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Lecture XIII

Languages with a Recursively Enumerable but Nonrecursive Set of Formulae.

In dealing with formal languages, it is common to require that the set of formulae of the
language be recursive.  In practice, however, one hardly ever needs to use more than the fact
that the set of formulae is r.e.  In practice, one also hardly ever encounters languages with a
recursively enumerable but nonrecursive set of formulae.  However, there seems to be
nothing in principle wrong with such languages, especially if one thinks, as e.g. Chomsky
does, that to give a grammar for a language is to give a set of rules for generating the well-
formed formulae, rather than to give a procedure for determining whether a given string of
symbols is well-formed or not.

We can easily cook up a language with a non-recursive but r.e. set of formulae.  For
example, let S be any set which is r.e. but not recursive, and let L be the first-order language
which contains no function symbols or constants and whose predicates are {Pn

1: n ∈  S}.  L
will be as required.

While this language is artificial, natural examples sometimes arise as well.  In a system
of Hilbert and Bernays, for example, there is, in addition to the usual logical symbols, an
operator (ιy), such that (ιy)A(x1, ..., xn, y) denotes the unique y such that A(x1, ..., xn, y)
holds.  Hilbert and Bernays thought that this really only makes sense if there is a unique y
such that A(x1, ..., xn, y) holds, so they stipulated that (ιy) could be introduced only through
the rule

(x1) ...(xn)(∃! y)A(x1, ..., xn, y)
____________________________________

(x1) ...(xn)A(x1, ..., xn, (ιy)A(x1, ..., xn, y))

(where (∃! y)A(x1, ..., xn, y) means that there is a unique y such that A(x1, ..., xn, y) holds,
and is an abbreviation of (∃ y)(A(x1, ..., xn, y) ∧  (z)(A(x1, ..., xn, z) £ z = y))).  A result of
this policy is that the set of well-formed formulae of the language will in general be
nonrecursive, though it will be r.e.  Hilbert and Bernays were criticized on this point, though
it is not clear why this is a ground for criticism.

In terms of our own formalism, we could stipulate that fn
i  be introduced when

(x1)...(xn)(∃! y)A(x1, ..., xn, y) is a theorem, where i is a certain Gödel number of A, and add
as a theorem (x1)...(xn)A(x1, ..., xn, f

n
i (x1, ..., xn)).
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The Sm
n Theorem.

If R is a 2-place r.e. relation, then intuitively Rk should be r.e. as well; but furthermore,
given k, we ought to be able to effectively find an index for Rk.  This is indeed the case, and
is a special case of the Sm

n theorem.  More generally, let R be an m+n-place r.e. relation.  In
the case we have just considered, Rk is obtained from R by fixing k as a parameter; the
general form of the Smn theorem (put informally) says that given m numbers k1, ..., km, we
can effectively find an index for the relation obtained from R by fixing k1, ..., km as
parameters.  In our own formalism, the Sm

n theorem is an easy consequence of the
definability in RE of substitution.  We now state the S1

1 theorem, i.e. the special case of the
Sm

n theorem in which m = n = 1.

Theorem:  For any 2-place r.e. relation R, there is a 1-1 recursive function ψ such that, for
all k, Wψ(k)= Rk.
Proof:  Let e be an index for R.  e is a Gödel number of some formula of RE A(x2,x1) that
defines R.  An index of Rk, i.e. a Gödel number of a formula of RE that defines Rk, can be
obtained from e via substitution. More specifically, we define the graph of ψ in RE by the
formula PS(k,y)=df. (∃ p≤y)(Num(p,k) ∧  (w<p)~Num(w,k) ∧ NSubst(0(e),y,[0(1),0(2)],p) ∧
(w<y)(~NSubst(0(e),w,[0(1),0(2)],p))) (the use of negation is legitimate, since the formulae it
affects are equivalent to formulae of Lim). Informally, ψ assigns to k the least Gödel
number of the formula obtained by substituting the least Gödel number of the numeral of k
for x2 in the formula with Gödel number e. The function thus defined is clearly 1-1, since
the results of substituting different numerals for the same variable in the same formula must
have different Gödel numbers.

The general form of the Sm
n theorem can be stated and proved similarly: for any m+n-place

r.e. relation R, there is a 1-1 recursive function ψ such that, for all k1,...,km,
Wn+1ψ(k1,...,km)= Rk1,...,km (where Rk1,...,km is {<y1, ..., yn>:  R(k1, ..., km, y1, ..., yn)}). As
we see, the name "Sm

n theorem" derives from the convention of taking m as the number of
parameters and n as the number of other variables; 'S' probably stood for 'substitution' in the
original conception of Kleene, to whom the theorem is due.

As a consequence of the above theorem, we have the following

Theorem:  For all m and n, there is a one to one m+1-place recursive function ψ such that
for all m+n-place r.e. relations R, if e is an index of R and k1, ..., kn are numbers, then ψ(e,
k1, ..., km) is an index of {<y1, ..., yn>:  R(k1, ..., km, y1, ..., yn)}.
Proof:  Apply the previous form of the Sm

n theorem to the relation Wm+n+1.  That is, let ψ be
a function such that ψ(e, k1, ..., km) is an index of {<y1, ..., yn>:  W(e, k1, ..., km, y1, ..., yn)}
= {<y1, ..., yn>:  R(k1, ..., km, y1, ..., yn)}.
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The second form of the Sm
n theorem can thus be seen as a special case of the first.  The first

form also follows directly from the second. A third form of the theorem is the standard
form in most presentations of recursion theory, and the form originally proved by Kleene:

Theorem:  For all m and n, there is a one to one m+1-place recursive function ψ such that
if e is an index of an m+n-place partial recursive function φ, then ψ(e, k1, ..., km) is an index
of the n-place function φ(k1, ..., km, y1, ..., yn).
Proof:  Apply the previous theorem to the relation Wm+n+2*, the graph of the m+n+1-place
function Φm+n+1.

Given m,n, a function ψ with the property stated in the third version of the theorem (for m,n)
is a function standardly called an Sm

n function.

The Uniform Effective Form of Gödel's Theorem.

We can use the Sm
n theorem to prove the uniform effective form of Gödel's theorem, i.e. that

for any consistent r.e. extension Γ of Q, a sentence undecidable in Γ can be obtained (in a
uniform way for all Γ) effectively from Γ itself.  Specifically, given a formula A defining -K,
we can find a recursive function ψ such that for all e, ψ(e) is a number such that the
statement that A is true of ψ(e) is true but unprovable from We if We is a consistent
extension of Q, and undecidable in We if We is also ω-consistent.  (We say that a sentence
is a theorem of We if it is a theorem of the set of sentences whose Gödel numbers are
elements of We; so if We contains numbers other than the Gödel numbers of sentences, we
ignore them.)

Recall the proof of Gödel's theorem.  Let Γ = We be any r.e. axiom system, and let A(x)
be some Π1 formula that defines -K.  Then let (-K)* = {m: Γ fi A(0(m))}, the set of
numbers provably in  -K.  Since (-K)* is r.e., for the familiar reasons, (-K)* is Wf for some
f.  Then the proof we are familiar with shows that A(0(f)) is true but unprovable in Γ
provided that Γ is a consistent extension of Q, and undecidable if Γ is ω-consistent.
Intuitively, f depends effectively on e, so f should be ψ(e) for some recursive function ψ.  It
is the proof that this is the case that uses the Sm

n theorem.

Uniform Effective Form of Gödel's Theorem:  For every Π1 formula A(x) defining -K,
there is a recursive function ψ such that for all e, A(0(ψ(e))) is true but unprovable from We,
if We is a consistent extension of Q, and undecidable if We is an ω-consistent extension of
Q.
Proof: Let A(x) be a fixed Π1 formula defining -K, and let R be the relation {<e, m>:
A(0(m)) is a theorem of We}.  If R is r.e., then by the S11 theorem we can find a recursive ψ
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such that Wψ(e)=Re = {m: R(e, m)} = {m: A(0(m)) is a theorem of We} for all e. So
A(0(ψ(e))) must be true but unprovable if We is a consistent extension of Q, and undecidable
if We is an ω-consistent extension of Q. So we only have to prove that R is r.e., but this is
clear. Let χ be a recursive function such that χ(m) is a certain Gödel number of A(0(m)).
Note that A(0(m)) is a theorem of We iff there is a proof sequence from the sentences of We

on which a Gödel number of A(0(m)) occurs.  A proof sequence from We is simply a finite
sequence of numbers, each of which either codes a sentence in We or a logical axiom, or
follows from earlier terms in the sequence by a logical rule of inference.  So it is clear that
we can find an RE formula PS(s, e) which says that s is a proof sequence from We; we can
then define Th(e, x) as (∃ s)(∃ n ≤ s)(PS(s, e) ∧  [n, x] ∈  s).  Th(e, x) says that x is a Gödel
number of a formula provable from We.  Using the function χ above, the relation R is
defined by the RE formula Th(e, χ(m)).

We say that a nonrecursive r.e. set S satisfies the uniform effective form of Gödel's theorem
just in case for some Π1 formula A(x) defining -S, there is a recursive function ψ such that
for all e, A(0(ψ(e))) is true but unprovable from We, if We is a consistent extension of Q, and
undecidable if We is an ω-consistent extension of Q. The theorem just proved shows that
the set K satisfies the uniform effective form of Gödel's theorem .  However, not every
nonrecursive r.e. set satisfies it.  In particular, Post's simple set (defined in the exercises)
does not satisfy the uniform effective form of Gödel's theorem.

The Second Incompleteness Theorem.

