
Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

36

Lecture V

Truth and Satisfaction in RE.

Remember that the satisfaction relation is a relation in two variables, S(A,s), which holds
between a formula A and an assignment s sufficient for A just in case s satisfies A (in the
case of RE, s assigns non-negative integers to the variables, since the intended interpretation
of RE is the arithmetical interpretation). Since truth can be defined in terms of satisfaction, if
RE could define its own satisfaction relation, RE would have its own truth predicate.

Some assignments related to formulae by the satisfaction relation are sequences of
infinite length: the sequence {<x1,0>, <x2,1>, ...} is an assignment of the value i-1 to the
variable xi; this assignment is naturally sufficient for any formula, and satisfies, e.g., all
formulae of the form xi=xi. However, as Cantor showed, we could not code all infinite
sequences of numbers by means of numbers, so the satisfaction relation for formulae of RE
cannot be represented as a relation between numbers. However, for our purposes it is really
unnecessary to contemplate the full satisfaction relation. It will be enough to be able to
define within RE the satisfaction relation restricted to finite assignments, or even a relation
Sat(a,s), which holds between a (code of a) formula A and a (code of a) finite function s
which assigns non-negative integers to all the (codes of) variables appearing free in A and
satisfies A in the obvious sense (thus, if Sat(a,s), s need not be a sequence, for its domain
need not be an initial segment of the non-negative integers -nor an initial segment of the
codes of variables-, and s need not be an assignment, for it can assign values to things other
than codes of variables). Sat(a,s) will be the relation that we will show how to define in RE.
In fact, we shall show, equivalently, that the set of Gödel numbers of pairs in Sat is r.e.,
using the Generated Sets Theorem. One way in which we can begin to see that this will be
enough for our purposes is to note that if Sat can be defined in RE, then the truth predicate
for RE can be defined in RE, since a sentence of RE is true just in case it is satisfied by
some finite function.

We shall now undertake the proof of the following

Theorem: The satisfaction relation Sat(a,s) for formulae of RE is definable in RE, or, in
other words, RE has its own satisfaction predicate.

We shall devote to this proof this lecture and the next one.
As we just said, in showing that the satisfaction relation for RE is r.e., we shall use the

Generated Sets Theorem. What we shall show is that the set of (numbers coding) pairs
G={[a, s]: s codes a function which is sufficient for and satisfies the formula whose Gödel
number is a} is generated from an r.e. set by means of r.e. relations.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

37

In order to prove our theorem it would be perhaps most natural to generate separately
the set of formulae, then define in some way the notion of a function being sufficient for a
formula, and finally generate the set of pairs <A,s> where s is sufficient for and satisfies the
formula A, going through the clauses in the inductive definition of satisfaction for RE.
However, we will generate this set in one fell swoop, so to speak, without having first to
define the set of formulae and the relation of being a function sufficient for a formula.

We will now begin our specification of the basis set, and later we will define the
generating relations. In order to show that the set that we will take as basis set is r.e., we will
show first that the set of terms and the relation of denotation are r.e.

It is important to stress at this stage a delicate point in our coding scheme. Remember
that in our coding scheme, in order to code formulae we code terms first, by coding the
sequence of numbers that code the individual symbols appearing in a term (in the same
order). Thus, a term f1

1f1
1xi will be coded by any code of the sequence {[1,[4,[1,1]]],

[2,[4,[1,1]]], [3,[1,i]]}, and, as a term, xi will be coded by any code of the sequence
{[1,[1,i]]}. Then we code formulae using the same procedure, but now taking each term as if
it was an individual symbol, a code for it being a code of the appropriate sequence. Thus, a
formula P2

1xixi will be coded by any code of the sequence {[1,[5,[2,1]]], [2,[1,[1,i]]],

[3,[1,[1,i]]]}.
We now exhibit a formula Funct(s) which is true of a number if it codes a finite

function:

Funct(s)=df. (x∈ s)(∃ m1≤x)(∃ m2≤x)(x=[m1,m2]) ∧
(n1≤x)(n2≤x)(m≤s)(([m,n1]∈ s∧ [m,n2]∈ s)⊃ n1=n2).

With the help of Funct(s), we can give an alternative formula that shows that the relation
holding between a sequence and its length is r.e.:

Seql(s,n)=df. Funct(s) ∧ (i≤n)(0'≤i ⊃ (∃ j)([i,j] ∈ s)).

We now specify a formula Num(m,n) which is true of a pair of numbers p,q if p is a
code of a numeral that denotes number q:

Num(m,n)=df. Seql(m,n') ∧ [n',[0(2),0(1)]] ∈ m ∧ (i≤n)(0'≤i ⊃ [i,[0(4),[0(1),0(1)]]] ∈ m).

The first conjunct “says” that m is a sequence of length n+1; the second that the last pair
of the sequence has as second element the code of the constant 0, which, remember, is [2,1];
and the third conjunct “says” that all the other second elements of the sequence are codes
of the symbol for successor, which is [4,[1,1]]. We can now give a formula Numeral(m) that
defines the set of codes of numerals:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

38

Numeral(m)=df. (∃ n≤m)(Num(m,n)).

The formula Vblt(m,v) will be true of two numbers p,q if p is a code of a term of the
form f11...f

1
1xi, for a certain i, and v is the code of xi (in this case we say that p is (a code of)

a variable term ending in variable q):

Vblt(m,v)=df. (∃ n≤m)(Seql(m,n') ∧ (∃ i≤m)(v=[0(1),i]) ∧ [n',v]∈ m ∧ (j≤n)(0'≤j ⊃
[j,[0(4),[0(1),0(1)]]] ∈ m)).

