of formulae of the language of arithmetic,
that those formulae define relations thatgréor some n. Atomic formulae defing sets.
Suppose A defines®, relation and B defines®, relation. Letting n = max(m, p), A and

B both definex, relations. ALIB, A 0B, and (Oy)A defineZ, relations, as we have seen.

~A defines d1, relation, which is also &,+1 relation. Finally, (y)A defines Bp+1

relation, which is also &+, relation.

We could have proved this more quickly. We could, for example, have used Kleene's
proof: to show that a formula A of the language of arithmetic is equivaleii,ttoemula,
put A into prenex normal form, and then contract blocks of like quantifiers (i.e. all
existential or all universal) into a single quantifier. (The contraction could use the pairing
function, or it could imitate the above proof.) More quickly still, to obtdip @rmula
equivalent to A, put A into prenex normal form and then add enough vacuous quantifiers to
make the unbounded quantifiers alternate.

The virtue of the above theorem is that it gives us a way of calculating a good estimate of
the level of arithmetical sets and relations. If A is a formula of the language of arithmetic,
first move all negation signs in (either all the way in, or far enough in that they only occur
before formulae whose levels are known). The resulting formula will be built up via

150

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

conjunction, disjunction, and existential and universal quantification from formulae whose
levels are known. We can then use the theorem to get an estimate of the level of the
formula, using e.g. the facts thak|B is Z, if B is and that if B and C ai&,, andz,,
respectively, then AlB and ALB areZ,,, where n = max(m, p). Alternatively, if all of the
unbounded quantifiers occur at the beginning of the formula, we can use the theorem to
contract blocks of like quantifiers and read an estimate of the formula's level directly off the
result.

Suppose the predicateg B., R, in the theorem all defind,, sets. In that case, they
defineZ,+1 sets, so every set or relation definable in RE[R Ry is Zh+1. Since being
definable in RE[R, ..., Ry is the same as being enumeration reduciblg,ta.SS,, it
follows that any set or relation enumeration reduciblellg set isZ+1. In fact, the
converse is true: ar®j.; set is<e somell, set. To see this, let S be any1 set, and let
(Cz)A(X, z) be & ,+1 formula that defines it. Then A(x, z) defineBarelation R, so S¢
R (since S is defined by the formuI&IP%(x, z) of RE[I%), and therefore S¢{[X, Y]:

R(X, y)}, which is easily seen to b&, So a set or relation 15,+1 iff it is < somell, set.

Thus, we begin to see a relation between the arithmetical hierarchy and the various
reducibility notions. We shall examine this relation further, and prove a famous theorem of
Post relating the arithmetical hierarchy to the jump hierarchy (i.e. the hierarchy 0, 0', 0",...).

Exercises

1. Calculate upper bounds as good as you can find for the levels in the arithmetical
hierarchy of the following sets:

{e: Weis infinite};

{e: Weis recursive};

{e: Weis nonempty};

{e: ®.is a total function}.

2. () In the class we defined a set $tal (with respect to enumeration reducibility) iff

-S<S. (i) Prove that if S is any setlUSS is always total. (ii) Prove also that a set S

consisting of ordered pairs [m,n] that codes the graph of a total function (not necessarily
recursive) is total. (iii) Which r.e. sets are total? (iv) If S is any set, &msltBe set of pairs
coding the graph of the characteristic function of S, prove thatS® -S. (v) Prove the
following normal form theorem, whenever the predicét'es ihterpreted by a set S coding

the graph of a total function: every enumeration operator when confined to such sets can be
written in the form [(5)(R(x,s) sDP% O (j<s)(res)([j,n]0s O (i<j)(Om<s)([i,m]s)))

where R is an r.e. relation. (Given that S codes the graph of a total function, the clauses at
the end mean that s codes a partial function whose domain is a finite initial segment of the

151

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

natural numbers.)

(b) An enumeration degree is caltethal if it contains at least one total set. (i) Prove that
an enumeration degree is total iff it contains a set of pairs that codes the graph of some total
function. (i) Prove that the Turing degrees, as a partially ordered structure, are isomorphic
to the total enumeration degrees. (iii) Prove that every enumeration degree contains a set
coding the graph of a partial function. (For this reason, enumeration degrees are sometimes
called partial degrees.) (iv) Give an example of a set that is not total but whose enumeration
degree is nevertheless total. (v) Show that if S is any fixed-point of the fupctefimed in
exercise 5 of Lecture XVIII, then the enumeration degree of S is not total.