We shall now use the uniform effective form of Gödel's theorem to prove a version of
Gödel's second incompleteness theorem, the theorem that says that a sufficiently strong r.e.
axiom system cannot prove its own consistency.  Our proof is based on a proof by
Feferman, although it differs from that proof in an important respect. Before giving the
proof, we will say a little bit about the philosophical background of Gödel's second
incompleteness theorem.

In the early decades of the twentieth century, many mathematicians believed, especially
because of the paradoxes, that mathematics might be in serious foundational trouble. Several
leading mathematicians had then a strong interest in logic and foundations. Many of these
mathematicians thought that the reason behind the trouble is that one cannot reason validly
about the infinite, at least in a "natural" way, e.g., they thought that one cannot reason validly
about the totality of natural numbers, as opposed to something you can reason about by
reasoning about larger and larger initial segments.

Two of those leading mathematicians with strong foundational interests were Brouwer
and Hilbert. Brouwer thought from the beginning that mathematics had to be radically
revised, and he proposed a doctrine of what mathematical reasonings are acceptable, called
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'intuitionism'. In intuitionism, infinitary constructions were not acceptable, and principles
about infinite collections licensed by classical logic, like the principle that, for a given
property, either all numbers have it or there is a number that is a counterexample; thus, a
proof that not all numbers have a certain property does not guarantee, for the intuitionist,
that there is a number without that property (this can only be shown by constructing such a
number).

Some mathematicians adopted the point of view on foundations common today, i.e., the
point of view that there was no problem of legitimacy with mathematics as it had been done,
including set theory; in the case of the logicists, at least a certain modified logical form of
set theory was legitimate. An entirely different approach to the foundational crisis was taken
by Hilbert. He thought that the intuitionists were right in their worries whether mathematics
as it was being done was legitimate. He further thought that the set of methods of
mathematical reasoning guaranteed to be legitimate was even more restrictive than the set of
methods allowed by the intuitionists. On the other hand, Hilbert did not want to change
mathematics. He had the following idea. One should develop mathematics by means of
formal systems, as had been done by people working in logic and foundations, and view
mathematical theorems as finite strings of symbols without meaning, which could be
generated in mechanical ways in the formal systems. But one should prove, by the restrictive
methods allowed, that the formal systems of mathematics were consistent.

What would be the value of such a proof of consistency? Normally, the reason we don't
want a formal system to be inconsistent is that not all of the theorems of an inconsistent
system can be true. Since Hilbert thought that not all theorems of mathematics could be true,
this was not his reason for demanding a proof of consistency. Another reason is to show
that the system is not uninteresting, for an inconsistent system is uninteresting in the sense
that it proves every sentence. But there were other reasons as well. We have proved for our
own formalisms that if we have a Π1 statement (x)L(x), where L(x) is a limited formula,
first, we can decide, for any instance L(0(n)) of L(x), whether L(0(n)) is true or not. But
second, and more important, that if the system is consistent, then if (x)L(x) is provable then
all the instances of L(x) are true; for if some instance was false, it could be shown to be so
by finite methods (limited statements, whose quantifiers involve only initial segments of the
natural numbers, are the kind of statements taken to be legitimate by Hilbert), and then
~(x)L(x) would be provable, rendering the system inconsistent if (x)L(x) is provable too. In
this way, a proof of consistency would provide a legitimation for theorems of the form
(x)L(x).

What is known as Hilbert's Program was not merely the idea that proving consistency
would be a good thing. The Program suggested by Hilbert actually included a particular and
very plausible suggestion of how a proof might be attempted. At the time, it looked as if this
suggestion (which we cannot explain here) really ought to work. That's why Gödel's second
incompleteness theorem came as a shock, for it showed that consistency for a system could
not be proved assuming that Hilbert's restricted finite methods were a subset of the methods
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incorporated into the system itself. We can already see from Gödel's first incompleteness
theorem that Hilbert's aim was unattainable. For if consistency was provable, then the
statement that every Π1 provable statement is true would be provable. But if this was
provable, the Gödel sentence G, which is Π1, would be such that 'G is provable ⊃ G' would
be a theorem; but G says of itself that it is not provable, so '~G ⊃ G' would be a theorem,
and so by logic G would be a theorem. And this would imply, by the first incompleteness
theorem, that the system was not consistent after all.

Let us now give our proof of Gödel's second incompleteness theorem. First, let us see
how to write out the first incompleteness theorem in the language of arithmetic.  Pick a Π1

formula A(x) which defines -K, and fix a recursive function ψ as in the uniform effective
form of Gödel's theorem proved above.  Then

For all e, if We is consistent and We extends Q, then A(0(ψ(e))) is true but unprovable,

from which it follows that

(†) For all e, if We is consistent and We extends Q, then A(0(ψ(e))) is true.

(We leave out the second part on the hypothesis of ω-consistency.) We shall write out (†)
in the language of arithmetic.  We have in effect already seen how to write out the statement
that We is consistent.  We have an RE formula Th(e, x) which says that x is a theorem of
We; We is consistent just in case 0 ≠ 0 is not a theorem of We, so We is consistent iff e
satisfies ~Th(e, 0(n)), where n is a Gödel number of 0 ≠ 0; let us write Con(e) for ~Th(e,
0(n)).  (Alternatively, we could let Con(e) be the sentence (∃ x)~Th(e, x), since We is
consistent iff at least one sentence is not provable from We; or we could let Con(e) be the
statement that no sentence and its negation are both provable from We.)  And we can easily
write "We extends Q" within the system:  Q has finitely many axioms A1, ..., Ak, so let n1,
..., nk be their Gödel numbers; We extends Q just in case e satisfies Th(e, 0(n1)) ∧  ... ∧
Th(e, 0(nk)).  Let us write "e ext. Q" for this formula.  Finally, let PS(x, y) be some formula
that weakly represents ψ in Q.  Now consider the statement

(*) (e)(Con(e) ∧  e ext. Q ⊃  (∃ y)(PS(e, y) ∧  A(y)))

(*) is a partial statement of the first incompleteness theorem, and therefore ought to be
provable in reasonably strong systems of number theory.  Now consider the theory Q+(*).

Gödel's Second Incompleteness Theorem:  If We is a consistent extension of Q+(*),
then Con(0(e)) is not a theorem of We, i.e. We does not prove its own consistency.
Proof: Suppose We extends Q* and Con(0(e)) is one of its theorems.  Then as (*) is a
theorem of We, Con(0(e)) ∧  0(e) ext. Q ⊃  (∃ y)(PS(0(e), y) ∧  A(y)) is also a theorem of
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We; we already know that Con(0(e)) is a theorem of We, and 0(e) ext. Q is a true sentence
of RE and is therefore a theorem of Q and therefore of We; so (∃ y)(PS(0(e), y) ∧  A(y)) is a
theorem of We.  Let f = ψ(e).  Since PS represents ψ in Q, We fi PS(0(e), 0(f)) ∧
(y)(PS(0(e), y) ⊃  y = 0(f)); it follows that A(0(f)) is a theorem of We.  But we already
know from the first incompleteness theorem that A(0(f)) is unprovable in We if We is a
consistent extension of Q.  Since We is an extension of Q, it follows that We is
inconsistent.

The theorem does not show that there are no statements which might be thought of as
expressing the consistency of a system which are not provable in the system, pathological
statements of consistency, so to speak.  To see this, let Γ be an arbitrary consistent r.e.
extension of Q, let Pr'(x) be Pr(x) ∧  x ≠ 0(n) (where Pr(x) is any Σ1 formula defining the
set of theorems of Γ, and n is the Gödel number of 0 ≠ 0), and let Con'Γ be the sentence
~Pr'(0(n)).  Since Γ is consistent, 0 ≠ 0 is not a theorem of Γ, so Pr'(x) defines the set of
theorems provable in Γ; if Γ is ω-consistent, then Pr'(x) weakly represents the theorems of Γ
in Γ as well.  So in a sense, Con'Γ says that Γ is consistent.  However, it is clear that Γ fi
~Pr(0(n)), i.e. Γ fi Con'Γ. Also, we know from the exercises that if we have two disjoint r.e.
sets, we have weak representations of them which are provably disjoint in Q. If we take the
two sets to be on the one hand the set of theorems of Γ, and on the other hand the set of
sentences whose negation is a theorem of Γ, we therefore have weak representations of them
which are provably disjoint in Q. We might think that the corresponding sentence expresses
consistency. One of the aims of Feferman's, and of Jeroslow's, work, was to give conditions
for distinguishing these pathological statements from statements for which Gödel's second
incompleteness theorem goes through.

An important point about our presentation of Gödel's second incompleteness theorem,
where it differs from other presentations, including Feferman's, is that in the hypothesis of
the theorem we only require that a single statement (namely, the conjunction of Q and (*))
be a theorem of a system for it to fail to prove its consistency. In other presentations of the
theorem, including Gödel's original presentation, the proof that a system does not prove its
own consistency requires assuming that a certain sentence, different for each system, is a
theorem of the system. Let G be a Gödel sentence for a system Γ which extends Q and let
ConΓ be a sentence in the language of arithmetic that says that Γ is consistent.  The first
incompleteness theorem states that if Γ is consistent, then G is true but unprovable, so in
particular, if Γ is consistent, then G is true.  So if Γ is a powerful enough system to prove
the first incompleteness theorem, then Γ fi ConΓ ⊃  G.  If Γ fi ConΓ, then Γ fi G; since G is
true but unprovable from Γ, it follows that ConΓ is not a theorem of Γ.  This is how the
second incompleteness theorem was originally proved, as a corollary of the first
incompleteness theorem.  Thus, the unprovability of consistency for different Γ's under this
presentation is proved under the hypothesis that different sentences are provable in these
different Γ's — if Γ and ∆ are different systems, then to conclude that neither Γ nor ∆ prove
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their consistency one must assume that Γ fi ConΓ ⊃  G, and that ∆ fi Con∆ ⊃  D (where D is
a Gödel sentence for ∆).