The first conjunct “says” that m is a sequence of length n+1; the second that v is the code
of a variable; the third that the last value of the sequence is v; the fourth that all the values
preceding v are codes of the symbol for successor. A formula similar to Numeral(m) then
defines the set of codes of terms of the form f1

1...f
1
1xi:

Vblterm(m)=df. (∃ v≤m)(Vblt(m,v)).

It will be useful to introduce a formula Vbl(v) which is true of a number if it is the code of a
variable:

Vbl(v)=df. (∃ i≤v)(v=[0(1),i]).

Finally, we can give a formula that defines the set of codes of terms:

Term(m)=df. Numeral(m) ∨ Vblterm(m)

(remember that in RE the only terms are numerals (in official notation) and variables
preceded by a number of occurrences of the function letter f1

1. If we had taken + and . as

primitive function letters, there would have been more complicated terms. As it is, since ' is
our only function symbol, things are much simpler).

We are now ready to define denotation. The formula Den(m,n,s) is true of a triple of
numbers p,q,r if p is a term that denotes q with respect to assignment r:

Den(m,n,s)=df. Funct(s) ∧ (Num(m,n) ∨
(∃ v≤m)(Vblt(m,v)∧ (∃ p≤m)(Seql(m,p'))∧(∃ q≤s)([v,q]∈ s∧ q+p=n)).

The second disjunct of the second conjunct “says” that there is a variable v such that m is a
variable term ending in v, m has length p+1 for a certain p and s assigns to v a number q
such that, if you add to it 1 p times, you get n.

The formula Atf=(s) is true of a number if it codes an atomic formula of the form
P2

1t1t2, where t1 and t2 are terms of RE:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

39

Atf=(s)=df. (∃ m1≤s)(∃ m2≤s)(Seql(s,0(3)) ∧ Term(m1) ∧ Term(m2) ∧
[0(1),[0(5),[0(2),0(1)]]] ∈ s ∧ [0(2),m1]∈ s ∧ [0(3),m2]∈ s).

The formula AtfA(s) is true of a number if it codes an atomic formula of the form
P3

1t1t2t3, where t1, t2 and t3 are terms of RE:

AtfA(s)=df. (∃ m1≤s)(∃ m2≤s)(∃ m3≤s)(Seql(s,0(4)) ∧ Term(m1) ∧ Term(m2) ∧
Term(m3) ∧ [0(1),[0(5),[0(3),0(1)]]] ∈ s ∧ [0(2),m1]∈ s ∧ [0(3),m2]∈ s ∧ [0(4),m3]∈ s).

The formula AtfM(s) is true of a number if it codes an atomic formula of the form
P3

2t1t2t3, where t1, t2 and t3 are terms of RE:

AtfM(s)=df. (∃ m1≤s)(∃ m2≤s)(∃ m3≤s)(Seql(s,0(4)) ∧ Term(m1) ∧ Term(m2) ∧
Term(m3) ∧ [0(1),[0(5),[0(3),0(2)]]] ∈ s ∧ [0(2),m1]∈ s ∧ [0(3),m2]∈ s ∧ [0(4),m3]∈ s).

Then the formula Atfmla(s) is true of a number if it codes an atomic formula:

Atfmla(s)=df. Atf=(s) ∨ AtfA(s) ∨ AtfM(s).

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

40

Lecture VI

Truth and Satisfaction in RE (Continued).

We are getting closer to specifying the basis set. This set (let's call it B) will include the set
of numbers [a,s] where a is a code of an atomic formula A and s is a function that is
sufficient for A and satisfies A. B will include other (numbers coding) pairs of formulae
and functions as well, as we will see later, but we can now start the construction of the
formula that defines B by exhibiting the disjuncts of that formula that “correspond” to the
cases in which the number a in [a,s] codes an atomic formula.

The first disjunct will be a formula true of two numbers a,s if a is an atomic formula of
the form P21t1t2 and s is sufficient for and satisfies a:

D1(a,s)=df. (∃ m1≤a)(∃ m2≤a)(Seql(a,0(3)) ∧ Term(m1) ∧ Term(m2) ∧
[0(1),[0(5),[0(2),0(1)]]] ∈ a ∧ [0(2),m1]∈ a ∧ [0(3),m2]∈ a ∧ (∃ y1≤a)(∃ y2≤a)(Den(m1,y1,s) ∧

Den(m2,y2,s) ∧ y1=y2).

Notice that we use the identity predicate of RE to define the relation of satisfaction restricted
to codes of equalities and functions that satisfy them. Below, the predicates of addition and
multiplication of RE are used analogously, and so will be the connectives and quantifiers in
our definitions of the generating relations for complex formulae. This procedure for
defining satisfaction, and hence truth, was first used by Tarski. In the case of a sentence, like
0=0, Tarski’s definition of truth comes down to the biconditional: 0=0 is true iff 0=0.
Tarski's definition appeared when some logical positivists had expressed doubts about the
possibility of a scientifically acceptable definition or theory of truth. Tarski showed that this
way of defining satisfaction and hence truth existed, and that it had important uses in logic
and mathematics.

The second disjunct will be a formula true of two numbers a,s if a is an atomic formula
of the form P31t1t2t3, where t1, t2 and t3 are terms of RE, and s is sufficient for and satisfies
a:

D2(a,s)=df. (∃ m1≤a)(∃ m2≤a)(∃ m3≤a)(Seql(s,0(4)) ∧ Term(m1) ∧ Term(m2) ∧
Term(m3) ∧ [0(1),[0(5),[0(3),0(1)]]] ∈ s ∧ [0(2),m1]∈ s ∧ [0(3),m2]∈ s ∧ [0(4),m3]∈ s ∧

(∃ y1≤a)(∃ y2≤a)(∃ y3≤a)(Den(m1,y1,s) ∧ Den(m2,y2,s) ∧ Den(m3,y3,s) ∧ Α(y1,y2,y3)).