3. Here is yet another variation on the notion of a 1-complete set. A set S is said to be
"weakly creative" iff S is r.e. and there ipatial recursive functiomp such that whenever
Wy n S =3,0(x) is defined and(x) 0 ST Wy. The difference between the notions
"weakly creative" and creative is that heneeed not be total. (We can aak "weakly
creative" function for S.) Actually, this definition was the original definition of "creative".
Prove that all weakly creative sets are creative. (Hint: show that for every partial recursive
function@there is a total recursiyesuch that W) = Wk if @(x) is defined, W) = 9
otherwise. Defin@)(x) = @(x(x)). Show that is total recursive and is a creative function
for S if @is a weakly creative function for S.)

This will complete our list of equivalent notions: weakly creative, creative, 1-1 creative,
completely creative, 1-1 completely creative, many-one complete, 1-1 complete, and satisfies
the effective form of Godel's theorem. There are a few others, but we'll stop here.

152

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Lecture XXI

The Arithmetical Hierarchy and the Jump Hierarchy.

Let us now look at some of the interrelations between the na&jcgrsdl,, on the one

hand, and the notions connected with relative recursiveness on the other. We proved that a
set is2 1 iff it is enumeration reducible to sorfik set. If S is enumeration reducible to a

MM, set, thera fortiori it is r.e. in &1, set, or equivalently, in&, set. ($isr.e.in Siff S;

is r.e. in -$, by the definition of "r.e. in".) Now supposeiSr.e.indl,set%. Then $

is definable in RE[R, P;], with P; and B interpreted assSand -$, respectively. Both S

and -S areX41, SO S is itself>,+1. Thus we have the following result.

Theorem: A set S i+ iff S is enumeration reducible tdh, set, iff Sis r.e. in &l, set,
iff Sisr.e.in ax, set.

Let us now relate this to the hierarchy 0, 0', 0", ... of degrees. We first prove the following

Lemma: For all n, a set is r.e. inWiff it is Z+1.

Proof: We prove this by induction on n. For n = 0, the theorem states that a st iis
isre.in@. Butasetisr.e.in@iffitisr.e., so the theorem states that a set is r.e{ff it is
which we already know to be the case.

Now let n > 0, and suppose the theorem holds for everything less than n.

00 : Suppose Sisr.e. in(@ By the properties of the jump operatof)@ &n-1) is
r.e. in @1, By the inductive hypothesis, then"ds .. So Sisr.e. in &, set and is
therefore>+1.

[J: Suppose S iBp+1. Then Sisr.e. in sonkg set 3. By the inductive hypothesis,
Siisr.e. in @-1). By the jump properties,;; @n-1) = @&n), soa fortiori S; <1 @),

By the weak transitivity property ofe. in, S is r.e. in @,

If d is a Turing degree, we can say that a setr ®.isn diff Sis r.e. in some setind. If
Sisr.e.inagiven setin d, then S is r.eevaryset in d: suppose S is r.e. in$d, and
S, 0 d; then $<71 Sy, so by the weak transitivity property, S is r.e. sn By the same
reasoning (this time using the transitivity<g}), we can say that a setrecursive in dff it
iS recursive in some, or equivalently every, setin d. Thus we can restate the above result as
follows:

Corollary: A set isZ, iff itis r.e. in dn.
Proof: 0" is the degree of @.

153

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

We also have the following:

Corollary (Post's Theorem) A set is recursive in(0 iff it is Ap1.
Proof: S is recursive in@ iff both S and -S are r.e. it iff both S and -S arg.1, iff
S iSAn+l.

This theorem was proved in a paper by Post in the early 40's; he also introduced the notions
of simple and creative sets in that paper. The paper, by the way, was very important
methodologically, as it was the first to rely heavily on the intuitive notion of a computation:
previous work in recursion theory was all written out in a very formal way.

Post's theorem might be more of a surprise given other formalisms than our own (e.g.
the Turing machine formalism), as it displays an intimate connection between the recursion-
theoretic jump hierarchy on the one hand and on the other the arithmetical hierarchy, which
was defined in terms of definability in a certain language.

* Given our own formalism this should be less surprising, since on our approach recursion-
theoretic notions are themselves given in terms of definability, and Post's theorem simply
shows that two different notions given in terms of definability match up in a certain way.