On our approach, taking ConΓ to be Con(0(e)), where e is an index for Γ, we give a
single sentence (*) such that any consistent r.e. Γ which extends Q + (*) fails to prove
ConΓ. Without any job of formalization at all, it is shown that any extension of Q+(*)
satisfies the second incompleteness theorem. And a system that does not contain Q+(*) is
not sufficient for elementary number theory, since it should be clear that the methods used
in class can be regarded as methods of elementary number theory.

This much we can say without any formalization at all. And we can presume that some
systems are strong enough to contain elementary number theory, and therefore to prove
Q+(*). So we know enough at this point to state the main philosophical moral of the
second incompleteness theorem -a system in standard formalization strong enough to
contain elementary number theory cannot prove its own consistency. Strictly speaking we
have stated this only for formalisms whose language is the first-order language of
arithmetic, but the technique is easily extended to first-order systems in standard
formalization with a richer vocabulary. Some ideas as to how to consider such systems will
become clear when we discuss the Tarski-Mostowski-Robinson theorem in a later lecture.

If one wishes to consider a specific system, such as the system we have called 'PA', we
can say in advance that it satisfies the conditional statement that if it contains elementary
number theory, it cannot prove its own consistency in the sense of Con(0(e)) above.
However, we have a task of formalization if we wish to show that the system contains
elementary number theory or at any rate Q+(*). Here is one of the misleading features of
the name 'Peano arithmetic' that has been used for this system: it gives the impression that
by definition the system contains elementary number theory, when in fact it requires a
detailed formalization to show that this is so. If, for example, the properties of
exponentiation or factorial could not be developed in it, it would not contain elementary
number theory after all. We have seen the basic idea of how to do this, but the formalization
here is not trivial. Thus it does require a considerable task of formalization to show that (*)
can be proved in PA, and hence that the appropriate statement Con(0(e)) is not provable in
PA. But it requires no formalization at all to claim that any system in standard formalization
containing elementary number theory fails to prove its own consistency.
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Lecture XIV

The Self-Reference Lemma.

When Gödel proved the incompleteness theorem, he used the fact that there is a sentence G
with Gödel number n which is provably equivalent to the sentence ~Pr(0(n)) saying that the
formula with Gödel number n is not a theorem. Thus in a sense G says of itself that it is
unprovable. We have already pointed out that it is difficult to even remember how G is
constructed, and that Gödel's theorem is more naturally motivated by considering the
properties of the sentence ~Prov(0(n),0(n)), where n is the Gödel number of ~Prov(x,x). In
this sense, Gödel's use of the fact about "self-reference", had the negative effect of making
his proof appear somewhat mysterious. On the other hand, it had the positive effect of
calling attention to the fact that the argument for the existence of G does not depend in any
way on the choice of the predicate ~Pr(x), and establishes a more general claim (which,
although not stated by Gödel, can be reasonably attributed to him), usually referred to as 'the
self-reference lemma'.

Self-Reference Lemma.  Let A(x) be any formula in one free variable in the language of
arithmetic (or RE).  Then there is a sentence G of the language of arithmetic (of RE) such
that G ≡ A(0(n)) is a theorem of Q, where n is a Gödel number of G.

(In the case of RE, this could be made precise in two ways: either showing that the
translation of G ≡ A(0(n)) into the narrow language of arithmetic is provable in Q or
showing that the appropriate sentence in the broad language of arithmetic is provable in the
appropriate formalization of Q.)

Intuitively, G says of itself that it has the property A(x).  To prove a version of the first
incompleteness theorem using the lemma, let Γ be any consistent r.e. extension of Q, and let
Pr(x) be a formula that defines the set of theorems of Γ in RE.  Use the self-reference
lemma to obtain a sentence G such that G ≡ ~Pr(0(n)) is a theorem of Q and hence of Γ,
where n is a Gödel number of G.  If G is a theorem of Γ, then Pr(0(n)) is a true sentence of
RE, and hence is provable in Q and therefore in Γ; since Γ fi G ≡ ~Pr(0(n)), Γ fi ~G, so ~G
is also a theorem of Γ and Γ is inconsistent.  Since we are assuming that Γ is consistent, G
is not a theorem of Γ.  However, since G says of itself that it is not a theorem of Γ, G is true;
or more formally, ~Pr(0(n)) is true since G is not a theorem of Γ, G ≡ ~Pr(0(n)) is a
theorem of Q and is therefore true, so G is true.  So G is true but unprovable.  The proof of
the self-reference lemma reveals that G is a Π1 sentence; from this it follows that if Γ is ω-
consistent, ~G is not provable either.

Notice that we often state the Gödel theorems saying that the sentence obtained is one
which is true but unprovable. If the self-reference lemma is stated for the language of
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arithmetic, we know that the predicate Tr(x) saying that x is the Gödel number of a true
sentence cannot be defined in arithmetic itself. We know also that the opposite situation
holds for the language RE. Either way, we have the following corollary which, like the
lemma itself, holds for both the language of arithmetic and the language RE:

Corollary: Let A(x) be any formula in one free variable in the language of arithmetic (or
RE).  Then there is a sentence G of the language of arithmetic (or of RE) with Gödel
number n such that G≡A(0(n)) and A(0(n))≡Tr(0(n)) are both true.

There are numerous ways of proving the self-reference lemma.  Given our Gödel
numbering, G cannot actually be the sentence A(0(n)), since the Gödel number of A(0(n))
must be larger than n.  However, it is possible to devise a different Gödel numbering such
that for every formula A(x), there is a number n such that A(0(n)) gets Gödel number n.
(This method of proving the self-reference lemma was discovered independently by
Raymond Smullyan and the author.) If we add extra constants to our language, then we can
prove a version of the self-reference lemma for the expanded language.  Specifically, let L*
be the language obtained from the language of arithmetic by adding the constants a2, a3, ...
(a1 is already in L).  Interpret the new constants as follows:  if n is a Gödel number of a
formula A(x1), then interpret an+1 as the least Gödel number of A(an+1).  Then the sentence
A(an+1) says of itself that it is A.  Note that if mn is the Gödel number of A(an+1), the
sentence an+1 = 0(mn) is true under this interpretation.  If we let Q* be the axiom system
obtained from Q by adding as axioms all sentences of the form an+1 = 0(mn), then Q* fi
A(an+1) ≡ A(0(mn)) for all n, so we can let G be the sentence A(an+1).  So if we chose to
work in the language L* rather than L, we could get the self-reference lemma very quickly;
moreover, L* does not really have greater expressive power than L, since L* simply assigns
new names to some things that already have names in L. Using this version of the self-
reference lemma it is also possible to prove Gödel's incompleteness theorem, as we have
seen in an exercise.

The proof of the self-reference lemma essentially due to Gödel employs the usual Gödel
numbering and constructs the sentence G in a more complicated way. Let A(x) be given.
Let φ be a recursive function such that if y is the Gödel number of a formula C(x1), then
φ(n, y) is the Gödel number of C(0(n)).  Let B(x, y, z) represent φ in Q, and let A'(x, y) be
the formula (∃ z)(B(x, y, z) ∧  A(z)).  If y is the Gödel number of a formula C(x1), then A'(n,
y) holds iff the Gödel number of C(0(n)) satisfies A(x).  (We can read A'(x, y) as "y is A of
x"; for example, if A(x) is "x is provable", then A'(x, y) is "y is provable of x".)  Let m be
the Gödel number of A'(x1, x1), and let G be the sentence A'(0(m), 0(m)).  (A(x1, x1) says
that x1 is A of itself, and G says that "is A of itself" is A of itself.)  We shall show that Q fi
G ≡ A(0(n)), where n is the Gödel number of G.  Note that G is really (∃ z)(B(0(m), 0(m), z)
∧  A(z)), where B represents φ in Q.  Note also that φ(m, m) is the Gödel number of G itself,
since m is the Gödel number of A'(x1, x1) and G is A'(0(m), 0(m)); so Q fi B(0(m), 0(m),
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0(n)) ∧  (y)(B(0(m), 0(m), y) ⊃  y = 0(n)).  So Q fi A(0(n)) ⊃  (∃ z)(B(0(m), 0(m), z) ∧  A(z)),
i.e. Q fi A(0(n)) ⊃  G; and Q fi G ⊃  B(0(m), 0(m), 0(n)) ∧  A(0(n)), so Q fi G ⊃  A(0(n)).
Therefore, Q fi G ≡ A(0(n)).

The proof of the self-reference lemma that will be the preferred one in our treatment is
perhaps the standard one nowadays, and uses some of the recursion theory that we have
already developed. It is as follows. Let the formula A be given.  Let PH(x1, x2, y) be a
formula that functionally represents Φ in Q (recall that Φ is a function that enumerates the
unary partial recursive functions).  Let ψ be a recursive function such that ψ(m) is a certain
Gödel number of (∃ y)(PH(0(m), 0(m), y) ∧  A(y)). That there is one such recursive function
is clear by the familiar reasons.  In fact, we may naturally let ψ be just an Smn function for
the given formula (∃ y)(PH(x2, x2, y) ∧  A(y)) (which we may take to have number e). Let f
be an index of ψ.  Let G be the sentence (∃ y)(PH(0(f), 0(f), y) ∧  A(y)). Φ(f, f) = ψ(f) = a
Gödel number of (∃ y)(PH(0(f), 0(f), y) ∧  A(y)) = a Gödel number of G.  Letting n = ψ(f),
Q fi G ⊃  A(0(n)) (since Q fi G ⊃  PH(0(f), 0(f), 0(n)) ∧  A(0(n)), as PH functionally
represents Φ in Q), and Q fi A(0(n)) ⊃  G (since Q fi PH(0(f), 0(f), 0(n))).  Thus, Q fi G ≡
A(0(n)).

