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Lecture XIli

Languages with a Recursively Enumerable but Nonrecursive Set of Formulae.

In dealing with formal languages, it is common to require that the set of formulae of the
language be recursive. In practice, however, one hardly ever needs to use more than the fact
that the set of formulae is r.e. In practice, one also hardly ever encounters languages with a
recursively enumerable but nonrecursive set of formulae. However, there seems to be
nothing in principle wrong with such languages, especially if one thinks, as e.g. Chomsky
does, that to give a grammar for a language is to give a set of rules for generating the well-
formed formulae, rather than to give a procedure for determining whether a given string of
symbols is well-formed or not.

We can easily cook up a language with a non-recursive but r.e. set of formulae. For
example, let S be any set which is r.e. but not recursive, and let L be the first-order language
which contains no function symbols or constants and whose predicate$:arél{8}. L
will be as required.

While this language is artificial, natural examples sometimes arise as well. In a system
of Hilbert and Bernays, for example, there is, in addition to the usual logical symbols, an
operator y), such thatif)A(x1, ..., %, Y) denotes the unique y such that A(x, %, Y)
holds. Hilbert and Bernays thought that this really only makes sense if there is a unique y
such that A(x, ..., %, ¥) holds, so they stipulated thag)(could be introduced only through
the rule

(X) . C)([@Y)AXL, - %, Y)

(Xl) (Xn)A(XL e Ky (ly)A(X]_, o X y))

(where [Iy)A(X1, ..., X, Y) means that there is a unique y such that A(x x, y) holds,
and is an abbreviation df{f)(A(x1, ..., X1, ¥) U (2)(A(X1, ..., ", z) £z =y))). Aresult of
this policy is that the set of well-formed formulae of the language will in general be
nonrecursive, though it will be r.e. Hilbert and Bernays were criticized on this point, though
it is not clear why this is a ground for criticism.

In terms of our own formalism, we could stipulate tHdtef introduced when
(X2)...0)(MY)A(X1, ..., %, Y) is a theorem, where i is a certain Godel number of A, and add

as a theorem gx..(X)A(X1, -, %, f(X1, -y X))
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The &' Theorem.

If R is a 2-place r.e. relation, then intuitively should be r.e. as well; but furthermore,

given k, we ought to be able to effectively find an index for Fis is indeed the case, and
is a special case of thg' $heorem. More generally, let R be an m+n-place r.e. relation. In
the case we have just consideredisfobtained from R by fixing k as a parameter; the
general form of theStheorem (put informally) says that given m numbeys.k k,,, we

can effectively find an index for the relation obtained from R by fixing.k k,, as
parameters. In our own formalism, tHe tBeorem is an easy consequence of the
definability in RE of substitution. We now state tHet®orem, i.e. the special case of the
ST theorem in whichm =n = 1.

Theorem: For any 2-place r.e. relation R, there is a 1-1 recursive fungtsarch that, for

all k, Ww(k): R«.

Proof: Let e be an index for R. e is a Godel number of some formula of REAthat

defines R. An index of Ri.e. a Gddel number of a formula of RE that defingscBn be
obtained from e via substitution. More specifically, we define the graphroRE by the

formula PS(k,y)gt. (Op<y)(Num(p,k) O (w<p)~Num(w,k) NSubst0(®),y,[0(1),0(2)],p) O
(w<y)(~NSubst0(€),w,[0(1),02)],p))) (the use of negation is legitimate, since the formulae it
affects are equivalent to formulae of Lim). Informallyassigns to k the least Godel

number of the formula obtained by substituting the least Godel number of the numeral of k
for x, in the formula with Gédel number e. The function thus defined is clearly 1-1, since
the results of substituting different numerals for the same variable in the same formula must
have different Godel numbers.

The general form of thef®heorem can be stated and proved similarly: for any m+n-place
r.e. relation R, there is a 1-1 recursive functiosuch that, for all k..., k,
W*lyka,... kmi= Rit,...km (Where Ra . kmis {<y1, ..., ! Rk, s kn, Y1, - Y)})- As
we see, the name "Sheorem" derives from the convention of taking m as the number of
parameters and n as the number of other variables; 'S' probably stood for 'substitution’ in the
original conception of Kleene, to whom the theorem is due.

As a consequence of the above theorem, we have the following

Theorem: For all m and n, there is a one to one m+1-place recursive fugcsioch that
for all m+n-place r.e. relations R, if e is an index of R and k k, are numbers, thap(e,
Ki, ..., kn) is an index of {<y, ..., \v>: R(ky, ..., kn, Y1, .., W)}

Proof: Apply the previous form of theéfheorem to the relation Wn+L That is, letp be
a function such thap(e, ki, ..., k) is an index of {<y, ..., > W(e, k, ..., kn, V1, ..., W)}

={<yq, ... . Rk, ..., kn, Y1, -.oy W)}
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The second form of thelSheorem can thus be seen as a special case of the first. The first
form also follows directly from the second. A third form of the theorem is the standard
form in most presentations of recursion theory, and the form originally proved by Kleene:

Theorem: For all m and n, there is a one to one m+1-place recursive fugcsoch that

if e is an index of an m+n-place partial recursive funagiatheny(e, ki, ..., ky) is an index
of the n-place functiog(ky, ..., kn, Y1, .., Y)-

Proof: Apply the previous theorem to the relatiomW+Z, the graph of the m+n+1-place
functionm+n+1

Given m,n, a functio) with the property stated in the third version of the theorem (for m,n)
is a function standardly called afy &inction.

The Uniform Effective Form of Godel's Theorem.

We can use thelSheorem to prove the uniform effective form of Godel's theorem, i.e. that
for any consistent r.e. extensibrof Q, a sentence undecidabld ican be obtained (in a
uniform way for alll") effectively fromr itself. Specifically, given a formula A defining -K,
we can find a recursive functignsuch that for all ap(e) is a number such that the
statement that A is true gi(e) is true but unprovable from MW Wq is a consistent
extension of Q, and undecidable i iMV is alsow-consistent. (We say that a sentence
is a theorem of Wif it is a theorem of the set of sentences whose Gddel numbers are
elements of W so if W, contains numbers other than the Gddel numbers of sentences, we
ignore them.)

Recall the proof of Godel's theorem. LCet W, be any r.e. axiom system, and let A(x)
be somd1; formula that defines -K. Then let (-K)* = {nf: fi A(O(M))}, the set of
numbers provably in -K. Since (-K)* is r.e., for the familiar reasons, (-K)*;igo\some
f. Then the proof we are familiar with shows thaﬂ)@o is true but unprovable in
provided thaf is a consistent extension of Q, and undecidalblesiv-consistent.
Intuitively, f depends effectively on e, so f shouldjife) for some recursive functign It
is the proof that this is the case that uses fhth&rem.

Uniform Effective Form of Gddel's Theorem For every1; formula A(x) defining -K,
there is a recursive functigmsuch that for all e, &¥®)) is true but unprovable from YV
if W is a consistent extension of Q, and undecidable,iisVeinw-consistent extension of
Q.

Proof: Let A(x) be a fixed1; formula defining -K, and let R be the relation {<e, m>:
A(0M) is a theorem of W. If R is r.e., then by theiSheorem we can find a recursiye
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such that We=Re = {m: R(e, m)} = {m: AQ(M) is a theorem of \Y for all e. So

A(0WE)) must be true but unprovable if Mg a consistent extension of Q, and undecidable
if W is anw-consistent extension of Q. So we only have to prove that R is r.e., but this is
clear. Lety be a recursive function such th@in) is a certain Gédel number of G&Q)).

Note that AQ(M) is a theorem of \Afff there is a proof sequence from the sentencesof W
on which a Godel number of &(") occurs. A proof sequence frome\§ simply a finite
sequence of numbers, each of which either codes a sentengeia\fggical axiom, or
follows from earlier terms in the sequence by a logical rule of inference. So it is clear that
we can find an RE formula PS(s, €) which says that s is a proof sequencedram &&n

then define Th(e, x) ask)(Ch < s)(PS(s, e)l[n, x] O s). Th(e, x) says that x is a Godel
number of a formula provable fromdVUsing the functiory above, the relation R is

defined by the RE formula Th(e(m)).

We say that a nonrecursive r.e. ssffisfies the uniform effective form of Godel's theorem
just in case for somid; formula A(x) defining -S, there is a recursive functipsuch that

for all e, AQW®) is true but unprovable from W\Mf W, is a consistent extension of Q, and
undecidable if Wis anw-consistent extension of Q. The theorem just proved shows that
the set K satisfies the uniform effective form of Gddel's theorem . However, not every
nonrecursive r.e. set satisfies it. In particular, Post's simple set (defined in the exercises)
does not satisfy the uniform effective form of Godel's theorem.

The Second Incompleteness Theorem.

We shall now use the uniform effective form of Godel's theorem to prove a version of
Godel's second incompleteness theorem, the theorem that says that a sufficiently strong r.e.
axiom system cannot prove its own consistency. Our proof is based on a proof by
Feferman, although it differs from that proof in an important respect. Before giving the

proof, we will say a little bit about the philosophical background of Godel's second
incompleteness theorem.