A set is said to b&-complete>, (or simplycomplete,) if it is aX, set to which alk,
sets are 1-1 reducible. Thus, a set is 1-complgjiest in case it is 1-complete. We could
definem-complete>,, analogously, but it turns out that, just as in the special case n = 1, the
two notions coincide.

Before going on, we should notice that every set many-one reducihlg setis itself
>nh. (Soin particular, every set 1-1 reducible &, &et isz,,.) To see this, suppose &,

Sy and SisX,. Then there is a recursive functigprsuch that $= {x: Y(x) O S}, so §

is defined by the formuld)(PS(x, y)JA(y)), where A is &, formula that defines S and
PS(x, y) is &1 formula that defines the graphf We can then calculate the whole
formula to bex,. (A(y) and PS(x, y) are boffy, so their conjunction is, too; and adding an
existential quantifier to &, formula just yields anothéi, formula.) Therefore, the set S

IS 2p.

It is immediate from this that any set many-one reducibldtgset is itself1,. For
suppose sy S and Sisly; then -§ < -S> and -Sis 2y, so -S is 2y, and so §is
My If S many-one reduces td\g set, then S many-one reduces to a set that iShathd
My, and is therefore itself body, andll,, i.e. it iSAn.

We can therefore show that A set S is compgteist in case forall $S,i1s2, = S
<1 S. Clearly, if 3isZ, = S <9 Sforall §, then S is,, (since &1 S) and every, set
1-1reducesto S, i.e. S is complEfe If, on the other hand, S is compl&ig then Sis Z,

0 $ <1 Sforall §, so we only have to show that§ SO S isZ,. But we know that
S isZ,, so by the preceding remarks we know that any set 1-1 reducible to S3g. also
As a corollary to the lemma, we can deduce that eéts@ompletez,,

154

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Theorem: For all n > 0, @) is complete,,.
Proof: This is just to say that for all S<$ @ iff Sis Z,. But S<; AN iff Sisr.e. in
@(-1), by the jump properties, iff S %,, by the lemma.

We therefore have several different characterizations of th
e X+ Sets:

Sis2 +1 = S<esomell,set= Sisr.e.in somg, set
= Sisre.in @) - S<; @+l) o S<, @+,

(As for the last biconditional: if 8; @n+1) then obviously &, @+1), and if S<;,, @n+1)
then, since @+1)is 3,1, Sis als®p+1.)

Trial-and-Error Predicates.

In the special case n = 1, Post's theorem implies thAbthets are precisely the sets
recursive in 0'. There are also other interesting characterizations\pfdates.

One such characterization has to do with a modification of the notion of a computation.
Consider a computing machine that gives tentative answers to questions that are put to it.
When asked "is x in S?", it may answer "yes", but then later on change its mind and answer
"no". In fact, it may change its mind several times; however, we require it to settle on a
single answer after a finite number of changes of mind. If M is such a machine, the set
computed by M is the set {x: M eventually settles on a "yes" answer for the input x}.

Once this notion is made precise, it turns out that the sets computed by such machines are
precisely the\, sets. (The notion of this kind of computation, and this result, are due to
Hilary Putnam.)

One way to make this precise is as follows. Consider a total recursive fupatidwo
variables which takes only the values 0 and 1. Suppose that for any m, thegesiscin s
thaty(m, s) =(m, g) for all s> 5. ($ need not be the same for all nd)represents a
machine of the sort we are considering, @, s) represents the sth answer given for the
input m. (0 and 1 represent the answers "no" and "yes", respectively.) The set associated
with the functiony is the set S = {mp(m, g) = 1, wherap(m, $) = Y(m, s) for all = s}

(Since g depends on m, we can equivalently define S =¢jfm, p(m)) = 1}, wherep is

any function such that for all m and for at p(m), Y(m, s) =(m, p(m)). p(m) need not
be the least sucly.sp is called anodulus of convergender Y. S will always be recursive
in any modulus of convergence fbr)

Let us call a set associated with sughia the indicated way tial-and-error
predicate It can be shown that the trial-and-error predicates are precis@ydbes. The

155

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

proof that all trial-and-error predicates &teis easy and is left as an exercise for the reader.
The other direction is harder, and we shall sketch an informal proof. First, notice that any
r.e. setis a trial-and-error predicate, for suppose Sisr.e. and let P be any semi-computation
for S. Then we can compute S (in the present sense of "compute") by setting P going and
giving "no, no, no, ..." as output. If and when P says "yes", then we change our minds and
start giving "yes, yes, ..." as output; if at any point P has not said anything, however, we
continue to say "no". Thus, our outputs involve only a finite number of changes of mind
(either one or none at all), so we have computed S in the appropriate sens&.; Setsll
are trial-and-error predicates; the same appli€k teets by reversing "yes" and "no".