The third disjunct will be a formula true of two numbers a,s if a is an atomic formula of
the form P32t1t2t3, where t1, t2 and t3 are terms of RE, and s is sufficient for and satisfies a:

D3(a,s)=df. (∃ m1≤s)(∃ m2≤s)(∃ m3≤s)(Seql(s,0(4)) ∧ Term(m1) ∧ Term(m2) ∧

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

41

Term(m3) ∧ [0(1),[0(5),[0(3),0(2)]]] ∈ s ∧ [0(2),m1]∈ s ∧ [0(3),m2]∈ s ∧ [0(4),m3]∈ s ∧
(∃ y1≤a)(∃ y2≤a)(∃ y3≤a)(Den(m1,y1,s) ∧ Den(m2,y2,s) ∧ Den(m3,y3,s) ∧ Μ(y1,y2,y3)).

Besides these three kinds of pairs [a,s], the basis set B will contain a fourth kind of
pairs. The reason for this is that we are trying to avoid having to define the set of formulae
of RE and the relation of a function being sufficient for a formula of RE. We are going to
give generating relations that will generate the set {[a,s]: Sat(a,s)} in one fell swoop, as we
said. But in order to do this, we need some way of dealing with the natural generating rule
for disjunctions: if s satisfies A, B is a formula and s is sufficient for B, then s satisfies
(A∨ B). How are we going to define the relation corresponding to this rule without having
defined the notions of being a formula and of being a function sufficient for a formula? We
can appeal only to the notion of satisfaction as holding between less complex formulae and
functions sufficient for them. Clearly, defining the relation corresponding to the following
rule will not do: if s satisfies A and s satisfies B, then s satisfies (A∨ B). It will not do
because B may be unsatisfiable, in which case (A∨ B) will not be generated.

To get around this we will use the following observation. All formulae of the form
(xi<0)B are satisfied by all functions sufficient for them, since there is no number less than
0, so all pairs [a,s] where a is a formula of that form and s is sufficient for B must be in our
final set. But if we have already generated the pairs consisting of a formula of the form
(xi<0)B and all the functions s that satisfy it, (which we have to do in any case), then it must
be the case that both B is a formula and s is sufficient for it. So the rule: if s satisfies A and
s satisfies (xi<0)B then s satisfies (A∨ B), will be appropriate to generate all the pairs of
disjunctions and sequences that satisfy them, provided we have taken care of generating all
the pairs [a,s] where a is a formula of the form (xi<0)B and s is sufficient for B. In fact we
will take care of generating all the pairs [a,s] where a is a formula of the form (xi<t)B, t is a
term of RE not containing xi, s is sufficient for (xi<t)B and the denotation of t with respect
to s is 0 (for the same reason as above, all these pairs are in the relation of satisfaction).This
is the reason for having a fourth kind of pairs in the basis set B: they are the pairs [a,s]
where a is a formula of the form (xi<t)B, B is atomic, s is sufficient for (xi<t)B and the
denotation of t with respect to s is 0.

In order to give a formula that defines this relation, let's introduce the following
formulae:

s(i)=m =df. [i,m] ∈ s;

this is simply a convenient abbreviation. The formula OcAtfmla(v,a) is true of v,a if v codes
a variable, a is an atomic formula and the variable coded by v appears in the formula coded
by a (notice that, in this case, the variable coded by v must appear free, since a has no
quantifiers):

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

42

OcAtfmla(v,a)=df. Atfmla(a) ∧ Vbl(v) ∧ (∃ m≤a)(∃ i≤a)(Term(m) ∧ [i,m]∈ a ∧
(∃ j≤m)([j,v]∈ m)).

We now give a formula that defines the useful relation of concatenation between
sequences: Cxyz will be true of m,n,p if they code sequences and p codes the sequence that
results from concatenating the sequence coded by m and the sequence coded by n, in this
order:

Cxyz=df. (∃ m≤x)(∃ n≤y)(Seql(x,m) ∧ Seql(y,n) ∧ Seql(z, m+n) ∧ x⊆ z ∧
(j≤n)(w≤y)([j,w] ∈ y⊃ [j+n,w]∈ z)).

We can naturally define iterations of this relation, e.g.,

C3wxyz=df. (∃ m≤z)(Cwxm ∧ Cmyz).

Now we give a formula D4(a,s) which is true of a,s if a is a formula of the form (xi<t)B
(where, therefore, xi does not occur in t), B is atomic, s is sufficient for (xi<t)B and the
denotation of t with respect to s is 0:

D4(a,s)=df. (∃ m1≤a)(∃ m≤a)(∃ v≤a)[Term(m) ∧ Term(m1) ∧ Vbl(v) ∧ [0(1),v]∈ m1 ∧
(j≤m)(w≤m)([j,w]∈ m⊃ w≠v) ∧

(∃ b1≤a)(∃ b2≤a)(Cb1b2a ∧ Atfmla(b2) ∧ Seql(b1,0(5)) ∧ b1(0(1))=[0,0] ∧ b1(0(2))=m1 ∧
b1(0(3))=[0,0(3)] ∧ b1(0(4))=m ∧ b1(0(5))=[0,0(1)]) ∧

(v1≤a)((Vbl(v1) ∧ v≠v1 ∧ (∃ j≤a)([j,v1]∈ m)) ∨ OcAtfmla(v1,a)) ⊃ (∃ k≤a)([v1,k]∈ s)) ∧
Den(m,0,s)].