Through a similar proof we can obtain an effective version of the self-reference lemma:

Self-Reference Lemma. Effective Version: There is a recursive function φ such that for
all formulae A(x) of the language of arithmetic (RE) in one free variable, if m is a Gödel
number of A(x), then φ(m) is a Gödel number of a sentence Gm of the language of
arithmetic (RE) such that Q fi G ≡ A(0(φ(m))).
Proof: Let PH(x1, x2, x3, y) be a formula that functionally represents Φ3 in Q (recall that
Φ3 is a function that enumerates the 2-place partial recursive functions).  Let ψ be a 2-place
recursive function such that if p is a Gödel number of a formula A(y), ψ(q,p) is a certain
Gödel number of (∃ y)(PH(0(q), 0(q), 0(p), y) ∧  A(y)).  This may be taken again to be an
Sm

n function. Let f be an index of ψ, and let φ(p)=ψ(f,p). Then φ(p) will be a code of the
sentence Gp = (∃ y)(PH(0(f), 0(f), 0(p), y) ∧  A(y)), if p is a Gödel number of A(y). So if p
is a Gödel number of A(y), Φ(f, f, p) = ψ(f,p) = φ(p) = a Gödel number of (∃ y)(PH(0(f),
0(f), 0(p), y) ∧  A(y)) = a Gödel number of Gp.  Letting r = φ(p), Q fi Gp ⊃  A(0(r)) (since Q
fi Gp ⊃  PH(0(f), 0(f), 0(p), 0(r)) ∧  A(0(r)), as PH functionally represents Φ3 in Q), and Q fi
A(0(r)) ⊃  Gp (since Q fi PH(0(f), 0(f), 0(p), 0(r))).

The proofs of the self-reference lemma do not depend on the fact that A has only one
free variable. Noting this allows us to state a more general version of the self-reference
lemma in which G is allowed to have free variables.

Self-Reference Lemma with Free Variables:  Let A(x, y1, ..., ym) be a formula of the
language of arithmetic (or RE) with all free variables shown; then there is a formula G(y1,
..., ym) of the language of arithmetic (or of RE) such that Q fi (y1)...(ym)(G(y1, ..., ym) ≡
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A(0(n), y1, ..., ym)), where n is a Gödel number of G.

The version of the self-reference lemma in which G does not have free variables is simply
the special case of this lemma in which n = 0. Naturally, there is an effective version of the
self-reference lemma with free variables.

A corollary of the self-reference lemma with free variables is the following:

Corollary: Let A(x, y) be a formula of the language of arithmetic (or RE) with all free
variables shown; then there is a formula G(y) of the language of arithmetic (or of RE) with
Gödel number n such that (y)(G(y) ≡ A(0(n),y)) and (y)(A(0(n),y) ≡ Sat(0(n),y)) are both
true.

(In the case of RE, Sat(x,y) is W(x,y). In the case of the language of arithmetic, Sat(x,y),
which we use to mean that y satisfies the formula of the language of arithmetic with Gödel
number x, is not itself a formula of the language.)

The self-reference lemma with free variables might be given the name "self-reference
lemma with parameters", but this name is more appropriate for the following variant of the
lemma.

Self-Reference Lemma With Parameters:  For any formula A(x), there is a recursive
function ψ and a formula PS(x, y) that represents ψ in Q, such that for all m, ψ(m) is the
Gödel number of the formula (∃ z)(PS(0(m), z) ∧  A(z)), and furthermore this formula is
provably equivalent in Q to A(0(ψ(m))).
Proof:  Let χ be a recursive function such that if m is the Gödel number of a formula B(x1,
x2), then χ(m, n, p) is the Gödel number of the formula B(0(n), 0(p)).  Let CH(x, y, z, w) be
a formula that represents χ in Q.  Let n be the Gödel number of the formula (∃ x3)(CH(x1,
x1, x2, x3) ∧  A(x3)), and let PS(x, y) be the formula CH(0(n), 0(n), x, y).  PS represents the
function ψ(x) = χ(n, n, x); to prove the theorem, we only have to show that ψ(m) is the
Gödel number of the formula (∃ z)(PS(0(m), z) ∧  A(z)), for any m.  Since n is the Gödel
number of (∃ x3)(CH(x1, x1, x2, x3) ∧  A(x3)), it follows that ψ(m) = χ(n, n, m) = the Gödel
number of (∃ x3)(CH(0(n), 0(n), 0(m), x3) ∧  A(x3)), which is the formula (∃ x3)(PS(0(m),
x3) ∧  A(x3)).

Now, notice that (∃ z)(PS(0(m), z) ∧  A(z)) is provably equivalent to A(0(ψ(m))).  Thus,
writing G(x) for (∃ z)(PS(x, z) ∧  A(z)), we have

Q fi G(0(m)) ≡ A(0(ψ(m)))

for all m, where ψ(m) is a Gödel number of G(0(m)).

An alternative proof of the self-reference lemma with parameters consists in noting that we
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may take G(x) to be the formula (∃ y)(PH(0(f), 0(f), x, y) ∧  A(y)), as in the proof of the
effective form of the self-reference lemma, and ψ to be the function φ of that same proof.

The Recursion Theorem

Kleene seemed to use the term 'the recursion theorem' as an ambiguous term for two
theorems that he proved. Later, the two theorems came to be called Kleene's first and second
recursion theorems. Generally speaking, the second recursion theorem is the more powerful
of the two. Nowadays, it is usually called 'the recursion theorem'. We discuss this theorem
here (the first recursion theorem will come later). In terms of our formalism, it is simply the
self-reference lemma for the language RE with formulae of two variables. Recall that for
any 2-place relation R and number e, Re is the set {n:  R(e, n)}.

Recursion Theorem:  For any 2-place r.e. relation R, there is an e such that We = Re.

Before proving the recursion theorem, it is worth noting that the result is somewhat
surprising.  Any r.e. relation R can be thought of as enumerating a subclass of the r.e. sets
(namely, the class {Re:  e ∈  N}).  We may thus call such a relation a subnumeration or the
r.e. sets.  The recursion theorem says that every subnumeration coincides with W at some
point.  Offhand, we might have thought that we could obtain a subnumeration which did not
coincide with W at any point at all; R might be some scrambling of W, for example.  The
recursion theorem shows that this is not so.

Note that, since We is the set of numbers satisfying the RE formula with Gödel number
e, the second recursion theorem says that for any r.e. relation R there is an RE formula A(x)
with Gödel number e such that for all n, n satisfies A just in case R(e,n).  Since R is itself
defined by some RE formula B, this is just to say that for any RE formula B(y, x) of two
free variables, there is an RE formula A(x) of one free variable such that for all n, A(x) is
true of n iff B(0(e), x) is true of n, and so, that (x)(A(x) ≡ B(0(e),x)) is true, where e is the
Gödel number of A(x).  That is, the recursion theorem is really the self-reference lemma
with free variables for RE in the case of one free variable.  We can thus prove the recursion
theorem by imitating the proof of the self-reference lemma, by considering an Sm

n function
for the RE formula (∃ z)(PH(x2, x2, z) ∧  B(z, y)).  This was also the inspiration for Kleene's
original proof of the recursion theorem, although he was not working with RE, but with a
different formalism. We shall give a proof which, although based essentially on the same
underlying facts, is shorter and more common in textbooks.

Proof of the Recursion Theorem:  Let R be any 2-place r.e. relation.  Consider the
relation S(x, y) = R(Φ(x, x), y).  S is an r.e. relation, so apply the S1

1 theorem to obtain a
recursive function ψ such that for all m, Wψ(m) = Sm = RΦ(m, m).  Since ψ is recursive, it has
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an index f.  Let e = ψ(f); We = Wψ(f) = Sf = RΦ(f, f) = Re (since Φ(f, f) = ψ(f) = e).

This proof is breathtakingly short. It only uses the fact that W is an enumeration for which
the statement of the Sm

n theorem holds.
In the same way that there is an effective version of the self-reference lemma with free

variables, there is an effective form of the recursion theorem that is easy to state and prove:
there is a recursive function φ such that for any 2-place r.e. relation R with index e,
Wφ(e)=Rφ(e).Of course, the effective version, like the noneffective, can be proved for all
appropriate formalisms, and not just for RE.

The recursion theorem can be generalized to n+1-place r.e. relations.  If R is an n+1-
place relation, then let Re be the relation {<x1, ..., xn>:  R(e, x1, ..., xn)}; the general form of
the recursion theorem states that for every n+1-place r.e. relation R, there is an e such that
Wn+1

e  = Re.
Besides being surprising, the recursion theorem has curious consequences.  Let R(x, y)

be the relation W(x+1, y).  Then We = Re = We+1 for some e; so W enumerates the r.e.
sets in such a way that at least one such set is listed two consecutive times.  More generally,
we see that for all n there is an e such that We = We+n; so W has many repetitions.  (It is
natural to ask whether a repetition-free enumeration of the r.e. sets exists; it turns out that
such enumerations do exist, but are hard to construct.) Also, we can find a number e such
that We = {e}; just let R(e, x) be the identity relation.  Since this relation is certainly r.e., we
can use the recursion theorem to find an e such that W(e, x) iff x = e, i.e. we can find a
formula A(x) which is satisfied only by its own Gödel number.

More generally still, let ψ be any recursive function; by letting R(x, y) = W(ψ(x), y), we
see that We = Wψ(e) for some e. So we have the following

Theorem:  For every recursive function ψ, there is an e such that We = Wψ(e).