In the early decades of the twentieth century, many mathematicians believed, especially
because of the paradoxes, that mathematics might be in serious foundational trouble. Several
leading mathematicians had then a strong interest in logic and foundations. Many of these
mathematicians thought that the reason behind the trouble is that one cannot reason validly
about the infinite, at least in a "natural" way, e.g., they thought that one cannot reason validly
about the totality of natural numbers, as opposed to something you can reason about by
reasoning about larger and larger initial segments.

Two of those leading mathematicians with strong foundational interests were Brouwer
and Hilbert. Brouwer thought from the beginning that mathematics had to be radically
revised, and he proposed a doctrine of what mathematical reasonings are acceptable, called
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'intuitionism’. In intuitionism, infinitary constructions were not acceptable, and principles
about infinite collections licensed by classical logic, like the principle that, for a given
property, either all numbers have it or there is a number that is a counterexample; thus, a
proof that not all numbers have a certain property does not guarantee, for the intuitionist,
that there is a number without that property (this can only be shown by constructing such a
number).

Some mathematicians adopted the point of view on foundations common today, i.e., the
point of view that there was no problem of legitimacy with mathematics as it had been done,
including set theory; in the case of the logicists, at least a certain modified logical form of
set theory was legitimate. An entirely different approach to the foundational crisis was taken
by Hilbert. He thought that the intuitionists were right in their worries whether mathematics
as it was being done was legitimate. He further thought that the set of methods of
mathematical reasoning guaranteed to be legitimate was even more restrictive than the set of
methods allowed by the intuitionists. On the other hand, Hilbert did not want to change
mathematics. He had the following idea. One should develop mathematics by means of
formal systems, as had been done by people working in logic and foundations, and view
mathematical theorems as finite strings of symbols without meaning, which could be
generated in mechanical ways in the formal systems. But one should prove, by the restrictive
methods allowed, that the formal systems of mathematics were consistent.

What would be the value of such a proof of consistency? Normally, the reason we don't
want a formal system to be inconsistent is that not all of the theorems of an inconsistent
system can be true. Since Hilbert thought that not all theorems of mathematics could be true,
this was not his reason for demanding a proof of consistency. Another reason is to show
that the system is not uninteresting, for an inconsistent system is uninteresting in the sense
that it proves every sentence. But there were other reasons as well. We have proved for our
own formalisms that if we havels, statement (X)L(x), where L(x) is a limited formula,
first, we can decide, for any instancé)q_"()) of L(x), whether L()(n)) is true or not. But
second, and more important, that if the system is consistent, then if (x)L(x) is provable then
all the instances of L(x) are true; for if some instance was false, it could be shown to be so
by finite methods (limited statements, whose quantifiers involve only initial segments of the
natural numbers, are the kind of statements taken to be legitimate by Hilbert), and then
~(x)L(x) would be provable, rendering the system inconsistent if (x)L(X) is provable too. In
this way, a proof of consistency would provide a legitimation for theorems of the form
(X)L(x).

What is known as Hilbert's Program was not merely the idea that proving consistency
would be a good thing. The Program suggested by Hilbert actually included a particular and
very plausible suggestion of how a proof might be attempted. At the time, it looked as if this
suggestion (which we cannot explain here) really ought to work. That's why Godel's second
incompleteness theorem came as a shock, for it showed that consistency for a system could
not be proved assuming that Hilbert's restricted finite methods were a subset of the methods
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incorporated into the system itself. We can already see from Gddel's first incompleteness
theorem that Hilbert's aim was unattainable. For if consistency was provable, then the
statement that evefy; provable statement is true would be provable. But if this was
provable, the Godel sentence G, whichl{swould be such that 'G is provalleG' would

be a theorem; but G says of itself that it is not provable, s@l'&Gwould be a theorem,

and so by logic G would be a theorem. And this would imply, by the first incompleteness
theorem, that the system was not consistent after all.

Let us now give our proof of Gédel's second incompleteness theorem. First, let us see
how to write out the first incompleteness theorem in the language of arithmetic.Rick a
formula A(x) which defines -K, and fix a recursive functipms in the uniform effective
form of Godel's theorem proved above. Then

For all e, if W.is consistent and W\éxtends Q, then &) is true but unprovable,
from which it follows that
(1) For all e, if W is consistent and ¥\éxtends Q, then A(%(©) is true.

(We leave out the second part on the hypothesisafnsistency.) We shall write out (1)

in the language of arithmetic. We have in effect already seen how to write out the statement
that W is consistent. We have an RE formula Th(e, x) which says that x is a theorem of
We, We is consistent just in ca®ez 0 is not a theorem of Wso W is consistent iff e
satisfies ~Th(eo(n)), where n is a Godel number®@# 0O; let us write Con(e) for ~Th(e,

O(n)). (Alternatively, we could let Con(e) be the senten&@~<Th(e, x), since \Wis

consistent iff at least one sentence is not provable frgno¥We could let Con(e) be the
statement that no sentence and its negation are both provable frprAMMI we can easily
write "We extends Q" within the system: Q has finitely many axioms.A A, so let A,

..., I be their Gadel numbers; Méxtends Q just in case e satisfies TB(BD) O... O
Th(e,O(nk)). Let us write "e ext. Q" for this formula. Finally, let PS(x, y) be some formula
that weakly represengsin Q. Now consider the statement

(*)  (e)(Con(e)le ext. QI (Ly)(PS(e, Y)TA(Y))

(*) is a partial statement of the first incompleteness theorem, and therefore ought to be
provable in reasonably strong systems of number theory. Now consider the theory Q+(*).

Godel's Second Incompleteness Theorenlf Wq is a consistent extension of Q+(*),
then Con(()(e)) is not a theorem of Wi.e. W; does not prove its own consistency.
Proof: Suppose Wextends Q* and Coﬁ(e)) is one of its theorems. Then as (*) is a
theorem of W, ConQ(€)) J0(€) ext. QO (Ty)(PSO(®), y) DA(Y)) is also a theorem of
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Wp; we already know that Cop€)) is a theorem of \W and0(€) ext. Q is a true sentence
of RE and is therefore a theorem of Q and thereforeeoSW@)(PSO(e), y)OA(y)) is a
theorem of W. Let f=y(e). Since PS represenjisn Q, W fi PSQ(€), 0(f)) O
y)PsE©), y) Oy =0): it follows that AQ(D) is a theorem of W But we already
know from the first incompleteness theorem thaﬁ(ﬁl is unprovable in Wif Weis a
consistent extension of Q. Since Wan extension of Q, it follows thatMg
inconsistent.

The theorem does not show that there are no statements which might be thought of as
expressing the consistency of a system which are not provable in the system, pathological
statements of consistency, so to speak. To see tHishéean arbitrary consistent r.e.
extension of Q, let Pr'(x) be Pr(X)x # o(n) (where Pr(x) is any; formula defining the
set of theorems df, and n is the Godel number®# 0), and let Cor' be the sentence
~Pr'(0(n)). Sincel™ is consistent) # 0 is not a theorem df, so Pr'(x) defines the set of
theorems provable in; if I is w-consistent, then Pr'(x) weakly represents the theorems of
inI" as well. So in a sense, Gogays thal is consistent. However, it is clear thaf
~Pr(0(n)), i.e.l fi Conr. Also, we know from the exercises that if we have two disjoint r.e.
sets, we have weak representations of them which are provably disjoint in Q. If we take the
two sets to be on the one hand the set of theoremsaod on the other hand the set of
sentences whose negation is a theoreh) wofe therefore have weak representations of them
which are provably disjoint in Q. We might think that the corresponding sentence expresses
consistency. One of the aims of Feferman's, and of Jeroslow's, work, was to give conditions
for distinguishing these pathological statements from statements for which Godel's second
incompleteness theorem goes through.

An important point about our presentation of Gddel's second incompleteness theorem,
where it differs from other presentations, including Feferman's, is that in the hypothesis of
the theorem we only require that a single statement (namely, the conjunction of Q and (*))
be a theorem of a system for it to fail to prove its consistency. In other presentations of the
theorem, including Go6del's original presentation, the proof that a system does not prove its
own consistency requires assuming that a certain sentence, different for each system, is a
theorem of the system. Let G be a G6del sentence for a dystéanch extends Q and let
Conr be a sentence in the language of arithmetic that sayis ihabnsistent. The first
incompleteness theorem states thatig consistent, then G is true but unprovable, so in
particular, ifl" is consistent, then G is true. Sé ils a powerful enough system to prove
the first incompleteness theorem, thiefn Con- 00 G. IfI fi Cony, thenl” fi G; since G is
true but unprovable from, it follows that Cog is not a theorem df. This is how the
second incompleteness theorem was originally proved, as a corollary of the first
incompleteness theorem. Thus, the unprovability of consistency for diffesamder this
presentation is proved under the hypothesis that different sentences are provable in these
differentl"'s — if [ andA are different systems, then to conclude that nefithear A prove
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their consistency one must assume EhatCon- [ G, and than fi Comy O D (where D is
a Godel sentence fd).