Finally, our basis set B is defined by the following formula of Re:

Basis(x)=df. (∃ a≤x)(∃ s≤x)(x=[a,s] ∧ (D1(a,s) ∨ D2(a,s) ∨ D3(a,s) ∨ D4(a,s))).

Hence, B is r.e.
We turn now to defining the relations that will generate the set G from the basis set B.

These will correspond fairly closely to the clauses in the inductive definition of satisfaction
for assignments and formulae of RE. But we also have to take care of generating the more
and more complex formulae of the form (xi<t)B where s is sufficient for (xi<t)B and the
denotation of t with respect to s is 0.

We will define first the relations corresponding to the clauses in the inductive definition
of satisfaction. First we consider the rule corresponding to the clause for conjunction: if s
satisfies A and s satisfies B, then s satisfies (A∧ B), or schematically:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

43

Sat (A, s), Sat (B,s)

Sat ((A ∧ B), s).

All we need to define an appropriate generating relation is a formula that defines the relation
{<<A, s>, <B, s>, <(A ∧ B),s>>: A, B are sequences}; or, to be exact, a formula that defines
the relation Rc={<[m,s], [n,s], [p,s]>: p codes the conjunction of the sequences that m and n

code} (notice that if two pairs [a,s], [b,s] have been already generated, there is no further
need to require that a and b be formulae and s be a finite function sufficient for a and b).
Now, the formula Conj(x,y,z) is true of m,n,p if p is the conjunction of m and n:

Conj(x,y,z)=df. (∃ l≤z)(∃ c≤z)(∃ r≤z)(Seql(w,0(1)) ∧ Seql(c,0(1)) ∧ Seql(r,0(1))∧ l(0(1))=[0,0]
∧ c(0(1))=[0,0(6)] ∧ r(0(1))=[0,0(1)] ∧ C5lxcyrz).

Given this, the RE formula with free variables x,y,z

(∃ s≤x)(∃ m≤x)(∃ n≤y)(∃ p≤z)(x=[m,s] ∧ y=[n,s] ∧ z=[p,s] ∧ Conj (m,n,p))

defines the generating relation we need.
For disjunction, we have two rules; schematically:

Sat (A,s), B is a formula of RE and s is sufficient for B

Sat ((A ∨ B),s)

and

Sat (B,s), A is a formula of RE and s is sufficient for A

Sat ((A ∨ B),s).

We could define the corresponding relation in a way analogous to the case of disjunction if
we had defined the notion of formula of RE and the notion of being a function sufficient for
a formula, but this is what we set ourselves to avoid. It is here that we will appeal to the trick
explained above. For example, the first rule becomes:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

44

Sat (A,s), Sat((xi<0)B,s)

Sat ((A ∨ B),s).

Now we need a formula that defines the relation {<<A, s>, <(xi<0)B, s>, <(A ∨ B),s>>: A, B

are sequences}; or, to be exact, a formula that defines the relation RD1={<[r,s], [n,s], [p,s]>:
n is a concatenation of (xi<0) (for some i) and some sequence q, and p codes the disjunction
of the sequences that r and q code}. Now, a formula Disj(x,y,z) true of r,n,p if p is the
disjunction of m and n is easily definable as in the case of conjunction. Assuming this, the
RE formula with free variables x,y,z

(∃ s≤x)(∃ r≤x)(∃ n≤y)(∃ q≤y)(∃ p≤z)(x=[r,s] ∧ y=[n,s] ∧ z=[p,s] ∧
(∃ m1≤n)(∃ v≤n)[Term(m1) ∧ Vbl(v) ∧ [0(1),v]∈ m1 ∧

(∃ b≤n)(Cbqn ∧ Seql(b,0(5)) ∧ b(0(1))=[0,0] ∧ b(0(2))=m1 ∧ b(0(3))=[0,0(3)] ∧
b(0(4))=[0(2),0(1)] ∧ b(0(5))=[0,0(1)]] ∧

 Disj(r,q,p))

defines the generating relation we need. The second rule for disjunction corresponds to
another generating relation, RD2, that can be defined analogously.

The rule for existential quantification is a bit more complicated:

Sat (A,s), s1 differs from s at most in what it assigns to xi

Sat ((∃ xi)A,s1)

In order to define the appropriate generating relation we need a formula that defines the
relation {<<A, s>, <(∃ xi)A, s1>>: A is a sequence and s1 differs from s (if at all) in what it

assigns to xi}; or, to be exact, a formula that defines the relation REQ={<[m,s], [n,s1]>: n
codes the concatenation of (∃ xi) (for some i) and m, and s1 differs from s (if at all) in what

it assigns to xi}. Now, a formula ExQu(m,y,p) true of x,i,z if p is a Gödel number of the
concatenation of (∃ xi) and m, is easily definable as in the above cases (remembering our

special way of coding terms when they appear in formulae). We also need to have an RE
formula Diff(s,s1,v) that says that s and s1 assign the same to variables other than v. This
can be done as follows:

Diff(s,s1,v) =df. Funct(s) ∧ Funct(s1) ∧ Vbl(v) ∧ (w≤s)(p≤s)(q≤s1)((Vbl(w) ∧ w≠v ∧
[w,p]∈ s ∧ [w,q]∈ s1)⊃ p=q).

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

45

Then REQ is definable by the following formula of RE with free variables x,y:

(∃ s≤x)(∃ s1≤y)(∃ i≤y)(∃ m≤y)(∃ p≤y)(x=[m,s] ∧ ExQu(m,i,p) ∧ y=[p,s1] ∧ Diff(s,s1,i)).