This theorem looks superficially like a fixed-point theorem, and we will sometimes refer to
it as 'the fixed-point version of the recursion theorem'.  Notice, however, that it is not quite a
fixed point theorem.  A fixed point theorem states that a function F has a fixed-point, i.e.
there is an a such that F(a) = a.  On the one hand, the theorem does not show that ψ itself
has a fixed point, since we can have ψ(e) ≠ e and We = Wψ(e).  On the other hand, the
"function" F(We) = Wψ(e) is not really a function at all, since its value depends not only on
its argument, the set We, but also on the index e (we can have We = Wf and Wψ(e) ≠ Wψ(f)).
By contrast, Kleene's first recursion theorem, which we shall eventually prove, really is a
fixed-point theorem.

There is also a version of the recursion theorem for Φ.  In fact, there are two versions,
corresponding to the first version and to the fixed-point version.

Recursion Theorem for Partial Recursive Functions:  (a) For all partial recursive ψ
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there is an e such that Φ(e, x) = ψ(e, x), all x; and (b) for all total recursive ψ there is an e
such that Φ(e, x) = Φ(ψ(e), x), all x.
Proof:  For (a), recall that Φ is really a uniformization of the relation W3.  Let PS(x, y, z) be
the graph of ψ.  Find an e such that We = PSe, i.e. for all y and z, W(e, y, z) iff PS(e, y, z)
iff ψ(e, y) = z; then We is single-valued, so W(e, y, z) iff Φ(e, y) = z; so Φ(e, y) = ψ(e, y).

(b) is immediate from (a):  let χ(x, y) = Φ(ψ(x), y), and let e be an index of χ; then Φ(e,
x) = χ(e, x) = Φ(ψ(e), x).

Form (b) is the form that usually is referred to as 'the recursion theorem' in the literature.
The recursion theorem is interesting mainly because the relation R can itself involve W,

as we saw  in the case R(x, y) = W(ψ(x), y).  To illustrate why this is useful, we shall give a
proof, using the recursion theorem, that the factorial function is recursive. (This illustrates,
by the way, why the theorem is called 'the recursion theorem'.) To show this, it suffices to
show that the graph of the factorial function is recursive.  If R is a relation such that

(*) R(x, y) ≡ (x = 0 ∧  y = 1) ∨  (∃ n)(∃ z)(x = n+1 ∧  y = (n+1).z ∧  R(n, z)),

then R is the graph of the factorial function.  (This can be seen by showing, by induction on
x, that there is exactly one y such that R(x, y), and y = x!.)  So we only have to find an r.e.
relation R that satisfies (*).  If R is r.e., then R = W3

e for some e, so an appropriate R exists
just in case

W(e, x, y) ≡ (x = 0 ∧  y = 1) ∨  (∃ n)(∃ z)(x = n+1 ∧  y = (n+1).z ∧  W(e, n, z))

holds for some e.  Setting S(e, x, y) ≡ (x = 0 ∧  y = 1) ∨  (∃ n)(∃ z)(x = n+1 ∧  y = (n+1).z ∧
W(e, n, z)), we see that S is r.e. and that y = x! is recursive if

W(e, x, y) ≡ S(e, x, y)

for some e; but by the recursion theorem, such an e exists.  We can similarly show that the
Ackermann function is recursive.  More generally, we can use the recursion theorem to find
partial recursive functions that satisfy arbitrary systems of equations.  For example,
consider the system consisting of the two equations

ψ(0) = 1
ψ(n+1) = ψ(n).(n+1)

We can use an argument similar to the one given above to show that there is a partial
recursive function satisfying these equations.  In this case, we see that the function in
question is total.  In general, however, we cannot guarantee this.  For example, let our
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system of equations consist of just the equation ψ(x) = ψ(x)+1.  This does indeed have a
solution, namely the function which is undefined everywhere.

So far, we have not used the recursion theorem to prove anything that could not be
proved already using the generated sets theorem.  However, there are some important
applications of the recursion theorem that go beyond the generated sets theorem.
Unfortunately, these applications are not as easy to state as the ones just given, and
presuppose some knowledge of transfinite ordinals.  Just as we can define functions on the
natural numbers by ordinary induction, we can define functions on the ordinals by
transfinite induction; and if α is a limit ordinal, f(α) will in general depend on the infinitely
many values f(β) for β < α.  Thus, we cannot use the generated sets theorem to show that
such a function is recursive, since we cannot generate f(α) until we have generated f(β) for
all β < α, and at no stage have we actually generated infinitely values.  Nonetheless, we can
intuitively define f by a system of equations.  For example, we might define ordinal
exponentiation by

α0 = 1
αβ+1 = αβ.α

αβ = sup{αγ:  γ < β} when β is a limit.

In fact, we can use the recursion theorem to show that this system of equations defines a
recursive function on the recursive ordinals (i.e. those ordinals which are order types of
recursive well-orderings), in essentially the way we showed that the factorial function is
recursive.  (However, for this to make sense we need a way of coding up the recursive
ordinals as natural numbers.)  Thus, we can use the recursion theorem to get around the
problem that the value of αβ depends on that of infinitely αγ's for γ < β when β is a limit.
(Since what we are really defining is an index e of the ordinal exponentiation function, the
set {αγ:  γ < β} is coded up in a finite way in terms of α, β and e; in effect, this is what
allows us to talk about infinitely many values of the function at once.)

Exercises

1. (a)  Let S be an r.e. set.  Prove that there is a 1-1 recursive function χ such that for all m,
Wχ(m) = N if m ∈  S and Wχ(m) = Ø if m ∉  S.

(b)  Show that K is 1-1 complete.  (This is a result that has been long awaited.)

2. (a)  Show that an r.e. set S is nonrecursive iff there is a total function ψ such that for all
x, ψ(x) ∈  S iff ψ(x) ∈  Wx.  S is called completely creative if ψ is recursive, and 1-1
completely creative if ψ is also 1-1.  Observe that K is 1-1 completely creative, where ψ is
the identity function.
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(b)  Prove that every completely creative set is many-one complete, and that every 1-1
completely creative set is 1-1 complete.

(c)  Prove that if S1 ≤m S2 and S1 is completely creative, then so is S2.  Also show that
if S1 ≤1 S2 and S1 is 1-1 completely creative, then so is S2.

(d)  Show that every many-one complete set is completely creative, and that every 1-1
complete set is 1-1 completely creative.

3.  (a) Recall the set S of exercise 6 in Lecture XII.  There is a formula (x2)L(x1, x2) with L
in Lim that defines the complement of S.  Why?  Prove that if Γ is a consistent r.e.
extension of Q, then only finitely many sentences of the form (x2)L(0(m), x2) are provable
in Γ even though infinitely many such sentences are true.  Hence conclude that if Γ is ω-
consistent, all but a finite number of true sentences of the form (x2)L(0(m), x2) are
undecidable.

(b) Prove that if the effective form of the Gödel theorem holds for an r.e. set T which is
not recursive (in the sense in which it holds for K), then there is an infinite r.e. set that is
disjoint from T.  Conclude that though the noneffective form of the Gödel theorem holds
for the set S of exercise 6 of the midterm assignment,  S does not satisfy the effective form.
(An r.e. set T with properties (b) and (c) of exercise 6 is called 'simple'.  Observe that
exercise 6 shows that every simple set is neither recursive nor 1-1 complete.  Property (a) of
the present exercise also follows from the fact that the set is simple.)

(c) Also show that if T is a nonrecursive r.e. set and T is completely creative, then T
satisfies the effective form of Gödel's theorem.  (It follows that K satisfies the effective form
of Gödel's theorem, which we have already seen to be the case.)
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Lecture XV

The Recursion Theorem with Parameters.

Let R be a 3-place r.e. relation, or in other words, a subnumeration of the 2-place r.e.
relations.  For any given m, let Rm be the relation {<e, x>:  R(e, x, m)}; Rm is a
subnumeration of the r.e. sets.  It follows from the recursion theorem that for any given m,
there is an e such that We = Rme.  But more is true:  we can find e effectively from m.

Recursion Theorem with One Parameter:  For any 3-place r.e. relation R, there is a
recursive function ψ such that for all m, Wψ(m) = Rmψ(m) i.e. for all x and m, W(ψ(m), x) iff
R(ψ(m), x, m).
Proof:  First, let χ be a recursive function such that Wχ(m, a) = RmΦ(a,a) for all m, a.  Since
RyΦ(x,x) is an r.e. relation, such a χ exists by the Smn theorem (taking m and a as the
parameters).  Next, let φ be a recursive function such that Φ(φ(m), a) = χ(m, a) for all m, a; φ
is easily obtainable from a two place function α guaranteed by the Sm

n theorem for partial
recursive functions, by taking an index of χ as fixed as the first argument of α.  Finally, let
ψ(m) = Φ(φ(m), φ(m)) = χ(m, φ(m)).  Then Wψ(m) = Wχ(m, φ(m)) = Rm

Φ(φ(m),φ(m))= Rmψ(m),
all m.

This proof should be compared to the proof of the parameter-free recursion theorem; all we
have done is to make the number f of that proof depend effectively on m.  The theorem can
be generalized to more than one parameter via the usual methods, i.e. either by imitation of
the proof for one parameter, or via the pairing function.

The more usual statement of the theorem is this:  for all 2-place recursive χ there is a 1-
place recursive function ψ such that for all m, Wψ(m) = Wχ(ψ(m), m).  This follows from the
version we have just proved:  simply let R(y, x, m) iff W(χ(y, m), x), and find a ψ such that
Wψ(m) = Rmψ(m)) = Wχ(ψ(m), m).

The recursion theorem with parameters has even spookier applications than the
parameter-free version.

Arbitrary Enumerations.