On our approach, taking Coto be Corﬂ)(e)), where e is an index fér, we give a
single sentence (*) such that any consistenf rehich extends Q + (*) fails to prove
Conyr. Without any job of formalization at all, it is shown that any extension of Q+(*)
satisfies the second incompleteness theorem. And a system that does not contain Q+(*) is
not sufficient for elementary number theory, since it should be clear that the methods used
in class can be regarded as methods of elementary number theory.

This much we can say without any formalization at all. And we can presume that some
systems are strong enough to contain elementary number theory, and therefore to prove
Q+(*). So we know enough at this point to state the main philosophical moral of the
second incompleteness theorem -a system in standard formalization strong enough to
contain elementary number theory cannot prove its own consistency. Strictly speaking we
have stated this only for formalisms whose language is the first-order language of
arithmetic, but the technique is easily extended to first-order systems in standard
formalization with a richer vocabulary. Some ideas as to how to consider such systems will
become clear when we discuss the Tarski-Mostowski-Robinson theorem in a later lecture.

If one wishes to consider a specific system, such as the system we have called 'PA', we
can say in advance that it satisfies the conditional statement that if it contains elementary
number theory, it cannot prove its own consistency in the sense (ﬁ(@y)above.

However, we have a task of formalization if we wish to show that the system contains
elementary number theory or at any rate Q+(*). Here is one of the misleading features of
the name 'Peano arithmetic' that has been used for this system: it gives the impression that
by definition the system contains elementary number theory, when in fact it requires a
detailed formalization to show that this is so. If, for example, the properties of
exponentiation or factorial could not be developed in it, it would not contain elementary
number theory after all. We have seen the basic idea of how to do this, but the formalization
here is not trivial. Thus it does require a considerable task of formalization to show that (*)
can be proved in PA, and hence that the appropriate statemeﬁ@eﬁ)ds(not provable in

PA. But it requires no formalization at all to claim that any system in standard formalization
containing elementary number theory fails to prove its own consistency.
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Lecture XIV

The Self-Reference Lemma.

When Gddel proved the incompleteness theorem, he used the fact that there is a sentence G
with Godel number n which is provably equivalent to the sentenc@(n)yﬁaying that the

formula with Gddel number n is not a theorem. Thus in a sense G says of itself that it is
unprovable. We have already pointed out that it is difficult to even remember how G is
constructed, and that Godel's theorem is more naturally motivated by considering the
properties of the sentence ~P|@{V(),O(”)), where n is the Gddel number of ~Prov(x,x). In

this sense, Godel's use of the fact about "self-reference”, had the negative effect of making
his proof appear somewhat mysterious. On the other hand, it had the positive effect of
calling attention to the fact that the argument for the existence of G does not depend in any
way on the choice of the predicate ~Pr(x), and establishes a more general claim (which,
although not stated by Godel, can be reasonably attributed to him), usually referred to as 'the
self-reference lemma'.

Self-Reference Lemma Let A(x) be any formula in one free variable in the language of
arithmetic (or RE). Then there is a sentence G of the language of arithmetic (of RE) such
that G= A(O(n)) is a theorem of Q, where n is a G6del number of G.

(In the case of RE, this could be made precise in two ways: either showing that the
translation of G A(O(n)) into the narrow language of arithmetic is provable in Q or

showing that the appropriate sentence in the broad language of arithmetic is provable in the
appropriate formalization of Q.)

Intuitively, G says of itself that it has the property A(x). To prove a version of the first
incompleteness theorem using the lemmd, Il any consistent r.e. extension of Q, and let
Pr(x) be a formula that defines the set of theorenisiofRE. Use the self-reference
lemma to obtain a sentence G such that{l?r@(n)) is a theorem of Q and hencelof
where n is a Godel number of G. If G is a theorein, den Pr@(n)) is a true sentence of
RE, and hence is provable in Q and therefofe sincel fi G = ~Pr@(”)), I fi~G, so ~G
is also a theorem &f andr is inconsistent. Since we are assuminghiatconsistent, G
is not a theorem df. However, since G says of itself that it is not a theorelm Gfis true;
or more formally, ~P(N)) is true since G is not a theoremofG = ~PrO(N)) is a
theorem of Q and is therefore true, so G is true. So G is true but unprovable. The proof of
the self-reference lemma reveals that Glig aentence; from this it follows thatlifis w-
consistent, ~G is not provable either.

Notice that we often state the Gddel theorems saying that the sentence obtained is one
which is true but unprovable. If the self-reference lemma is stated for the language of
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arithmetic, we know that the predicate Tr(x) saying that x is the Godel number of a true
sentence cannot be defined in arithmetic itself. We know also that the opposite situation
holds for the language RE. Either way, we have the following corollary which, like the
lemma itself, holds for both the language of arithmetic and the language RE:

Corollary: Let A(x) be any formula in one free variable in the language of arithmetic (or
RE). Then there is a sentence G of the language of arithmetic (or of RE) with Godel
number n such that=a\(0(N)) and AQ(M)=Tr(0(N)) are both true.

There are numerous ways of proving the self-reference lemma. Given our Godel
numbering, G cannot actually be the senten@éﬂ&x since the Godel number ofG(('))
must be larger than n. However, it is possible to devise a different Godel numbering such
that for every formula A(x), there is a number n such tha(")ngets Godel number n.

(This method of proving the self-reference lemma was discovered independently by
Raymond Smullyan and the author.) If we add extra constants to our language, then we can
prove a version of the self-reference lemma for the expanded language. Specifically, let L*
be the language obtained from the language of arithmetic by adding the constants a

(aq is already in L). Interpret the new constants as follows: if nis a Gédel number of a
formula A(x), then interpret,@1 as the least Godel number of A@. Then the sentence
A(an+1) says of itself that it is A. Note that ify1s the Godel number of A{a), the

sentencea; = 0(Mn) is true under this interpretation. If we let Q* be the axiom system
obtained from Q by adding as axioms all sentences of the fasns a(mn), then Q* fi

A(@n+1) = A(O(mn)) for all n, so we can let G be the sentencg,Aja So if we chose to

work in the language L* rather than L, we could get the self-reference lemma very quickly;
moreover, L* does not really have greater expressive power than L, since L* simply assigns
new names to some things that already have names in L. Using this version of the self-
reference lemma it is also possible to prove Gédel's incompleteness theorem, as we have
seen in an exercise.

The proof of the self-reference lemma essentially due to Godel employs the usual Godel
numbering and constructs the sentence G in a more complicated way. Let A(x) be given.
Let @ be a recursive function such that if y is the Godel number of a formulp Den
@(n, y) is the Godel number of Of(‘)). Let B(X, Y, z) represetin Q, and let A'(X, y) be
the formula (2)(B(X, y, Z)JA(z2)). Ify is the Godel number of a formula @xhen A'(n,

y) holds iff the Gddel number of Of(”)) satisfies A(x). (We can read A'(x, y) as "y is A of
x"; for example, if A(x) is "X is provable”, then A'(x, y) is "y is provable of x".) Let m be
the Godel number of A'fxxq), and let G be the sentence0d), 0(M)). (A(xq, X1) says

that x is A of itself, and G says that "is A of itself" is A of itself.) We shall show that Q fi
G = A(0(N)), where n is the Gédel number of G. Note that G is reatly(B(0(M), o(M), z)
[0A(z)), where B represengsin Q. Note also thag(m, m) is the Gédel number of G itself,
since m is the Godel number of A(x;) and G is AQ(M), 0(M)): so Q fi BE(M), o(M),

104



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

o(M) O (y)@((m), olm), yy Oy =0n). so Q fi AN O (Tz)(BOM), 0(M), 2) D A(Z)),
i.e. Q fi AOM) O G; and Q fi &I B(0(M), o(M), 0o(n)) T A(0(N)), so Q fi G A(0(N)).
Therefore, Q fi G= A(0(N)).

The proof of the self-reference lemma that will be the preferred one in our treatment is

perhaps the standard one nowadays, and uses some of the recursion theory that we have
already developed. It is as follows. Let the formula A be given. LetiPk(¥) be a
formula that functionally represerttsin Q (recall thatp is a function that enumerates the
unary partial recursive functions). Lpte a recursive function such tldgm) is a certain
Godel number ofEQ,/)(PH(O(m), o(m), y) OA(y)). That there is one such recursive function
is clear by the familiar reasons. In fact, we may naturally ke just an 8 function for
the given formulaly)(PH(x%, X2, y) OA(Y)) (which we may take to have number e). Let f
be an index ofy. Let G be the sentencg/j(PHO®, o(f), y) DA(Y)). @, f) = y(f) = a
Godel number oftly)(PHO(), o), y) DA(y)) = a Godel number of G. Letting nysf),
Q fi G0 A(0N) (since Q fi &I PHEM, o(f), o(n)y 0 A(0(N)), as PH functionally
represents in Q), and Q fi AQ(M) O G (since Q fi PHI(N, o(f), 0(n))). Thus, Q fi =
A(0(N)).