Finally, we come to bounded universal quantification, which is a bit subtler than the
preceding cases. We have the rule

Sat ((xi<0(n))A,s), Sat (A,s1), s1 differs from s only in that s1 assigns n to xi, t denotes n+1
with respect to s, xi does not occur in t

Sat ((xi < t)A,s)

This says, roughly, that if s satisfies both (xi<0(n))A and A(0(n)), then s satisfies any
formula of the form (xi<t)A where t denotes n+1 with respect to s. The corresponding
relation is RUQ={<[m,s], [n,s1], [p,s]>: for some term t and some variable xi not occurring
in t, p codes the concatenation of (xi < t) and n, s1 differs from s at most in that it assigns a
number q to xi, and m is the concatenation of (xi<0(q)) and n}. Now, a formula
UnQu(m,i,t,p) which “says” that p is the Gödel number of (xi<t)A, where A is the formula
whose Gödel number is m, is easily definable as in the above cases (taking care of
remembering that we are not using the simple-minded coding scheme). Then we can define
RUQ by means of the following formula with free variables x,y,z:

(∃ s≤x)(∃ s1≤y)(∃ m≤x)(∃ n≤y)(∃ p≤z)(∃ i≤x)(∃ t≤z)(∃ q≤x)(∃ r≤x)(Term(t) ∧ Vbl(i) ∧
(j≤t)(w≤t)([j,w] ∈ t⊃ w≠i) ∧ UnQu(n,i,t,p) ∧ Diff (s,s1,i) ∧ Num(q,r) ∧ Den(i,r,s1) ∧

UnQu(n,i,q,m) ∧ x=[m,s] ∧ y=[n,s1] ∧ z=[p,s]).

We are now done in our job of defining the generating relations corresponding to the
clauses in the inductive definition of satisfaction for RE. We now have to make sure that we
can define the relations that generate more and more complex formulae of the form (xi<t)A.

For conjunction, we have the rule

Sat ((xi<t)A, s), Sat ((xi<t)B,s), t denotes 0 with respect to s

Sat ((xi<t)(A ∧ B), s).

The corresponding relation is RC*={<[m,s], [n,s], [p,s]>: for some q,r,xi,t such that xi is a
variable, t is a term, m codes the concatenation of (xi<t) and q, n codes the concatenation of
(xi<t) and r, the denotation of t with respect to s is 0 and p is the concatenation of (xi<t) and
the conjunction of q and r}. RC* is definable by the following formula with free variables
x,y,z:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

46

(∃ s≤x)(∃ m≤x)(∃ n≤y)(∃ p≤z)(∃ q≤x)(∃ r≤y)(∃ i≤m)(∃ t≤m)(x=[m,s] ∧ y=[n,s] ∧ z=[p,s] ∧
Vbl(i) ∧ Term(t) ∧ UnQu(q,i,t,m) ∧ UnQu(r,i,t,n) ∧ Den(t,0,s) ∧ (∃ w≤p)(Conj(q,r,w) ∧

UnQu(w,i,t,p))).

For disjunction, we have the rule

Sat ((xi<t)A, s), Sat ((xi<t)B,s), t denotes 0 with respect to s

Sat ((xi<t)(A ∨ B), s),

whose corresponding generating relation RD* is definable similarly.
For existential quantification we have the rule

Sat ((xi<t)A, s1), t denotes 0 with respect to s, and s1 differs from s at most in what it
assigns to xj

__

Sat ((xi<t)(∃ xj)A, s),

whose corresponding relation REQ* is easily definable by means of the formulae that we
already have.

The same is true for the relation RUQ* corresponding to the relevant rule for bounded
universal quantification:

Sat ((xi<t)A, s1), t denotes 0 with respect to s, and s1 differs from s at most in what it
assigns to xj, t1 is a term and xj is a variable not appearing in t1

__

Sat ((xi<t)(xj<t1)A, s).

Thus we finish our specification of the generating relations. It can be proved (by induction
on the complexity of the formulae) that for every formula A and function s, if a codes A and
s is a function that satisfies A, then [a,s] is generated from B by the relations RC, RD1, RD2,
REQ, RUQ, RC*, RD*, REQ*, RUQ*. So G is indeed the set generated from B, which is r.e.,
by these relations, which are r.e. Using the Generated Sets Theorem, we then reach the
result that G is r.e., which is what we had set out to prove.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

47

Given that RE contains its own satisfaction predicate, it also contains its own truth
predicate, that is, there is a formula of RE Tr(m) with one free variable which is true of a
(Gödel number of a) formula if and only if the formula is true in the intended interpretation
of RE. Noting that a formula is true iff it is satisfied by a Gödel number of the empty
sequence, we can define

Tr(m) =df. Sat(m,0(3)).

(3 codes the empty sequence, for it is not in the range of our pairing function.)
If we had shown that RE contains its own truth predicate Tr(x), we could then have

defined satisfaction with its help, using a remark due to Tarski: a number m satisfies a
formula A(x1) with one free variable just in case the sentence (∃ x1)(x1 = 0(m) ∧ A(x1)) is
true, so easily, since the concatenation function is definable in RE, we can define satisfaction
in terms of truth within RE.

Exercises

1. Define the characteristic function of a set S to be the function which, for every natural
number x, takes value 1 if x∈ S, and value 0 if x∉ S. Similarly, the characteristic function of
an n-place relation R is the function that for every n-tuple <x1,...,xn>, takes value 1 if
<x1,...,xn>∈ R, and value 0 if <x1,...,xn>∉ R. The weak characteristic function of a set S (or
n-place relation R) takes value 1 on a number x (or n-tuple <x1,...,xn>) if x (<x1,...,xn>)

belongs to S (R). (a) Show that a set or relation is recursive iff its characteristic function is.
(b) Show that a set or relation is r.e. iff its weak characteristic function is partial recursive.
(c) Show that the range and domain of any recursive function in one variable is r.e.