We shall now take a different approach to the Sm
n and recursion theorems, by considering

arbitrary enumerations of the r.e. sets rather than simply the specific relation W. This
approach has the virtue of making the recursion theorem appear less mysterious than the
usual presentation.

For most applications of either the recursion theorem or the Sm
n  theorem, we don't need
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any specific properties of the relation W except that it is an enumeration. For most
applications of the Smn  and recursion theorems, it suffices to have available the fact that there
is some enumeration of the r.e. sets with the properties stated in the Sm

n  and recursion
theorems for W.  Eventually, the approach that we will develop establishes that W has these
properties, but it first "cooks up" enumerations with those properties. One can find in the
literature the awareness that it is possible to cook up enumerations with the Sm

n property;
however, the rest of the theory does not appear in the literature and is due to the author, who
developed it without knowing that it had been developed for the Sm

n case.
Let W' be an enumeration of the r.e. sets.  For each k, we can easily obtain an

enumeration W'k of the k-place relations from W' via the pairing function.  The diagonal
enumeration of an enumeration of the two-place r.e. relations W'2(x,z,y), Diag(W'2), is the
relation W'2(x, x, y). We say that W' is a recursion enumeration (or that it has the
recursion property) if for all r.e. two-place relations R there is an e such that W'e = Re. We
also say that a subnumeration S is a recursion subnumeration if for all r.e. two-place
relations R there is an e such that Se = Re; every recursion subnumeration is an
enumeration: let A be an r.e. set and let R be the r.e. relation such that R(e,x) iff x is in A;
then A=Re for every e; since S is a recursion subnumeration, there is an e such that Se =
Re=A.

Theorem: For any enumeration in two variables W'2(x,z,y), its diagonal enumeration
Diag(W'2) is a recursion enumeration.
Proof: That W'2(x,z,y) is an enumeration means that for every r.e. two-place relation R there
is an e such that for all z,y, R(z,y) iff W'2(e,z,y). In particular, for every R there is an e such
that for every y, R(e,y) iff W'2(e,e,y), i.e. for every R, Re=Diag(W'2)e. This proves that
Diag(W'2) is a recursion subnumeration of the r.e. sets, and hence, by our previous result,
that it is a recursion enumeration.

This proof of the existence of a recursion enumeration of the r.e. sets from the existence of
an enumeration of the two-place r.e. relations is as breathtakingly short as the standard
proof that W has the recursion property, if not more so.  However, it is much more natural
and less mysterious than the latter.  Suppose you had an enumeration of the 2-place r.e.
relations, and you wanted to construct an enumeration of the r.e. sets with the recursion
property.  Each 2-place r.e. relation can be thought of as a list of r.e. sets, and the given
enumeration of the r.e. relations can be thought of as a list of all these lists; in constructing
an enumeration with the recursion property, what you really want to do is to construct a list
W† of r.e. sets which coincides with each of the other r.e. lists at some point.  If R is the eth
such list, what could be more natural than having W† coincide with R at the eth place?  This
is just what we have done in defining Diag(W'2) above.

We say that W' is a fixed-point enumeration (or that it has the fixed-point property) if
for all total recursive functions ψ there is an e such that W'e = W'ψ(e).  In calling these 'fixed
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point enumerations' we are referring to the fact that the fixed-point version of the recursion
theorem resembles a fixed point theorem (as we have pointed out, however, it is not really a
fixed point theorem). By a proof similar to the proof of the fixed point theorem from the
recursion theorem, we can prove the following

Theorem:  Every recursion enumeration is a fixed-point enumeration.

The converse fails; that is, there are fixed-point enumerations which are not recursion
enumerations.

Let us now define the notion of an enumeration that satisfies the Sm
n  theorem. We can

say that W' is a substitution enumeration (or that it has the substitution property) if for any
2-place r.e. relation R there is a 1-1 recursive function ψ such that W'ψ(e) = Re for all e.
Another way of stating the definition of a substitution enumeration is as follows.  If R and S
are subnumerations of the r.e. sets (i.e. 2-place r.e. relations), and ψ is a recursive function,
let us say that ψ is a translation of R into S (in symbols, ψ: R → S) if for all e, Re = Sψ(e).
Let us say that a subnumeration S is maximal if for every r.e. R, there is a recursive ψ such
that ψ: R → S; if we can require ψ to be 1-1, then we say that S is 1-1 maximal.
Translation is analogous to reducibility, and maximality (1-1 maximality) is analogous to m-
completeness (1-completeness).  Clearly, an enumeration is a substitution enumeration just
in case it is 1-1 maximal.  (A 1-1 maximal enumeration can also be called an effective
enumeration) Assuming that an enumeration W' exists, it will follow that every maximal
subnumeration S is an enumeration, because there will be a recursive function ψ such that
for all e, We = Sψ(e), and so S enumerates the r.e. sets.

We shall now show that given any enumeration, we can find a 1-1 maximal
enumeration.

Theorem: If W' is an enumeration of the r.e. sets, the relation W''([e, n], x) which holds iff
W'2(e, n, x) is a 1-1 maximal enumeration.
Proof: Let W' be an arbitrary enumeration.  Let W'' be the enumeration such that W''([e, n],
x) = W'2(e, n, x); W'' is called the pairing contraction of W'2.  (Formally, W'' is the r.e.
relation defined by (∃ e)(∃ n)(z = [e, n] ∧  W'2(e, n, x)).  Note that W''z = Ø when z is not of
the form [e, n].)  To see that W'' is 1-1 maximal, let R be any r.e. relation, and let R = W'2

e0.
Let ψ(n) = [e0, n].  W''(ψ(n), x) iff W'2(e0, n, x) iff R(n, x), so W''ψ(n) = Rn.  Since ψ is 1-1,
ψ is a 1-1 translation of R into W''.

Once we know that W'' is a substitution enumeration, it follows that it is a recursion
enumeration (and therefore a fixed-point enumeration). In fact, the standard proof of the
recursion theorem using the Sm

n  theorem establishes that every substitution enumeration is a
recursion enumeration, since it doesn't appeal to any properties of W besides its being an
enumeration. Actually, the following is also true:
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Theorem: If W'1 and W'2 are enumerations such that for some recursive ψ, ψ: W'1 → W'2,
then, if W'1 has the recursion property, W'2 has also the recursion property.
Proof: That W'1 has the recursion property means that for all r.e. two-place relations R
there is an e such that W'1e = Re; that ψ: W'1 → W'2 means that for all e, W'1e = W'2ψ(e).
We want to prove that for all r.e. two-place relations R there is an e such that W'2e = Re. Let
R be an r.e. two-place relation. There is an e such that for all x, W'1(e,x) iff R(e,x). Consider
the relation R'(x,y) which holds iff R(ψ(x),y). This is an r.e. relation and so there is an e
such that for all y, W'1(e,y) iff R'(e,y) iff R(ψ(e),y) iff W'2(ψ(e),y). So ψ(e) is such that
W'2ψ(e) = Rψ(e), and W'2 has the recursion property.

The theorem has as an immediate corollary that a maximal enumeration must have the
recursion property, since any recursion enumeration gets translated into it.

We mentioned that not every fixed-point enumeration is a recursion enumeration. A
fixed-point enumeration which is maximal is also a recursion enumeration.

As we said, most of the results in recursion theory that use W really only depend on the
fact that there is an enumeration with certain properties (specifically, the substitution
property, the recursion property, and the recursion property with parameters); as far as
recursion theory is concerned, little is gained by showing that the particular enumeration W
has these properties, since a cooked up enumeration with those properties will in general do
the job as well.
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Lecture XVI

The Tarski-Mostowski-Robinson Theorem

Recall from lecture X that if Γ is a set of true sentences in the language of arithmetic, then
every r.e. set is weakly representable in Γ.  Specifically, if A(x) is a formula of RE that
defines a set S, then Q ⊃  A(x) weakly represents S in Γ:  if n ∈  S, then Q fi A(0(n)), so a
fortiori  Γ, Q fi A(0(n)), and so by the deduction theorem, Γ fi Q ⊃  A(0(n)); if, on the other
hand, Γ fi Q ⊃  A(0(n)), then Q ⊃  A(0(n)) is true (since it follows from a set of true
sentences), and Q is true, so A(0(n)) is true and therefore n ∈  S.  It follows that every r.e.
set is 1-1-reducible to the set of theorems of Γ; if Γ is r.e., then the set of theorems of Γ is
1-complete.  But whether or not Γ is r.e., Γ is undecidable.

Alfred Tarski, Andrzej Mostowski, and Raphael Robinson generalized this result,
developing a technique for showing that various theories are undecidable.  The theorem
summing up this technique that we will state here, which says that certain theories are 1-1
complete, can be reasonably attributed to Bernays. We will call our basic result the 'Tarski-
Mostowski-Robinson theorem', since it is essentially due to them, although Myhill and
Bernays deserve credit for stating it in this form.

The basic idea behind the proof of the Tarski-Mostowski-Robinson theorem is to
weaken the hypothesis that Γ be true (in the standard model of the language of arithmetic) in
such a way that the argument of the last paragraph still goes through.  We shall prove the
theorem in stages, finding successively weaker hypotheses.

First, note that we can find a slight weakening of the hypothesis already.  We already
know that if Γ is a true theory in a language with two three-place predicates A and M for
addition and multiplication (or, from an exercise, even with a single three-place predicate for
exponentiation) then Γ is 1-complete. Weakening the hypothesis still further: suppose Γ is a
theory in some language L' which contains the language L of arithmetic (or simply the
language {A, M}) but contains extra vocabulary.  Then the reasoning still goes through, as
long as Γ has a model whose restriction to L is the standard model of L (or isomorphic to
it).  To see this, we need only verify that if Γ fi Q ⊃  A(0(n)) then n ∈  S (where A(x) defines
S in RE and 'Q' is some appropriate formulation of Q if the language considered is {A,M}).
So suppose Γ fi Q ⊃  A(0(n)) and I is a model of Γ whose restriction to L is the standard
model of L.  Then Q ⊃  A(0(n)) is true in I and therefore in the standard model, since Q ⊃
A(0(n)) is a sentence of L. So we have the result that if Γ is a theory in some language L'
which contains the language L of arithmetic (or simply which contains {A,M}) and Γ has a
model whose restriction to L is the standard model of L (or isomorphic to it) then Γ is 1-
complete.