Through a similar proof we can obtain an effective version of the self-reference lemma:

Self-Reference Lemma. Effective VersionThere is a recursive functigmsuch that for
all formulae A(x) of the language of arithmetic (RE) in one free variable, if m is a Godel
number of A(x), therp(m) is a Godel number of a sentengg &f the language of
arithmetic (RE) such that Q fi SA(0(®M))).

Proof: Let PH(x, Xo, X3, ¥) be a formula that functionally represe@%in Q (recall that
®3 s a function that enumerates the 2-place partial recursive functions).beet 2-place
recursive function such that if p is a Godel number of a formula #(g)p) is a certain
Godel number ofty)(PHE(@), 0(a), o(P), y) O A(y)). This may be taken again to be an
ST function. Let f be an index @, and letp(p)=y(f,p). Theng(p) will be a code of the
sentence 6= (Cy)(PHO(, o), o(P), y) TA(y)), if p is a Gédel number of A(y). So if p
is a Godel number of A(¥(, f, p) = W(f,p) = e(p) = a Godel number of)(PHO(),
o(f), o(P), y) DA(y)) = a Gédel number of & Letting r =q(p), Q fi G 0 A(0(1) (since Q
fi Gp O PHE(, o(f), 0(P), 0(r)) D A(0(), as PH functionally represerts in Q), and Q fi
A0(N) O Gp (since Q fi PHY(M, o), o(P), 0()).

The proofs of the self-reference lemma do not depend on the fact that A has only one
free variable. Noting this allows us to state a more general version of the self-reference
lemma in which G is allowed to have free variables.

Self-Reference Lemma with Free VariablesLet A(X, i, ..., ¥n) be a formula of the

language of arithmetic (or RE) with all free variables shown; then there is a formula G(y
..., Ym) Of the language of arithmetic (or of RE) such that Qi ({ym)(G(y1, .., ¥n) =
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AM), y1, ..., i), where n is a Godel number of G.

The version of the self-reference lemma in which G does not have free variables is simply
the special case of this lemma in which n = 0. Naturally, there is an effective version of the
self-reference lemma with free variables.

A corollary of the self-reference lemma with free variables is the following:

Corollary: Let A(x, y) be a formula of the language of arithmetic (or RE) with all free
variables shown; then there is a formula G(y) of the language of arithmetic (or of RE) with
Godel number n such that (y)(G&A(0M,y)) and (y)(A0N),y) = Satp(n),y)) are both

true.

(In the case of RE, Sat(x,y) is W(x,y). In the case of the language of arithmetic, Sat(x,y),
which we use to mean that y satisfies the formula of the language of arithmetic with Gédel
number X, is not itself a formula of the language.)

The self-reference lemma with free variables might be given the name "self-reference
lemma with parameters", but this name is more appropriate for the following variant of the
lemma.

Self-Reference Lemma With Parameters For any formula A(x), there is a recursive
functiony and a formula PS(X, y) that represapts Q, such that for all mp(m) is the
Godel number of the formula®)(PSO(M), z) D A(z)), and furthermore this formula is
provably equivalent in Q to AW(M))).
Proof: Letx be a recursive function such that if m is the Gédel number of a formula B(x
X2), thenx(m, n, p) is the Godel number of the formul@@®), 0(P)). Let CH(x, y, z, w) be
a formula that representan Q. Let n be the Gddel number of the formulgs)(CH(x1,
X1, X2, Xa) JA(X3)), and let PS(x, y) be the formula @), 0(N), x, y). PS represents the
function(x) = x(n, n, x); to prove the theorem, we only have to showifra) is the
Godel number of the formulﬁt()(PSQ(m), z)0A(z2)), for any m. Since n is the Godel
number of [X3)(CH(X1, X1, X2, X3) I A(X3)), it follows thaty(m) =x(n, n, m) = the Godel
number of [x3)(CH(O(M), 0(n), 0(M), x3) O A(x3)), which is the formulalxs)(PSE(M),
x3) OA(X3)).

Now, notice that(z)(PSQ(M), z) D A(z)) is provably equivalent to AW(M))). Thus,
writing G(x) for (z)(PS(x, z)J A(z)), we have

Q fi (M) = A(o(W(M)))
for all m, wherap(m) is a Godel number of G{M).

An alternative proof of the self-reference lemma with parameters consists in noting that we
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may take G(x) to be the formuld/(PHO®, of), x, y) D A(y)), as in the proof of the
effective form of the self-reference lemma, @ntb be the functiorp of that same proof.

The Recursion Theorem

Kleene seemed to use the term 'the recursion theorem' as an ambiguous term for two
theorems that he proved. Later, the two theorems came to be called Kleene's first and second
recursion theorems. Generally speaking, the second recursion theorem is the more powerful
of the two. Nowadays, it is usually callgigerecursion theorem'. We discuss this theorem

here (the first recursion theorem will come later). In terms of our formalism, it is simply the
self-reference lemma for the language RE with formulae of two variables.  Recall that for
any 2-place relation R and number gjfRhe set {n: R(e, n)}.

Recursion Theorem For any 2-place r.e. relation R, there is an e such that RY

Before proving the recursion theorem, it is worth noting that the result is somewhat
surprising. Any r.e. relation R can be thought of as enumerating a subclass of the r.e. sets
(namely, the class {R eJ N}). We may thus call such a relatiorsabnumeratioror the
r.e. sets. The recursion theorem says that every subnumeration coincides with W at some
point. Offhand, we might have thought that we could obtain a subnumeration which did not
coincide with W at any point at all; R might be some scrambling of W, for example. The
recursion theorem shows that this is not so.

Note that, since \Ais the set of numbers satisfying the RE formula with Godel number
e, the second recursion theorem says that for any r.e. relation R there is an RE formula A(x)
with Godel number e such that for all n, n satisfies A just in case R(e,n). Since R is itself
defined by some RE formula B, this is just to say that for any RE formula B(y, x) of two
free variables, there is an RE formula A(x) of one free variable such that for all n, A(x) is
true of n iff BO(), x) is true of n, and so, that (X)(A®)B(0(€).x)) is true, where e is the
Godel number of A(x). That is, the recursion theorem is really the self-reference lemma
with free variables for RE in the case of one free variable. We can thus prove the recursion
theorem by imitating the proof of the self-reference lemma, by considerirfyfanion
for the RE formulal(z)(PH(%, X2, z) 0 B(z, y)). This was also the inspiration for Kleene's
original proof of the recursion theorem, although he was not working with RE, but with a
different formalism. We shall give a proof which, although based essentially on the same
underlying facts, is shorter and more common in textbooks.

Proof of the Recursion Theorem Let R be any 2-place r.e. relation. Consider the

relation S(x, y) = RP(X, X), y). Sis an r.e. relation, so apply tﬁefﬁeorem to obtain a
recursive functionp such that for all m, \lm) = Sn = Rom, my Sincey is recursive, it has
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anindex f. Lete H(f); We=Wymn = S = Ro, ) = Re (sinced(f, ) = Y(f) = e).

This proof is breathtakingly short. It only uses the fact that W is an enumeration for which
the statement of the!Sheorem holds.

In the same way that there is an effective version of the self-reference lemma with free
variables, there is an effective form of the recursion theorem that is easy to state and prove:
there is a recursive functignsuch that for any 2-place r.e. relation R with index e,
WyeRye)-Of course, the effective version, like the noneffective, can be proved for all
appropriate formalisms, and not just for RE.

The recursion theorem can be generalized to n+1-place r.e. relations. If R is an n+1-
place relation, then letdbe the relation {<x ..., %>: R(e, %, ..., %)}; the general form of
the recursion theorem states that for every n+1-place r.e. relation R, there is an e such that
Wg+l = R..

Besides being surprising, the recursion theorem has curious consequences. Let R(X, y)
be the relation W(x+1, y). Then W R = W41 for some e; so W enumerates the r.e.
sets in such a way that at least one such set is listed two consecutive times. More generally,
we see that for all n there is an e such thatWVe.r; SO W has many repetitions. (It is
natural to ask whether a repetition-free enumeration of the r.e. sets exists; it turns out that
such enumerations do exist, but are hard to construct.) Also, we can find a number e such
that W; = {e}, just let R(e, X) be the identity relation. Since this relation is certainly r.e., we
can use the recursion theorem to find an e such that W(e, x) iff x = e, i.e. we can find a
formula A(x) which is satisfied only by its own Gddel number.