Now consider the general case. Suppose a sé&,Stigen it is recursive in some
particular r.e. set (&', for example). So S is computed by some procedure P with an oracle
to @'. Since @'isr.e., we have a trial-and-error machine for @'. For a given x, we can
compute tentative answers to the question "is x in S?" as follows. Suppose we are being
asked for the nth time. We run P for n steps, except that when P consults its oracle about
whether d] &', we ask our trial-and-error machine whether@'. (If n > 1, then we may
have asked it this question before.) If after n steps we have obtained an answer, we give that
answer; otherwise we say "no" (or "yes"; it doesn't matter which). Now, when P is run with
an oracle to @', the oracle is consulted only finitely many times before P halts with the
correct answer to whether xS, i.e. there is a finite collection,a.., & of sets such that
when P is given correct answers to the questions '@?", ..., "a J @'?", and is given
enough time to run, it will halt with the correct answer to the questiohSR". So we will
eventually reach a stage in our computation such that we have asked the trial and error
machine the questions;"al @'?", ..., "a 1 @'?" often enough to get correct answers, and
such that we run P long enough to get an answer, which must be the correct answer, to
whether xJ S. So for any x, there is an n large enough that our computation always gives
the correct answer to 'X S?" after stage n.

The Relativization Principle.

There is a general principle in recursion theory, which is hard to make precise but which
ought to be stated nonetheless. It is that whenever we have a proof of some statement about
the absolute notion of recursiveness or recursive enumerability, then we can demonstrate,
using essentially the same proof, an analogous statement about the relative notion of
recursiveness in a set or of recursive enumerability in ®set.general, any statement

involving an absolute notion relativizes to the corresponding relative notion and by the same
proof, provided the relative notion involves an oracle (or extra predicate, etc.) to both a set
and its complement. This must be taken with a grain of salt, since if we have shown that
some particular set is not recursive, or that it is not r.e., we do not thereby show that there is
no set in which it is recursive or r.e. However, this is not the sort of statement that is

156

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

intended in the principle; once one has some experience with this principle, one gets a feel
for what sort of statements are and are not allowed.

Consider, for example, the result that K is r.e. but not recursive. Let us define, for any
given set S, Wto be the relation {<e, m>:¥)(s0 SuU -SOW(e, X, s))}. W is thus an
enumeration of the sets r.e. in S. Thus, for anyﬁei,s\/the set{m: [(5)(sO0 Su-SO
W(e, x, S))}, and S' is simply the set {[e, m]: mrwg} We can define Rto be the set {e:

e 0 W3}. KSreally has the same definition as K, except that we now relativize the relevant
notions to S. The analog of the fact that K is r.e. but not recursive is the fact thatek

in S but not recursive in S; this holds, and is shown by the very same proof we used to
show that K is r.e. but not recursive.

As another example, we can relativize Iqd 1, hierarchy to a set S by considering
formulae in the language of arithmetic plus an extra predicate interpreted as S. (We thereby
get an atomic formula, namely ~P(x), which defines the complement of S, since the
language of arithmetic has negation.) Thus, we have the relativized rigtiorSand /T,
in § with the obvious definitions. We similarly say that a set or relatiantismetical in S
if it is defined by some formula in the language of arithmetic with the extra predicate
interpreted as S. We can prove, by the same proofs we used to prove the corresponding
absolute theorems, that every set arithmetical in S is @@ 1, in S for some n, that
there is an enumeration of the sBtgor) in S which is itsel&, (M) in S, and that
there is always a set thatlig in S but no&, in S. We also have a relativized version of
Post's theorem, and by the same proof: if d is the degree of S, then/s,senisS iff it is
recursive in €.

Now, people have tried to state the relativization principle formally, but every attempt so
far has been unsuccessful. That is, every formal claim which has been put forth as a
candidate statement of the principle has turned out to have counterexamples; however, these
counterexamples are not intuitively counterexamples to the relativization principle itself.