Even in this form, the result is difficult to apply in practice, since, first, some theories we
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might want to apply it to are formulated in languages which do not contain the language of
arithmetic; and second, few if any interesting theories whose languages extend the language
of arithmetic have models whose restriction to this language is isomorphic to the structure
of the natural numbers.  The full Tarski-Mostowski-Robinson theorem will show that the
theories of various sorts of algebraic structures (e.g. groups, rings, etc.) are undecidable; to
use the form of the theorem just mentioned to show that the theory of some class C of
structures is undecidable, the structure <N, 0, ', +, .> must be a member of C, and few if any
such classes that have actually been studied include this structure.  For example, we cannot
yet show that the theory of rings is undecidable, since the natural numbers under addition
and multiplication do not form a ring, as they are not closed under additive inverse.

However, the integers do form a ring, and moreover they include the natural numbers as
a part.  This suggests another weakening of the hypothesis that Γ is true:  roughly, we shall
show that as long as Γ has a model I such that the natural numbers under addition and
multiplication are a submodel of I and they can be "picked out" using the language of  Γ,
then Γ is 1-complete. Actually, we shall prove a result that turns out to be equally powerful:
we shall show that if Γ is a theory in some first-order language L, and L' is a language
obtained from L by adding finitely many constants,  and Γ has a model I in the language L'
such that the natural numbers under addition and multiplication (or a structure isomorphic
to this) are definable as a submodel of I, then the set of theorems of Γ in L is a set to which
all r.e. sets are 1-1 reducible.

Tarski-Mostowski-Robinson Theorem:  Let Γ be a theory in some first-order language
L, and let L' be obtained from L by adding finitely many constants (possibly 0).  Suppose Γ
has a model I in the language L' such that the natural numbers are definable as a submodel
of I.  Then the set of theorems of Γ in L is a set to which all r.e. sets are 1-1 reducible.

The proof of the theorem will occupy us for the most part of the rest of this lecture.
As a first step to spelling the content of the theorem out, let Γ be a theory in some first-

order language L, and let L' be obtained from L by adding finitely many constants.  What
does it mean to say that Γ has a model I in L' such that the natural numbers under addition
and multiplication (or a structure isomorphic to this) are definable as a submodel of I? It
means that there is a model I in L' of Γ and there are formulae N'(x), A'(x, y, z), and M'(x, y,
z) of L' such that the structure <IN',IA',IM'> is the structure of the natural numbers under
addition and multiplication (or a structure isomorphic to it), where IN'={a: a satisfies N'(x)
in I}, I A'={<a,b,c> ∈  IN'3:  <a,b,c> satisfies A'(x, y, z) in I}and IM'={<a,b,c> ∈  IN'3:  <a,b,c>
satisfies M'(x, y, z) in I}.

If N', A' and M' are not already primitive predicate letters in L, we add corresponding
predicates N, A, M to L and sentences (x)(N(x) ≡ N'(x)), (x)(y)(z)(A(x,y,z) ≡ A'(x,y,z)),
(x)(y)(z)(M(x,y,z) ≡ M'(x,y,z)) as "definitional" axioms to Γ. We also add symbols for zero
and successor and definitional axioms for them, as follows: (x)(N(x) ⊃  (x=0 ≡ A(x,x,x)))
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for zero, (y)(x)(N(x) ∧  N(y) ⊃  (x'=y ≡ (∃ w)(N(w) ∧ (z)~A(z,z,z) ∧  M(w,w,w) ∧  A(x,w,y))))
for successor. The resulting theory is the set of consequences in L'∪ {N,0,',A,M} of Γ plus
the finite set D of definitional axioms.

Now, if B is a sentence, let BN be the result of restricting all of B's quantifiers to N; that
is, BN comes from B by replacing (∃ x)... by (∃ x)(N(x) ∧  ...) throughout and (x)... by
(x)(N(x) ⊃  ...) throughout.  BN is called the relativization of B to N.  It is simple enough to
show that BN holds in I iff B holds in the submodel of I defined by N. Call QN  the theory
whose theorems are the consequences of a conjunction of the relativizations of the axioms
of Q to N.

We then know that for every r.e. set S, if B(x) defines S in RE, then BN(x) is such that
(1) BN(x) defines S on the natural numbers (or the copy of S in the structure defined by N)
and (2) for all n, QN fi BN(0(n)) iff n ∈  S. First, BN(x) clearly defines S (or the copy of S in
the structure defined by N). Now, suppose that n ∈  S.  Then for the usual reasons, fi Q ⊃
B(0(n)); it is easy enough to show that fi QN ⊃  BN(0(n)), and therefore that  QN fi BN(0(n)).
Now suppose that QN fi BN(0(n)).  Then BN(0(n)) is true in the natural numbers (or in the
structure defined by N), and so n ∈  S.

Now consider the theory Γ+D+QN, the set of consequences in the language
L'∪ {N,0,',A,M} of Γ plus the finite set D of definitional axioms, plus QN. Then for every
r.e. set S, if B(x) defines S in RE, then BN(x) defines S (or the copy of S in the structure
defined by N), and for all n, (i) if n ∈  S then Γ+D+QN fi BN(0(n)) (by the same reasoning
as in the preceding paragraph) and (ii) if Γ+D+QN fi BN(0(n)) then n ∈  S, for suppose n ∉
S; B(x) defines S, so B(0(n)) is false, and so BN(0(n)) is false in the structure defined by N,
and hence in I; but Γ+D+QN are true in I, so not Γ+D+QN fi BN(0(n)). (i) and (ii) establish,
in other words, that BN(x) weakly represents S (or its copy) in Γ+D+QN.

Then, by the deduction theorem, for all n, n ∈  S iff Γ+D fi QN ⊃ BN(0(n)). This
indicates how to prove, using the familiar arguments employing the recursiveness of
substitution, that S is 1-reducible to the set of theorems of Γ+D, i.e. that there is a 1-1
recursive function ψ such that n ∈  S iff ψ(n) is a Gödel number of a theorem of Γ+D; ψ(n)
will be a Gödel number of a sentence of the form (x)(x=0(n) ⊃ (QN ⊃ BN(x)). This shows
that the set of theorems of Γ+D is 1-complete if it is r.e.

But we have not shown yet that every r.e. set is 1-reducible to the set of theorems of Γ
(in the language L). Let us first see how the proof of this will go if we suppose that L and L'
are the same, i.e., that no extra constants are aded to L, so that the definitional axioms only
contain symbols from L and Γ+D is a theory in L∪ {N,0,',A,M}. Intuitively, the addition of
the new non-logical symbols by means of definitions does not add expressive power to L.
More precisely, if B is a theorem of Γ+D then there is a translation B* of B into L, obtained
by replacing "definienda" by "definientes" throughout, such that B* is a theorem of Γ (the
converse trivially obtains). In other words, there is a function φ such that if m is a Gödel
number of a sentence of the language L∪ {N,0,',A,M}, φ(m) is a Gödel number of its
translation into L. If we could show that we may require φ to be recursive and 1-1, then we
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would have shown that every r.e. set is 1-reducible to the set of theorems of Γ (in the
language L), because the composition of φ and ψ would be 1-1 and recursive, and would
reduce S to the set of theorems of Γ.

In fact, we will show how to define directly, for each r.e. set S, a function β whose value
for n is (a Gödel number of) a translation of (x)(x=0(n) ⊃ (QN ⊃ BN(x)) (where BN(x) is as
before). It is clear that the parts QN  and BN(x) of one such formula are (recursively)
translatable into appropriate formulae of L (a fixed translation Q* of the conjunction of the
axioms of Q and a fixed formula B*(x) defining S (or a copy of it) in L). The part x=0(n)

is the only one that depends on n. Recall that L need not contain symbols for successor and
zero. Now, clearly there is some formula Dn(x) of L, obtained by repeated applications of
the definitions for 0 and ' and Russell's trick, and such that the sentence (x)(x=0(n) ≡
Dn(x)) is a theorem of Γ+D. To obtain Dn(x) in this way we would need a cumbersome
application of the generated sets theorem. But we can obtain an appropriate formula En(x)
in a simpler fashion using the uniformization theorem. Notice that there must be a formula
En(x) of L such that (x)(x=0(n) ≡ En(x)) is a theorem of D alone (intuitively, we only need
the definitions to prove an appropriate equivalence). But D is finite, so its set of theorems is
r.e. Therefore the relation R={(n,m): m is a Gödel number of a formula E(x) and E(x) is in
L and (x)(x=0(n) ≡ E(x)) is a theorem of D} is an r.e. relation, for the familiar reasons.
Clearly for all n there is an m such that R(n,m). So R can be uniformized to a recursive
function α such that α(n) is a Gödel number of a formula En such that (x)(x=0(n) ≡ En(x))
is a theorem of Γ+D (in fact, of D alone); α is clearly 1-1, because otherwise (x)(x=0(p) ≡
x=0(q)) for some p, q, p≠q would be a theorem of Γ+D, which is impossible, since that
sentence must be true in a model isomorphic to the natural numbers, and any such model
makes that sentence false.