More generally still, lep be any recursive function; by letting R(X, y) =), y), we
see that W= Wy for some e. So we have the following

Theorem: For every recursive functiap, there is an e such thateW Wy,

This theorem looks superficially like a fixed-point theorem, and we will sometimes refer to
it as 'the fixed-point version of the recursion theorem'. Notice, however, that it is not quite a
fixed point theorem. A fixed point theorem states that a function F has a fixed-point, i.e.
there is an a such that F(a) = a. On the one hand, the theorem does not shatsethat
has a fixed point, since we can haye)# e and W = Wye). On the other hand, the
“function” F(We) = Wye) is not really a function at all, since its value depends not only on
its argument, the set J\out also on the index e (we can have¥W; and W e) # Wy)-
By contrast, Kleene's first recursion theorem, which we shall eventually prove, really is a
fixed-point theorem.

There is also a version of the recursion theorergfoln fact, there are two versions,
corresponding to the first version and to the fixed-point version.

Recursion Theorem for Partial Recursive Functions (a) For all partial recursivg
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there is an e such th@(e, x) =y(e, x), all x; and (b) for all total recursiyethere is an e
such thatd(e, x) =P(P(e), x), all x.
Proof: For (a), recall thab is really a uniformization of the relation3VLet PS(x, y, z) be
the graph ofp. Find an e such that\# P&, i.e. for ally and z, W(e, y, z) iff PS(e, y, z)
iff Y(e, y) = z; then Wis single-valued, so W(e, vy, z) ffi(e, y) = z; sab(e, y) =y(e, y).

(b) is immediate from (a): lef(x, y) = P(Y(x), y), and let e be an index pfthen®d(e,
X) =X(e, x) =P(Y(e), X).

Form (b) is the form that usually is referred to as 'the recursion theorem' in the literature.

The recursion theorem is interesting mainly because the relation R can itself involve W,
as we saw in the case R(x, y) =0¥), y). To illustrate why this is useful, we shall give a
proof, using the recursion theorem, that the factorial function is recursive. (This illustrates,
by the way, why the theorem is called 'the recursion theorem'.) To show this, it suffices to
show that the graph of the factorial function is recursive. If R is a relation such that

™ R(X,y)=(x =00y =1)0(th)((z)(x = n+10y = (n+1)z O R(n, 2)),

then R is the graph of the factorial function. (This can be seen by showing, by induction on
X, that there is exactly one y such that R(x, y), and y = x.) So we only have to find an r.e.
relation R that satisfies (*). If Risr.e., then R 3 8t some e, so an appropriate R exists
just in case

W(e, x,y)= (x =00y =1)0(h)(z)(x = n+10y = (n+1)z OW(e, n, 2))

holds for some e. Setting S(e, x&jx =00y = 1) (h)((z)(x = n+10y = (n+1)z O
W(e, n, z)), we see that S is r.e. and that y = x! is recursive if

W(e, X, ¥)= S(e, X, Y)

for some e; but by the recursion theorem, such an e exists. We can similarly show that the
Ackermann function is recursive. More generally, we can use the recursion theorem to find
partial recursive functions that satisfy arbitrary systems of equations. For example,
consider the system consisting of the two equations

w@O) =1
W(n+1) =d(n)(n+1)

We can use an argument similar to the one given above to show that there is a partial

recursive function satisfying these equations. In this case, we see that the function in
guestion is total. In general, however, we cannot guarantee this. For example, let our
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system of equations consist of just the equapiof) = Y(x)+1. This does indeed have a
solution, namely the function which is undefined everywhere.

So far, we have not used the recursion theorem to prove anything that could not be
proved already using the generated sets theorem. However, there are some important
applications of the recursion theorem that go beyond the generated sets theorem.
Unfortunately, these applications are not as easy to state as the ones just given, and
presuppose some knowledge of transfinite ordinals. Just as we can define functions on the
natural numbers by ordinary induction, we can define functions on the ordinals by
transfinite induction; and i is a limit ordinal, f¢) will in general depend on the infinitely
many values f§) for 3 <a. Thus, we cannot use the generated sets theorem to show that
such a function is recursive, since we cannot genecgteil we have generatedj(for
all B < a, and at no stage have we actually generated infinitely values. Nonetheless, we can
intuitively define f by a system of equations. For example, we might define ordinal
exponentiation by

a0=1
ab+l=ab.a
ab =supfaY: y <@ whenpis a limit.

In fact, we can use the recursion theorem to show that this system of equations defines a
recursive function on the recursive ordinals (i.e. those ordinals which are order types of
recursive well-orderings), in essentially the way we showed that the factorial function is
recursive. (However, for this to make sense we need a way of coding up the recursive
ordinals as natural numbers.) Thus, we can use the recursion theorem to get around the
problem that the value off depends on that of infinitetyv's fory < Bwhenp is a limit.

(Since what we are really defining isiadexe of the ordinal exponentiation function, the
set{aY: y <[} is coded up in a finite way in terms af 3 and e; in effect, this is what

allows us to talk about infinitely many values of the function at once.)

Exercises

1. (&) Let Sbe anr.e. set. Prove that there is a 1-1 recursive fypstioh that for all m,
(b) Show that K is 1-1 complete. (This is a result that has been long awaited.)

2. (a) Show that anr.e. set S is nonrecursive iff there is a total fugcsioch that for all
X, U(x) O S iff Y(x) O Wy. S is calleccompletely creativé | is recursive, andl-1
completely creativé { is also 1-1. Observe that K is 1-1 completely creative, whése
the identity function.
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(b) Prove that every completely creative set is many-one complete, and that every 1-1
completely creative set is 1-1 complete.

(c) Prove that if §< S, and S is completely creative, then so is RAlso show that
if S;1<1 S and Sis 1-1 completely creative, then so js S

(d) Show that every many-one complete set is completely creative, and that every 1-1
complete set is 1-1 completely creative.

3. (a) Recall the set S of exercise 6 in Lecture XIl. There is a formlx(¥ x») with L
in Lim that defines the complement of S. Why? Prove thatdfa consistent r.e.
extension of Q, then only finitely many sentences of the foghh (@), x,) are provable
in I even though infinitely many such sentences are true. Hence concludé tisabif
consistent, all but a finite number of true sentences of the fQDtr((Qfd“), Xp) are
undecidable.

(b) Prove that if the effective form of the Godel theorem holds for an r.e. set T which is
not recursive (in the sense in which it holds for K), then there is an infinite r.e. set that is
disjoint from T. Conclude that though the noneffective form of the Gddel theorem holds
for the set S of exercise 6 of the midterm assignment, S does not satisfy the effective form.
(Anr.e. set T with properties (b) and (c) of exercise 6 is called 'simple’. Observe that
exercise 6 shows that every simple set is neither recursive nor 1-1 complete. Property (a) of
the present exercise also follows from the fact that the set is simple.)

(c) Also show that if T is a nonrecursive r.e. set and T is completely creative, then T
satisfies the effective form of Gddel's theorem. (It follows that K satisfies the effective form
of Godel's theorem, which we have already seen to be the case.)
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Lecture XV

The Recursion Theorem with Parameters.

Let R be a 3-place r.e. relation, or in other words, a subnumeration of the 2-place r.e.
relations. For any given m, lef'®e the relation {<e, x>: R(e, x, m)};"Rs a

subnumeration of the r.e. sets. It follows from the recursion theorem that for any given m,
there is an e such that® RM.. But more is true: we can find e effectively from m.

Recursion Theorem with One Parameter For any 3-place r.e. relation R, there is a
recursive functionp such that for all m, \im) = RMym) i.e. for all x and m, Wf(m), x) iff
RW(m), x, m).

Proof: First, letx be a recursive function such thag W/ a)= RMp(a,)for allm, a. Since
RYo(xx) is an r.e. relation, suchyeexists by the 8theorem (taking m and a as the
parameters). Next, lgtbe a recursive function such tldip(m), a) =x(m, a) for all m, a¢p
is easily obtainable from a two place functioguaranteed by the'Sheorem for partial
recursive functions, by taking an indexyoés fixed as the first argumentaf Finally, let
P(m) =d(@(m), e(m)) =x(m, em)). Then Wm) = Wy(m, gm)) = RMo(gm).am)= RMu(m),
allm.

This proof should be compared to the proof of the parameter-free recursion theorem; all we
have done is to make the number f of that proof depend effectively on m. The theorem can
be generalized to more than one parameter via the usual methods, i.e. either by imitation of
the proof for one parameter, or via the pairing function.

The more usual statement of the theorem is this: for all 2-place requthee is a 1-
place recursive functiofy such that for all m, \m) = Wyym), my This follows from the
version we have just proved: simply let R(y, x, m) iffdy¢ m), x), and find & such that
Wym) = RTy(m) = Wym), m)

The recursion theorem with parameters has even spookier applications than the
parameter-free version.

Arbitrary Enumerations.

We shall now take a different approach to tfeaBd recursion theorems, by considering
arbitrary enumerations of the r.e. sets rather than simply the specific relation W. This
approach has the virtue of making the recursion theorem appear less mysterious than the
usual presentation.