2. Show that the relation z=xy is r.e., and therefore that the exponentiation function is
recursive by both the method of primitive recursion and the method of generated sets. How
do the two defining formulae in RE differ from each other?

3. Use the Generated Sets Theorem to show that the Ackermann function is recursive.
Where would an argument that the Ackermann function is primitive recursive break down?

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

48

4. Show that the set of Gödel numbers of formulae of the first order language of arithmetic
is r.e., using the Generated Sets Theorem. Do the problem explicitly as follows. Write the
basis clauses and generating clauses for the formulae themselves, and also show how they
are then translated into basis clauses and generating clauses for codes. Then indicate what
formula of RE results if we apply the argument in the proof of the Generated Sets Theorem
to this case. Do the same for the set of formulae obeying the nested quantifier restriction.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

49

Lecture VII

The Enumeration Theorem. A Recursively Enumerable Set which is Not Recursive

Now that we have shown how to define satisfaction for RE within RE itself, we are ready to
prove what may be considered the fundamental theorem of recursion theory. First, let us
define a variant on the notion of satisfaction we defined above. If B is a formula whose
only free variable is x1, then we say the number n satisfies1 B just in case the unit sequence
<n> satisfies B. We may thus define

Sat1 (m, n) =df. (∃ s) (Sat (m, s) ∧ (y∈ s)(y=[[0(1),0(1)],n]) ∧ [[0(1),0(1)],n]∈ s).

One could in general define Satk, satisfaction for formulae with k free variables, either

directly in a similar manner or by using the k-tupling function to reduce it to the case k=1.
We also use the notation W(e,n) for the relation that holds just in case Sat1(e,n) holds.

We now have the

Enumeration Theorem: There is a 2-place r.e. relation W such that for every r.e. set S,
there is an e such that S = {n: W(e,n)}.
Proof: Let We={x: W(e,x)}. Each set We is defined by Sat1 (0(e),x) and is therefore r.e. If,
on the other hand, S is an r.e. set, then it is defined by some RE formula B with one free
variable. We may assume that B's free variable is x1; letting e be a Gödel number of B, we
see that S = We.

The Enumeration Theorem is so called because W enumerates the r.e. sets. This theorem is
a standard theorem of recursion theory, though our presentation of it is not standard. When
recursion theory is presented in terms of Turing machines, for example, W(e, x) is usually
the relation e codes a Turing machine which gives output "yes" on input x for some fixed
method of coding up Turing machines, and is shown to be r.e. by constructing a Turing
machine which decodes the instructions given in e and applies them to the input x. In each
formalism for developing recursion theory, the relation W(e, x) will be a different relation.
(The notation ‘W’ originates in Kleene.)

In general, we can define a k+1-place relation Wk+1 which holds of a k+1-tuple
<e,n1,...,nk> if W(e, [n1,...,nk]) holds. This can be used to prove that Wk+1 enumerates the

k-place r.e. relations.
A very famous corollary of the Enumeration Theorem is the following:

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

50

Theorem. There is an r.e. set whose complement is not r.e. (thus, an r.e. set which is not
recursive).
Proof: Let K be the set {x: W(x, x)}. K is clearly r.e., since it is defined by the formula
Sat1(x1, x1). However, -K is not r.e., and so K is not recursive. To see this, suppose -K
were r.e. Then we would have -K = We for some e. By the definition of K, we see that x ∈
-K iff x ∉ Wx, so in particular e ∈ -K iff e ∉ We. But We = -K, so e ∈ -K iff e ∉ -K,
contradiction.

(This shows that negation is not definable in RE: if it were, the complement of any r.e. set
would be definable in RE, so in particular -K would be definable in RE.) This proof uses an
idea due to Cantor. As we will see, once we have this theorem, Gödel’s first incompleteness
theorem is just around the corner.

The fact (if it is one) about the intuitive notion of computability corresponding to the
enumeration theorem is that there is a semi-computable relation that enumerates all the semi-
computable sets. It follows from this that there is a semi-computable set that is not
computable. However, to prove the enumeration theorem for semi-computability, and thus
to prove that not all semi-computable sets are computable, it seems necessary to use
Church's Thesis. If there were a single language in which all computation procedures could
be written out, then the enumeration theorem would follow: simply find some way of
coding up this language numerically, and some effective way of decoding coded instructions
and applying them to arguments. However, if we do not assume Church's Thesis, then it is
by no means obvious that there is such a language. At first glance it might appear that the
lesson of Gödel's work is that there is no single language in which all computation can be
represented, just as there is no single fully classical language in which everything can be
expressed. Every language will have some sort of Gödel-type limitation; it is a peculiarity
of the language RE that the limitation is not that it cannot express its own semantic notions
(as is the case with full first-order languages), but that it cannot express negation. But if it
turns out that there are some semi-computable sets and relations that are not expressible in
RE, then it is quite conceivable that all semi-computable sets and relations are computable
and that the enumeration theorem for semi-computability fails.