Finally, β(n) will be definable in RE using concatenation as e.g. the least Gödel number
of (x)(En(x) ⊃ (Q* ⊃ B*(x)), where En(x) is cashed out in the definition of β in RE by
means of α. β is thus clearly recursive and 1-1 (since α is). β 1-reduces S to the set of
theorems of Γ, since for all n, n ∈  S iff β(n) is a Gödel number of a theorem of Γ.

But we will have proved the Tarski-Mostowski-Robinson theorem only when we prove
the same result without assuming that L' is equal to L. So far our proof only establishes (or
can be minimally modified to establish) that every r.e. set is 1-reducible to the set of
theorems of Γ in L', not in L. But we can easily show how to obtain recursively and in a 1-1
fashion, for a formula of the form (x)(En(x) ⊃ (Q* ⊃ B*(x)) possibly containing extra
constants, a formula C of L (thus without extra constants) such that Γ fi (x)((En(x) ⊃ (Q* ⊃
B*(x)) ≡ C). Since Γ is a theory in L, any property of the extra constants provable from Γ
must be provable in Γ for arbitrary objects; thus, if F(a1,...,an) is provable from Γ,
(y1)...(yn)F(y1,...,yn) (where y1,...,yn are the first variables that do not occur in F(a1,...,an))
must be provable from Γ.

This concludes our proof of the Tarski-Mostowski-Robinson theorem.
(It may be remarked that we could have proved a weaker result which does not mention
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extra constants at all. We will see how the addition of extra constants can be profitably
applied in an exercise.)

Both Bernays and Myhill stated a theorem whose statement is closely related to the one
we have given, although Myhill (and perhaps also Bernays) did not have an appropriate
justification for it. The theorem they stated says that if a theory has a model with a definable
submodel which is a model of Q, then the theory is 1-1 complete. This theorem is true (see
the exercises) but it is harder to prove than our theorem. What Myhill and Bernays proved,
essentially, was this theorem under the hypothesis that the theory is ω-consistent.

The Tarski-Mostowski-Robinson theorem can be applied to show that several algebraic
theories are undecidable. Among them, the elementary theories of rings, commutative rings,
integral domains, ordered rings, ordered commutative rings (all with or without unit), the
elementary theory of fields, etc. The proof for the theory of rings is given as an exercise.

Despite its simplicity, the Tarski-Mostowski-Robinson theorem is a very striking result,
since it states that for a theory to be undecidable, it is enough that it have just one model in
which the natural numbers are definable as a submodel.  Part of the reason it is so striking
is that it is commonly applied to theories (like the theory of rings) for which there is no
single standard interpretation.  However, it is really no different in principle from the result
that Q is undecidable.  Q also has many different interpretations, but we tend to think of one
particular interpretation as "standard" or "intended", so we are less surprised when that
interpretation is used to show that Q is undecidable; nonetheless, mathematically speaking,
using the standard interpretation of Q to show that it is undecidable is no different from
using the fact that the integers form a ring to show that the theory of rings is undecidable.

If we have already shown that a given theory is decidable and that I is a model of that
theory, it will follow that the set of natural numbers is not definable in I.  For example,
consider the model in the language of arithmetic whose domain is the real numbers.  It is a
famous theorem of Tarski that the first-order theory of this model (i.e. the set of sentences
true in this model) is decidable; it follows from the Tarski-Mostowski-Robinson theorem
that the set of natural numbers is not definable in this model.  Similar remarks apply to the
complex numbers.  This also illustrates the fact that, for the theorem to apply, the formula
that picks our the natural numbers must be a formula of the object language, since in the
metalanguage we can certainly pick out the natural numbers from the real numbers.

Note also that the theorem relates the undecidability of Γ in L to the existence of a
certain kind of model of Γ in a possibly larger language L'.  It is important to notice that L'
is only allowed to differ from L' by the addition of finitely many constants; the theorem
does not hold if we allow L' to have additional predicates or function symbols as well.  To
see this, recall that the first-order theory Γ of the reals in the language L of arithmetic is
decidable.  However, letting L' = L ∪ {N} (where N is any unary predicate), we see that Γ is
undecidable in L':  simply let I be the model for L whose domain is the set of reals, etc., let I'
be the expansion of I to L' in which N is interpreted as applying to the natural numbers, and
apply the Tarski-Mostowski-Robinson theorem.
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Exercises

1. A classical theorem of elementary number theory says that every positive integer is the
sum of four squares. Use this to prove that the elementary theory of rings is 1-1 complete.
(Remark: For those who know about such things, the same argument can be used to prove
that the elementary theories of commutative rings with or without unit, of integral domains,
of ordered rings and ordered integral domains, etc. are 1-1 complete. It is more difficult to
prove the 1-1 completeness of the elementary theory of fields, which uses a similar but more
difficult method.)

2.  (a)  Show that the theorem that every maximal enumeration is a recursion enumeration
can be proved using the method employed in the lectures to prove the self-reference lemma
(with the recursion theorem for W as a special case). Remember that a maximal
enumeration is one with the substitution property.

(b)  Formulate an appropriate version of the recursion property with parameters, and
prove that the diagonalization of any maximal subnumeration has the recursion property
with parameters.

3.  Recall the recursively inseparable sets S1 and S2 from the lectures.
(a) Let C be an r.e. set containing S1 and disjoint from S2.  Prove that C is completely

creative.  Hint:  Let A(x, y, z) be the r.e. relation (y ∈  C ∧  z = 0') ∨  (W(x, y) ∧  z = 0).  Let
ψ(x, y) be a uniformization of A(x, y, z).  Prove that there is a recursive function χ such that
ψ(x, y) = Φ(χ(x), y), for all x, y.  Prove that χ is a completely creative function for C.

(b) Give an example of a formula A(x) in the language L of arithmetic such that if Γ is
any consistent r.e. extension of Q in L, then A(x) weakly represents a completely creative
set in Γ. (A(x) need not represent the same completely creative set in all these systems.)

(c) Prove that if Γ is as above, every r.e. set is weakly representable in Γ.
(d) Prove that if Γ is as above, the set of all theorems of Γ is one-to-one complete.

Comment:  this finally shows that the results we stated before under the hypothesis that Γ
extends Q and is ω-consistent, concerning weak representability, 1-completeness, etc. all
hold if ω-consistency is weakened to consistency.  (Or almost all:  this does not show that
the result about nice weak representability still holds. This can also be proved, but requires
another argument.)  Rosser's work gave a start for this, but it took several decades to reach
the point of this exercise.

(e) Use the results above to show how to prove the Tarski-Mostowski-Robinson results,
stated in class under the hypothesis that Γ has a model with a definable submodel



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

122

isomorphic to the standard model of L, under the weaker hypothesis that Γ has a model with
a definable submodel which is a model of Q.

Comment:  Tarski, Mostowski and Robinson, as said in class, used a less model-theoretic
formulation.  However, their work would have implied the result in (e) with the conclusion
of undecidability only.  I know of no significant application to a specific theory, however,
where the generalization to models of Q is really useful.

4.  (a) An r.e. set S is creative if there is a recursive function ψ such that whenever Wx is
disjoint from S, ψ(x) ∉  S ∪  Wx.  Prove that every creative set is many-one complete.  Hint:
Let S* be any r.e. set.  Prove that there is a recursive function χ such that, for all x,

Wχ(x)   =    
 


 { ψ(χ(x))} if x ∈  S*
 
Ø if x ∉  S*

(b) Conclude from what we have done so far that the concepts creative, completely
creative, and many-one complete are equivalent.  Also show that the concepts 1-1 complete,
1-1 completely creative, and 1-1 creative (defined in the obvious way) are equivalent.  Later
on it will turn out that all six concepts are equivalent.

(c) Another equivalent concept:  prove that a set S satisfies the effective form of Gödel's
theorem, as defined for nonrecursive r.e. sets, iff S is creative.

Comment:  all of the concepts ≤m, ≤1, m-complete, 1-complete, creative, and simple are due
to Post.  Many theorems relating them are also due to Post, as (essentially) is the connection
between creativeness and Gödel's theorem (which inspired the term "creative").  Other
important properties of these concepts were proved by Myhill.

5.  Show that the set of all valid formulae in the first-order language with one two-place
predicate letter and no others, is 1-1 complete.  Also show that the elementary theory of one
irreflexive relation and the elementary theory of one asymmetric relation are 1-1 complete.
Sketch of the method: consider a certain structure with set-membership as the only relation
between elements of the structure.  Set membership is irreflexive and asymmetric.  The
structure will consist of the natural numbers, the sets of natural numbers, the sets whose
elements are natural numbers and sets of natural numbers, and so on, through all finite
levels.  Kuratowski defined the ordered pair <x, y> as {{x}, {x, y}}.  Prove that this has the
property of a pairing function: that is, if <x1, x2> = <y1, y2> then x1 = y1 and x2 = y2.  An
ordered triple etc. can be defined in terms of ordered pairs.  This pairing function is an
important tool in the proof.   The proof is much simpler if one realizes that definitions with
extra constants are allowed.
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Comment: some of you may know that a model of the natural numbers together with
definitions of + and . can be defined in set theory. This fact could have been used to do this
exercise, but the method given above presupposes much less prior background, and shows
that this is not needed.

6.  A reduction class is a recursive class of formulae in a first-order language such that
there is an effective mapping ψ of arbitrary formulae of the full language of first-order logic
(i.e. the language of first-order logic with all predicates and constants) into formulae of the
class such that a formula A of the full language is valid iff ψ(A) is valid.  Reduction classes
were an active topic of research even before the development of recursion theory.

(a)  A recursive class C of formulae is a reduction class iff the set of all (Gödel numbers
of) valid formulae in C is . . .  Fill in the dots with a concept already defined in this course,
and prove the correctness of your answer.

(b) Give a non-trivial example of a reduction class, using the answer to part (a).