The relativization principle doe®t hold for complexity theory. Whereas in recursion
theory we do not place a time limit on a computation procedure, complexity theory is
concerned with computations for which a time limit is given in advance. Corresponding to
the question whether every r.e. set is recursive is the complexity-theoretic problem whether
P = NP, which is unsolved to this day. Whatever the answer may be to this problem,
however, we can be sure that it provides a counterexample to the relativization principle. We
can relativize the P = NP problem by considering computations with an oracle to a given set;
it turns out that there are some oracles for which P = NP and some for whidR.P
Obviously, if a relativization principle held in complexity theory, then we would have either
P = NP for all oracles or £NP for all oracles.

157

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

A Refinement of the Godel-Tarski Theorem.

We know from the work of Godel and Tarski that the set of true sentences of the language
of arithmetic is not itself definable in arithmetic. That is, for any formula A(x) of the
language of arithmetic, there is a sentence B such that

(M) A(0M) =B

does not hold, where m is the Godel number for B (or in other words, B is a
counterexample to (T)). For if there were no such B, then the above biconditional would
hold for all B, and so A(x) would define the set of Godel numbers of true statements. Our
work on the arithmetical hierarchy allows us to get a refinement of this result. Specifically,
if Ais 2, (resp.ly), then we can choose B to g (resp.2,).

To see this, suppose A(x)3s. Let B(x) be d1, formula that is nok,,; we know from
our previous work that such a B(x) must exist. Now consider the funjpioh= the
Godel number of BXM). y is evidently recursive, so its graph is defined by sBme
formula PS(x, y). Consider the formula/§(PS(x, y)dA(y)). This formula is true iff
P(m) satisfies A(x), i.e. iff the Godel number of the formul@(®)) satisfies A(x); if (T)
has ndT, counterexamples, then this holds ifOBD) is true, iff m satisfies B(x). So in
that caselly)(PS(x, y)IA(y)) is equivalent to B(x). Moreover, that formulaig by our
calculations. But then B(X) is equivalent t&gformula after all, which is impossible. So
(T) has d1,, counterexample, and by similar reasoning, reversing the rotearaflT, if
A(x) is M, then (T) has &, counterexample. (In that case, we use the formula (y)(PS(x, y)
[0 A(y)) instead of ()(PS(x, y)JA(Y)).)

Looking more closely at this argument, we see that if m is a number such that
(Gy)(PSOM), y) OA(y)) and BO(M) have different truth values, thena80)) is itself aly,
counterexample to (T); otherwisg/(PSOM), y) O A(Y)) is true iff AQ@) is true (where q
= (m)) iff B(0O(M)) is true (since q is the Godel number 0®®Y)). Moreover, since the
only fact about B(x) we used was that it @aformula which is nok,, we see that for any
such formula B(x) and ar¥;, formula A(x), we can find a number m such thad®)) is a
counterexample to (T). However, this is not to say that we can feftentivelyirom B(x)
and A(x); in fact, just as not all sets satisfy the effective form of Godel's theorem, et all
predicates B(x) are such that we can effectively find m from A(x).

It also turns out that this refinement of the Godel-Tarski theorem is the best we can get,
i.e. given &, formula A(x), there may not bea counterexample to (T). In fact, for all n
> 1, there is &,, formula that defines truth fat, sentences, and alsdlg formula that
defines truth fofl1, sentences. We prove this by induction on n.

First, we show that if there is2@ formula that defines truth far, sentences, then there
is all, formula that defines truth féi,, sentences. Suppose A(X) is suck dormula.

Let y be a recursive function such that if m is the Godel numbeFlgfsentence B, then

158

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Y(m) is the Godel number of2g sentence equivalent to ~B, and let PS(x, y) be a
formula that defines the graphf Then d1, sentence B is true iff ~B is not true, so
(Y)(PS(x, y)OO ~A(y)) defines truth fofl, sentences, and is equivalent idgformula.

Now we know already that there iZaformula that defines truth far; sentences, so
the theorem holds for n = 1. Suppose it holds for n, and let A(x)lagamula that
defines truth fofl, sentences. Letbe a recursive function such thatlik{C(x) is aZn+1
sentence with Godel number m, thgm, p) is the Godel number of @#)), and let CH(x,
y) be a>; formula that defines the graphyaf (Ox)C(x) is true iff for some @(P)) is true
for some p, solly)(Cz)(CH(X, z, y)dA(y)) defines truth fok,+; sentences and is itself
>nh+1. As we have already seen, it follows that therdg.a formula that defines truth for
Mh+1 Sentences, so we are done.

159