The fact that the enumeration theorem is so fundamental to recursion theory, and that its
proof for semi-computability requires Church's Thesis, indicates a limitation to how much
recursion theory can be developed for the informal notion of computability by starting with
intuitively true axioms about computability. Shoenfield tries this approach in his book on
recursion theory; he winds up assuming the enumeration theorem, and does not give a fully
convincing intuitive justification for it, since he in effect assumes that there is a single
language in which all computation procedures can be represented.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

51

The Road from the Inconsistency of the Unrestricted Comprehension Principle to the
Gödel-Tarski Theorems

The result that RE contains its own truth and satisfaction predicates may seem surprising,
since it is commonly said that Gödel and Tarski showed that no language can contain its
own truth or satisfaction predicates. This is true for a wide range of languages, but the
language RE is not among them. We shall now look at their result and at is historical roots.

Early on in the 20th century, it was discovered, to the surprise of many, that a certain set-
theoretic principle is self-contradictory. The principle is called the unrestricted
comprehension scheme:

(z1)...(zn)(∃ y)(x)(x ∈ y ≡ A(x, z1, ..., zn))

where A is any formula in the language of set theory whose free variables are among x and
z1, ..., zn (in particular, A does not contain y free). z1, ..., zn are called parameters. In the
case n = 0, we have the parameter-free unrestricted comprehension scheme:

(∃ y)(x)(x ∈ y ≡ A(x))

It is important to note that A may itself contain the predicate '∈ '.
Russell showed that the unrestricted comprehension scheme, even in its parameter-free

version, is self-contradictory: simply take A(x) to be the formula ~x ∈ x. We then have

(x)(x ∈ y ≡ ~x ∈ x)

for some y, from which it follows that

y ∈ y ≡ ~y ∈ y

which is directly self-contradictory. This observation is called Russell's paradox.
Russell got the idea of his paradox by analyzing Cantor's proof via diagonalization that

there is no function mapping a set onto its powerset, and applying it to a more complicated
paradox that embedded his. The Russell paradox is not the only set-theoretic paradox.
Other paradoxes were discovered at the very time of the formation of set theory itself. For
example, there is the Burali-Forti paradox, and the paradox of the greatest cardinal. In
general, these paradoxes, like the Russell paradox, can be used to show that the unrestricted
comprehension scheme is inconsistent, or at least, that it leads to an inconsistency in
conjunction with the axiom of extensionality.

If the unrestricted comprehension scheme is logically self-contradictory, this cannot
depend in any way on the interpretation of '∈ '. From a purely formal point of view, it doesn't

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

52

matter whether '∈ ' means 'is a member of' or 'is satisfied by'. In fact, if you knew somehow
that the unrestricted comprehension scheme is inconsistent but didn't know why, you would
be able to see immediately that no first-order language can contain its own satisfaction
predicate. Consider the following interpretation of a first-order language with '∈ ' as its only
predicate: let the variables range over the formulae with one free variable of the language,
and assume that the language contains its own expressions in its own domain. Suppose that
we interpret '∈ ' by means of the 2-place relation S(y,x) which holds just in case y is a
formula with one free variable and x satisfies y. Then suppose that the language could
define its own satisfaction for formulae of one free variable. Then we would have a model
that would make the comprehension scheme true, because a formula A(x) can be taken to be
the object y, and then the principle says that x satisfies y if and only if A(x), which is of
course true. So any proof of the inconsistency of the comprehension principle proves that a
first order language cannot contain its own satisfaction predicate for formulae with one free
variable. Often, the results of Gödel and Tarski are presented as if they involved all kinds of
sophisticated ideas very different from these, but the inconsistency of the unrestricted
comprehension scheme is essentially what proves those results.

(Now, suppose that in the derivation of a paradox we used the unrestricted
comprehension axiom with n parameters. How are we going to interpret 'x ∈ y' in this case?
One way will be analogous to the reduction of satisfaction to truth that we saw for the case
of RE. We take y to range over the formulae with one free variable, or their codes, and 'x ∈
y' to be defined by "x satisfies y", where y will be, or code, the formula with one free
variable

(∃ z1)...(∃ zn)(z1=0(m1) ∧...∧ zn=0(mn) ∧ A(x, z1, ..., zn)),

where m1,...,mn are the parameters. We could also use a relation of substitution of terms for
free variables in formulae to specify how y will be, in a way indicated below. Or we could
define 'x ∈ y' with the help of the pairing function, as holding between a number and a pair
composed of (the code of) the formula A(x, z1, ..., zn) and a finite function assigning values
to all of the variables z1, ..., zn.)

We can use what we have learned about satisfaction to state some very general results
about the indefinability of truth. As long as the language L contains a name 'a' for each
object a in its domain, we can (in the metalanguage) define satisfaction for L in terms of
truth for L: an object a satisfies a formula A(x1) just in case the sentence A('a') is true
(where A('a') is got from A(x1) by replacing all free occurrences of x1 with 'a'). We can
turn this into a definition in L of satisfaction in terms of truth as long as L possesses certain
syntactic notions. Suppose, for example, L has function symbols Q and S denoting
functions q and s, where q(a) = 'a' for all a in L's domain, and s(A(x1), t) = A(t) for all
formulae A(x1) and terms t. Then s(A(x1), q(a)) = A('a') for all A(x1) and a, and so the
formula Tr(S(y,Q(x))) of L will define satisfaction in L if Tr defines truth in L. Since

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

53

satisfaction for L is not definable in L, it follows that truth is not definable either. So in
general we see that, for fully classical L, the following conditions cannot jointly obtain:

1. Truth for L is definable in L.
2. The relation of substitution of terms for free variables is definable in L.
3. Every object in L's domain has a name, and moreover the function from an object to

its name is definable in L.