For most applications of either the recursion theorem or'thth&rem, we don't need
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any specific properties of the relation W except that it is an enumeration. For most
applications of the'S and recursion theorems, it suffices to have available the fact that there
is some enumeration of the r.e. sets with the properties stated [} ifnedSecursion

theorems for W. Eventually, the approach that we will develop establishes that W has these
properties, but it first "cooks up" enumerations with those properties. One can find in the
literature the awareness that it is possible to cook up enumerations withghapsrty;

however, the rest of the theory does not appear in the literature and is due to the author, who
developed it without knowing that it had been developed for'fhease.

Let W' be an enumeration of the r.e. sets. For each k, we can easily obtain an
enumeration W of the k-place relations from W' via the pairing function. diagonal
enumeratiorof an enumeration of the two-place r.e. relationdX\2,y), Diag(W2), is the
relation W2(x, X, y). We say that W' isr@cursion enumeratiofor that it has the
recursion propertyif for all r.e. two-place relations R there is an e such that\WR.. We
also say that a subnumeration S is@ursion subnumeratiahfor all r.e. two-place
relations R there is an e such thatR; every recursion subnumeration is an
enumeration: let A be an r.e. set and let R be the r.e. relation such that R(e,x) iff X is in A,
then A=R.for every e; since S is a recursion subnumeration, there is an e sug=hat S
Re=A.

Theorem: For any enumeration in two variablesA,z,y), its diagonal enumeration

Diag(W?) is a recursion enumeration.

Proof: That W2(x,z,y) is an enumeration means that for every r.e. two-place relation R there
is an e such that for all z,y, R(z,y) iff %&,z,y). In particular, for every R there is an e such
that for every y, R(e,y) iff V¥(e,e,y), i.e. for every R,RDiag(W?2)e. This proves that

Diag(W?) is a recursion subnumeration of the r.e. sets, and hence, by our previous result,
that it is a recursion enumeration.

This proof of the existence of a recursion enumeration of the r.e. sets from the existence of
an enumeration of the two-place r.e. relations is as breathtakingly short as the standard
proof that W has the recursion property, if not more so. However, it is much more natural
and less mysterious than the latter. Suppose you had an enumeration of the 2-place r.e.
relations, and you wanted to construct an enumeration of the r.e. sets with the recursion
property. Each 2-place r.e. relation can be thought of as a list of r.e. sets, and the given
enumeration of the r.e. relations can be thought of as a list of all these lists; in constructing
an enumeration with the recursion property, what you really want to do is to construct a list
WT of r.e. sets which coincides with each of the other r.e. lists at some point. If R is the eth
such list, what could be more natural than havirigc@ihcide with R at the eth place? This
is just what we have done in defining Diagf\bove.

We say that W' is ixed-point enumeratiofor that it has théxed-point propertyif
for all total recursive functiong there is an e such that A% We). In calling these 'fixed
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point enumerations' we are referring to the fact that the fixed-point version of the recursion
theorem resembles a fixed point theorem (as we have pointed out, however, it is not really a
fixed point theorem). By a proof similar to the proof of the fixed point theorem from the
recursion theorem, we can prove the following

Theorem: Every recursion enumeration is a fixed-point enumeration.

The converse falils; that is, there are fixed-point enumerations which are not recursion
enumerations.

Let us now define the notion of an enumeration that satisfieqititeedrem. We can
say that W' is gubstitution enumeratiofor that it has theubstitution propertyif for any
2-place r.e. relation R there is a 1-1 recursive funagpisnch that W) = Re for all e.
Another way of stating the definition of a substitution enumeration is as follows. If R and S
are subnumerations of the r.e. sets (i.e. 2-place r.e. relationg) jsadecursive function,
let us say thap is atranslationof R into S (in symbolsp: R - S) if for all , R = Sye).
Let us say that a subnumeration $eximalif for every r.e. R, there is a recursiyiesuch
thaty: R - S; if we can requirgy to be 1-1, then we say that Sid maximal
Translation is analogous to reducibility, and maximality (1-1 maximality) is analogous to m-
completeness (1-completeness). Clearly, an enumeration is a substitution enumeration just
in case itis 1-1 maximal. (A 1-1 maximal enumeration can also be cakéftective
enumeration) Assuming that an enumeration W' exists, it will follow that every maximal
subnumeration S is an enumeration, because there will be a recursive firsticinthat
for all e, W& = Sy), and so S enumerates the r.e. sets.

We shall now show that given any enumeration, we can find a 1-1 maximal
enumeration.

Theorem: If W' is an enumeration of the r.e. sets, the relation W"([e, n], X) which holds iff
W2(e, n, X) is a 1-1 maximal enumeration.

Proof: Let W' be an arbitrary enumeration. Let W" be the enumeration such that W"([e, n],
X) = W2(e, n, x); W" is called thpairing contractionof W2. (Formally, W" is the r.e.

relation defined by((e)([h)(z = [e, N[O W' (e, n, x)). Note that W= @ when z is not of

the form [e, n].) To see that W" is 1-1 maximal, let R be any r.e. relation, and Ieéﬁ =W
Let Y(n) = [&, n]. W"W@(n), ) iff W2(ep, n, X) iff R(N, X), S0 Wn) = Rn. Sincey is 1-1,

Y is a 1-1 translation of R into W".

Once we know that W" is a substitution enumeration, it follows that it is a recursion
enumeration (and therefore a fixed-point enumeration). In fact, the standard proof of the
recursion theorem using th& Sheorem establishes that every substitution enumeration is a
recursion enumeration, since it doesn't appeal to any properties of W besides its being an
enumeration. Actually, the following is also true:

114



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Theorem: If W'y and W5 are enumerations such that for some recugjwg W'y - W'y,
then, if W1 has the recursion property, Mas also the recursion property.

Proof: That W3 has the recursion property means that for all r.e. two-place relations R
there is an e such that W= R, thaty: W'y — W', means that for all e, &= Wye).

We want to prove that for all r.e. two-place relations R there is an e such thatRV'Let
R be an r.e. two-place relation. There is an e such that for ali¢e,XYiff R(e,x). Consider
the relation R'(x,y) which holds iff B(X),y). This is an r.e. relation and so there is an e
such that for all y, W(e,y) iff R'(e,y) iff R@(e),y) iff W'a(P(e),y). So(e) is such that
Whye) = Ry, and W5 has the recursion property.

The theorem has as an immediate corollary that a maximal enumeration must have the
recursion property, since any recursion enumeration gets translated into it.

We mentioned that not every fixed-point enumeration is a recursion enumeration. A
fixed-point enumeration which is maximal is also a recursion enumeration.

As we said, most of the results in recursion theory that use W really only depend on the
fact that there is an enumeration with certain properties (specifically, the substitution
property, the recursion property, and the recursion property with parameters); as far as
recursion theory is concerned, little is gained by showing that the particular enumeration W
has these properties, since a cooked up enumeration with those properties will in general do
the job as well.
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Lecture XVI

The Tarski-Mostowski-Robinson Theorem

Recall from lecture X that If is a set of true sentences in the language of arithmetic, then
every r.e. set is weakly representablE.inrSpecifically, if A(X) is a formula of RE that
defines a set S, then[@A(x) weakly represents S i if n O S, then Q fi AY(N)), soa
fortiori I", Q fi A(0(N)), and so by the deduction theordhfj Q O A(0(N)); if, on the other
hand,” fi Q 00 A(0(N)), then QT A(0(N)) is true (since it follows from a set of true
sentences), and Q is true, scﬁ)@@) is true and therefore S. It follows that every r.e.

set is 1-1-reducible to the set of theoremB;af I is r.e., then the set of theoremdaé
1-complete. But whether or niotis r.e.,I" is undecidable.

Alfred Tarski, Andrzej Mostowski, and Raphael Robinson generalized this result,
developing a technique for showing that various theories are undecidable. The theorem
summing up this technique that we will state here, which says that certain theories are 1-1
complete, can be reasonably attributed to Bernays. We will call our basic result the 'Tarski-
Mostowski-Robinson theorem’, since it is essentially due to them, although Myhill and
Bernays deserve credit for stating it in this form.

The basic idea behind the proof of the Tarski-Mostowski-Robinson theorem is to
weaken the hypothesis thabe true (in the standard model of the language of arithmetic) in
such a way that the argument of the last paragraph still goes through. We shall prove the
theorem in stages, finding successively weaker hypotheses.

First, note that we can find a slight weakening of the hypothesis already. We already
know that ifl" is a true theory in a language with two three-place predicates A and M for
addition and multiplication (or, from an exercise, even with a single three-place predicate for
exponentiation) theh is 1-complete. Weakening the hypothesis still further: supposa
theory in some language L' which contains the language L of arithmetic (or simply the
language {A, M}) but contains extra vocabulary. Then the reasoning still goes through, as
long ad” has a model whose restriction to L is the standard model of L (or isomorphic to
it). To see this, we need only verify thaF ifi Q [ A(O(n)) then nO S (where A(x) defines
S in RE and 'Q' is some appropriate formulation of Q if the language considered is {A,M}).
So suppose€ fi Q U A(O(n)) and | is a model df whose restriction to L is the standard
model of L. Then QI A(O(”)) is true in | and therefore in the standard model, since Q
A(O(n)) is a sentence of L. So we have the result tHatgfa theory in some language L'
which contains the language L of arithmetic (or simply which contains {A,M})ahds a
model whose restriction to L is the standard model of L (or isomorphic to it} tiseh
complete.

Even in this form, the result is difficult to apply in practice, since, first, some theories we
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might want to apply it to are formulated in languages which do not contain the language of

arithmetic; and second, few if any interesting theories whose languages extend the language

of arithmetic have models whose restriction to this language is isomorphic to the structure

of the natural numbers. The full Tarski-Mostowski-Robinson theorem will show that the

theories of various sorts of algebraic structures (e.g. groups, rings, etc.) are undecidable; to

use the form of the theorem just mentioned to show that the theory of some class C of

structures is undecidable, the structuxg &, ', +,-> must be a member of C, and few if any

such classes that have actually been studied include this structure. For example, we cannot

yet show that the theory of rings is undecidable, since the natural numbers under addition

and multiplication do not form a ring, as they are not closed under additive inverse.
However, the integers do form a ring, and moreover they include the natural numbers as

a part. This suggests another weakening of the hypothedisith@atie: roughly, we shall

show that as long dshas a model | such that the natural numbers under addition and

multiplication are a submodel of | and they can be "picked out" using the langubge of

thenl is 1-complete. Actually, we shall prove a result that turns out to be equally powerful:

we shall show that if is a theory in some first-order language L, and L' is a language

obtained from L by adding finitely many constants, Brhs a model | in the language L'

such that the natural numbers under addition and multiplication (or a structure isomorphic

to this) are definable as a submodel of |, then the set of theorénis bfis a set to which

all r.e. sets are 1-1 reducible.

Tarski-Mostowski-Robinson Theorem Letl™ be a theory in some first-order language

L, and let L' be obtained from L by adding finitely many constants (possibly 0). Suppose
has a model I in the language L' such that the natural numbers are definable as a submodel
of I. Then the set of theoremslofn L is a set to which all r.e. sets are 1-1 reducible.

The proof of the theorem will occupy us for the most part of the rest of this lecture.

As a first step to spelling the content of the theorem out, ket a theory in some first-
order language L, and let L' be obtained from L by adding finitely many constants. What
does it mean to say thathas a model | in L' such that the natural numbers under addition
and multiplication (or a structure isomorphic to this) are definable as a submodel of 1? It
means that there is a model | in LToand there are formulae N'(x), A'(x, Yy, z), and M'(X, v,
z) of L' such that the structurexsla,Ip=> is the structure of the natural numbers under
addition and multiplication (or a structure isomorphic to it), whgrdd: a satisfies N'(x)
in 1}, 1 a={<a,b,c>0 I3 <a,b,c> satisfies A'(x, Y, z) in [JangyE{<a,b,c>0 I\3: <a,b,c>
satisfies M'(x, y, z) in I}.

If N', A"and M' are not already primitive predicate letters in L, we add corresponding
predicates N, A, M to L and sentences (X)(N{N'(X)), (X)(¥)(2)(A(x,y,2)= A'(X,y,2)),

X)W (@2)(M(x,y,z) = M'(x,y,2)) as "definitional” axioms tb. We also add symbols for zero
and successor and definitional axioms for them, as follows: (X)M (x50 = A(x,X,X)))
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for zero, (y)(X)(N(X)ZTN(y) O (x'=y = (Onv)(N(w) O (2)~A(z,z,z)J M(w,w,w) L A(X,wW,Y))))
for successor. The resulting theory is the set of consequenceégh Q,',A,M} of " plus
the finite set D of definitional axioms.

Now, if B is a sentence, lef\Bbe the result of restricting all of B's quantifiers to N; that
is, By comes from B by replacingX)... by (X)(N(x) OI...) throughout and (x)... by
(X)(N(x) O ...) throughout. R is called theelativizationof B to N. It is simple enough to
show that B holds in | iff B holds in the submodel of | defined by N. Ca{l ®e theory
whose theorems are the consequences of a conjunction of the relativizations of the axioms
of Q to N.

We then know that for every r.e. set S, if B(x) defines S in RE, thég B such that
(1) Bn(X) defines S on the natural numbers (or the copy of S in the structure defined by N)
and (2) for all n, @fi BN(O(n)) iff n O S. First, By(X) clearly defines S (or the copy of S in
the structure defined by N). Now, suppose that®. Then for the usual reasons, filQ
B(0(N); it is easy enough to show that i @ By(0(N)), and therefore that i By(0(N).
Now suppose that@fi By(0(M). Then B (0(N)) is true in the natural numbers (or in the
structure defined by N), and saS.

Now consider the theofly+D+Qy, the set of consequences in the language
L'0{N,0,',A,M} of I plus the finite set D of definitional axioms, plug.Q@hen for every
r.e. set S, if B(x) defines S in RE, theg(B) defines S (or the copy of S in the structure
defined by N), and for all n, (i) if @ S then™ +D+Qy fi Bn(0(M) (by the same reasoning
as in the preceding paragraph) and (il)+D+Qy fi BN(O(”)) then nO S, for suppose
S: B(x) defines S, so B(N)) is false, and so,®0(N)) is false in the structure defined by N,
and hence in |; but+D+Qy are true in I, so ndi+D+Qy fi BN(O(n)). () and (ii) establish,
in other words, that §fx) weakly represents S (or its copy)ifD+Qy.

Then, by the deduction theorem, for all i) & iff F+D fi Qy O By(0(N). This
indicates how to prove, using the familiar arguments employing the recursiveness of
substitution, that S is 1-reducible to the set of theorerhsDf i.e. that there is a 1-1
recursive functionp such that iJ S iff Y(n) is a Godel number of a theorenTefD; Y(n)
will be a Gddel number of a sentence of the form (>Q(58:D (Qn O BNn(X)). This shows
that the set of theoremso#D is 1-complete if itis r.e.

But we have not shown yet that every r.e. set is 1-reducible to the set of theorems of
(in the language L). Let us first see how the proof of this will go if we suppose that L and L'
are the same, i.e., that no extra constants are aded to L, so that the definitional axioms only
contain symbols from L anich-D is a theory in LI{N, 0,',A,M}. Intuitively, the addition of
the new non-logical symbols by means of definitions does not add expressive power to L.
More precisely, if B is a theorem BfD then there is a translation B* of B into L, obtained
by replacing "definienda" by "definientes" throughout, such that B* is a theorEr(ttu#
converse trivially obtains). In other words, there is a funggisuch that if m is a Godel
number of a sentence of the languaggNL 0,',A,M}, @(m) is a Gédel number of its
translation into L. If we could show that we may requite be recursive and 1-1, then we
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would have shown that every r.e. set is 1-reducible to the set of theorErfis tfe
language L), because the compositiop ahdy would be 1-1 and recursive, and would
reduce S to the set of theoremd of

In fact, we will show how to define directly, for each r.e. set S, a fun@tigmose value
for n is (a Godel number of) a translation of (xﬂ)&n—') O (Qn O Bn(X)) (where By(x) is as
before). It is clear that the partg @nd By(x) of one such formula are (recursively)
translatable into appropriate formulae of L (a fixed translation Q* of the conjunction of the
axioms of Q and a fixed formula B*(x) defining S (or a copy of it) in L). The pa)(ri):
is the only one that depends on n. Recall that L need not contain symbols for successor and
zero. Now, clearly there is some formulg(k) of L, obtained by repeated applications of
the definitions fol0 and ' and Russell's trick, and such that the sentence Q{J)Qx—:
Dn(x)) is a theorem df+D. To obtain [}(x) in this way we would need a cumbersome
application of the generated sets theorem. But we can obtain an appropriate fe mula E
in a simpler fashion using the uniformization theorem. Notice that there must be a formula
En(x) of L such that (x)(x@(n) = En(x)) is a theorem of D alone (intuitively, we only need
the definitions to prove an appropriate equivalence). But D is finite, so its set of theorems is
r.e. Therefore the relation R={(n,m): m is a Gédel number of a formula E(x) and E(X) is in
L and (x)(xzo(n) = E(x)) is a theorem of D} is an r.e. relation, for the familiar reasons.
Clearly for all n there is an m such that R(n,m). So R can be uniformized to a recursive
functiona such thati(n) is a Godel number of a formulg Buch that (x)(x@(n) = En(x))
is a theorem of +D (in fact, of D alone)q is clearly 1-1, because otherwise (XXQ(@-') =
x=0(a)) for some p, g, % would be a theorem 6D, which is impossible, since that
sentence must be true in a model isomorphic to the natural numbers, and any such model
makes that sentence false.

Finally, B(n) will be definable in RE using concatenation as e.g. the least Gédel number
of (X)(En(x) O (Q* T B*(x)), where E(x) is cashed out in the definition Bfin RE by
means ofx. (3 is thus clearly recursive and 1-1 (sinces). 3 1-reduces S to the set of
theorems of’, since for all n, ri] S iff 3(n) is a Godel number of a theorentof

But we will have proved the Tarski-Mostowski-Robinson theorem only when we prove
the same result without assuming that L' is equal to L. So far our proof only establishes (or
can be minimally modified to establish) that every r.e. set is 1-reducible to the set of
theorems of in L', not in L. But we can easily show how to obtain recursively and in a 1-1
fashion, for a formula of the form (X)gE<) O (Q* O B*(x)) possibly containing extra
constants, a formula C of L (thus without extra constants) such thét)((En(x) O (Q* U
B*(x)) =C). Sincd is a theory in L, any property of the extra constants provablelfrom
must be provable in for arbitrary objects; thus, if F{a.,a) is provable front,
(Y1).--(Wn)F(Y1,-... W) (Where y,...,yn are the first variables that do not occur imF(aa,))
must be provable from.

This concludes our proof of the Tarski-Mostowski-Robinson theorem.

(It may be remarked that we could have proved a weaker result which does not mention
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extra constants at all. We will see how the addition of extra constants can be profitably
applied in an exercise.)

Both Bernays and Myhill stated a theorem whose statement is closely related to the one
we have given, although Myhill (and perhaps also Bernays) did not have an appropriate
justification for it. The theorem they stated says that if a theory has a model with a definable
submodel which is a model of Q, then the theory is 1-1 complete. This theorem is true (see
the exercises) but it is harder to prove than our theorem. What Myhill and Bernays proved,
essentially, was this theorem under the hypothesis that the thescpissistent.

The Tarski-Mostowski-Robinson theorem can be applied to show that several algebraic
theories are undecidable. Among them, the elementary theories of rings, commutative rings,
integral domains, ordered rings, ordered commutative rings (all with or without unit), the
elementary theory of fields, etc. The proof for the theory of rings is given as an exercise.

Despite its simplicity, the Tarski-Mostowski-Robinson theorem is a very striking result,
since it states that for a theory to be undecidable, it is enough that it have just one model in
which the natural numbers are definable as a submodel. Part of the reason it is so striking
is that it is commonly applied to theories (like the theory of rings) for which there is no
single standard interpretation. However, it is really no different in principle from the result
that Q is undecidable. Q also has many different interpretations, but we tend to think of one
particular interpretation as "standard" or "intended", so we are less surprised when that
interpretation is used to show that Q is undecidable; nonetheless, mathematically speaking,
using the standard interpretation of Q to show that it is undecidable is no different from
using the fact that the integers form a ring to show that the theory of rings is undecidable.

If we have already shown that a given theory is decidable and that | is a model of that
theory, it will follow that the set of natural numbers is not definable in I. For example,
consider the model in the language of arithmetic whose domain is the real numbers. Itis a
famous theorem of Tarski that the first-order theory of this model (i.e. the set of sentences
true in this model) is decidable; it follows from the Tarski-Mostowski-Robinson theorem
that the set of natural numbers is not definable in this model. Similar remarks apply to the
complex numbers. This also illustrates the fact that, for the theorem to apply, the formula
that picks our the natural numbers must be a formula of the object language, since in the
metalanguage we can certainly pick out the natural numbers from the real numbers.

Note also that the theorem relates the undecidabilityii to the existence of a
certain kind of model df in a possibly larger language L'. It is important to notice that L'
is only allowed to differ from L' by the addition of finitely many constants; the theorem
does not hold if we allow L' to have additional predicates or function symbols as well. To
see this, recall that the first-order thebrgf the reals in the language L of arithmetic is
decidable. However, letting L' =l {N} (where N is any unary predicate), we see tha
undecidablén L": simply let | be the model for L whose domain is the set of reals, etc., let I
be the expansion of | to L' in which N is interpreted as applying to the natural numbers, and
apply the Tarski-Mostowski-Robinson theorem.
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Exercises

1. A classical theorem of elementary number theory says that every positive integer is the
sum of four squares. Use this to prove that the elementary theory of rings is 1-1 complete.
(Remark: For those who know about such things, the same argument can be used to prove
that the elementary theories of commutative rings with or without unit, of integral domains,

of ordered rings and ordered integral domains, etc. are 1-1 complete. It is more difficult to
prove the 1-1 completeness of the elementary theory of fields, which uses a similar but more
difficult method.)

2. (a) Show that the theorem that every maximal enumeration is a recursion enumeration
can be proved using the method employed in the lectures to prove the self-reference lemma
(with the recursion theorem for W as a special case). Remember that a maximal
enumeration is one with the substitution property.

(b) Formulate an appropriate version of the recursion property with parameters, and
prove that the diagonalization of any maximal subnumeration has the recursion property
with parameters.

3. Recall the recursively inseparable segtar&l $ from the lectures.
(a) Let C be an r.e. set containinga®d disjoint from & Prove that C is completely
creative. Hint: Let A(X, Y, z) be the r.e. relationi.(yC [0z =0") O(W(x, y) 0z =0). Let
Y(x, y) be a uniformization of A(x, y, z). Prove that there is a recursive funcganh that
WX, y) =d(x(x), y), for all x, y. Prove that is a completely creative function for C.
(b) Give an example of a formula A(x) in the language L of arithmetic such that if
any consistent r.e. extension of Q in L, then A(x) weakly represents a completely creative
set inl". (A(X) need not represent the same completely creative set in all these systems.)
(c) Prove that if is as above, every r.e. set is weakly representable in
(d) Prove that if” is as above, the set of all theorem§ @ one-to-one complete.

Comment: this finally shows that the results we stated before under the hypothésis that
extends Q and ®-consistent, concerning weak representability, 1-completeness, etc. all
hold if w-consistency is weakened to consistency. (Or almost all: this does not show that
the result abouticeweak representability still holds. This can also be proved, but requires
another argument.) Rosser's work gave a start for this, but it took several decades to reach
the point of this exercise.

(e) Use the results above to show how to prove the Tarski-Mostowski-Robinson results,
stated in class under the hypothesis thlads a model with a definable submodel
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isomorphic to the standard model of L, under the weaker hypothedistthata model with
a definable submodel which is a model of Q.

Comment: Tarski, Mostowski and Robinson, as said in class, used a less model-theoretic
formulation. However, their work would have implied the result in (e) with the conclusion
of undecidability only. | know of no significant application to a specific theory, however,
where the generalization to models of Q is really useful.

4. (a) Anr.e. set S eativeif there is a recursive functiapsuch that whenever s
disjoint from S\(x) 0 SO Wy. Prove that every creative set is many-one complete. Hint:
Let S* be any r.e. set. Prove that there is a recursive fungcsaaoh that, for all x,

@UJ(X(X))} if x O S*
W =
X&) if x 0 S*

(b) Conclude from what we have done so far that the concepts creative, completely
creative, and many-one complete are equivalent. Also show that the concepts 1-1 complete,
1-1 completely creative, and 1-1 creative (defined in the obvious way) are equivalent. Later
on it will turn out that all six concepts are equivalent.

(c) Another equivalent concept: prove that a set S satisfies the effective form of Gédel's
theorem, as defined for nonrecursive r.e. sets, iff S is creative.

Comment: all of the concepts, <1, m-complete, 1-complete, creative, and simple are due

to Post. Many theorems relating them are also due to Post, as (essentially) is the connection
between creativeness and Gdodel's theorem (which inspired the term "creative"). Other
important properties of these concepts were proved by Mynhill.

5. Show that the set of all valid formulae in the first-order language with one two-place
predicate letter and no others, is 1-1 complete. Also show that the elementary theory of one
irreflexive relation and the elementary theory of one asymmetric relation are 1-1 complete.
Sketch of the method: consider a certain structure with set-membership as the only relation
between elements of the structure. Set membership is irreflexive and asymmetric. The
structure will consist of the natural numbers, the sets of natural numbers, the sets whose
elements are natural numbers and sets of natural numbers, and so on, through all finite
levels. Kuratowski defined the ordered pair <x, y> as {{x}, {x, y}}. Prove that this has the
property of a pairing function: that is, if §x>> = <yi, yo>then ¥ =y; and % = y». An

ordered triple etc. can be defined in terms of ordered pairs. This pairing function is an
important tool in the proof. The proof is much simpler if one realizes that definitions with
extra constants are allowed.
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Comment: some of you may know that a model of the natural numbers together with
definitions of + and can be defined in set theory. This fact could have been used to do this
exercise, but the method given above presupposes much less prior background, and shows
that this is not needed.

6. Areduction classs a recursive class of formulae in a first-order language such that
there is an effective mappingof arbitrary formulae of the full language of first-order logic
(i.e. the language of first-order logic with all predicates and constants) into formulae of the
class such that a formula A of the full language is valig(f) is valid. Reduction classes
were an active topic of research even before the development of recursion theory.

(&) Arecursive class C of formulae is a reduction class iff the set of all (Godel numbers
of) valid formulae in C is . . . Fill in the dots with a concept already defined in this course,
and prove the correctness of your answer.

(b) Give a non-trivial example of a reduction class, using the answer to part (a).

123