In fact, somewhat weaker conditions than 2 and 3 are also incompatible with 1. For
example, 3 may be replaced with: every object in L's domain is denoted by some term of L
and the relation t denotes x is definable in L. For suppose Den(t, x) defined that relation;
then the formula (∃ z)(Den(z, x) ∧ Tr(S(y, z))) would define satisfaction in L in terms of
truth. (We could further weaken 3 by assuming only that every object a of L's domain has a
definite description D in L, and that we can specify D in terms of a within L.) Also, we can
use the trick remarked on by Tarski to avoid using the substitution function. An object a
will satisfy A(x1) just in case the sentence (∃ x1)(x1 = 'a' ∧ A(x1)) is true (or (∃ x1)(x1 = t ∧
A(x1)) is true for some term t denoting a, or (∃ x1)(D(x1) ∧ A(x1) is true for some definite
description D of a), so as long as the function F(t, A(x1)) = (∃ x1)(x1 = t ∧ A(x1)) is
definable in L, and 3 obtains, we can define satisfaction in terms of truth within L.
Moreover, F is itself easily definable in terms of concatenation (as long as terms for the
primitive symbols of L exist in L), and is anyway simpler than the substitution function,
which has to distinguish between free and bound occurrences of variables. To put it in a
succinct form, we see that a language cannot both define all the devices that can be used to
reduce truth to satisfaction and contain its own truth predicate.

So far, we have been concentrating on interpreted languages whose domains include all
the expressions of the language itself. However, we can generalize the discussion by
considering languages that can talk about their own expressions indirectly, via coding. Let
L be a language with a countable vocabulary and with an infinite domain D. Suppose we
had a function f mapping the elements of some subset D1 of D onto the formulae, or at least
onto the formulae with one free variable. Call this a coding function. Given any coding
function f for L, the relation {<y,x>: x is in D1 and f(y) is satisfied by x} of "coded
satisfaction" between elements of L's domain is not itself definable in L: if S(y,x) defined it,
then the unrestricted comprehension scheme, with 'x ∈ y' replaced by 'S(y,x)', would be true
in L, which we know to be impossible. Note that none of this depends on any particular
facts about f; any coding function will do, and we know that such a mapping will exist
whenever L has an infinite domain.

As before, this is related to the question of the definability of truth in L. Let us say that
a formula Tr(x) of L defines truth in L (relative to f) if Tr(x) defines {y: f(y) is true in L}.
We can always find a function f such that some formula of L defines truth in L relative to f
(for practically any L). For example, let L be the language of arithmetic, and let f "assign"

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

54

Gödel numbers to sentences of L so that the Gödel numbers of the true sentences of L are
0, 2, 4, ... and the Gödel numbers of false sentences of L are 1, 3, 5, ... (Or if arbitrary
formulae are to be coded rather than just sentences, we can let 0, 3, 6, ... code the true
sentences, let 1, 4, 7, ... code the false sentences, and let 2, 5, 8, ... code the rest of the
formulae.) Relative to such a Gödel numbering, truth in L is obviously definable in L.
However, for any coding f, conditions 1-3 above will still not be jointly satisfiable, and so
for this particular Gödel numbering, the basic syntactic notions will not be definable in L.
For any ordinary Gödel numbering (e.g. our own numbering), the syntactic notions will be
definable, and so truth will be undefinable. But again, satisfaction will be undefinable for
any f, and for any L.

Now, as we have seen, if we drop the requirement that L be fully classical, these
indefinability results will no longer hold, since the language RE has its own satisfaction
predicate. However, RE does not have its own unsatisfaction predicate, i.e. there is no
formula U(y,x) of RE that obtains just in case x fails to satisfy y. (If there were, then we
could define -K in RE by U(x1, x1).) More generally, if L is a language with classical
semantics, but not necessarily with all classical connectives, then unsatisfaction is not
definable in L. To see this, suppose we had an unsatisfaction predicate U(y,x). Then letting
u be the formula U(y,y), we would have that U(u,y) obtains iff y does not satisfy U(y,y), and
so U(u, u) obtains iff u does not satisfy U(y,y); but to say that U(u, u) obtains is just to say
that u satisfies U(y, y), so this is impossible. Similarly, given suitable restrictions on L, a
language cannot have its own untruth predicate. Similar remarks apply when we allow
languages to talk about their formulae indirectly via codes.

The enumeration theorem is really a form of the naive comprehension scheme for RE,
since the content of the theorem is that for every RE formula A(x1) there is an e such that

(x1)(A(x1) ≡ W(e, x1))

We cannot derive a contradiction by letting A be the formula ~W(x1, x1), since negation is
not definable in RE. This shows that it is essential to use either negation or unbounded
universal quantification in showing that scheme to be inconsistent for classical languages,
since RE lacks both negation and unbounded universal quantification. In fact, however,
there are languages which have unbounded universal quantification, as well as the other
logical symbols of RE, but which lack negation, and which have their own satisfaction
predicates; so only the use of negation is really essential.

From all of this it follows that, given our Gödel numbering, the language of arithmetic
does not have its own truth predicate. This was originally shown by Tarski as an
application of the work of Gödel. However, there it was presented in a more complicated
way as an application of the liar paradox. First, Gödel's self-reference theorem was used to
obtain, for any formula T(x1) of the language of arithmetic, a sentence A such that

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

55

A ≡ ~T(0(n))

is true, where n is the Gödel number of A. If T(x1) defined the set of truths of arithmetic,
then we would also have

A ≡ T(0(n))

from which T(0(n)) ≡ ~T(0(n)) follows, which is self-contradictory. Intuitively, if T(x1)
means "x1 is true", then the sentence A says of itself that it is not true; so the Tarski-Gödel
proof can be seen as an application of the liar paradox. However, the construction of the
sentence A is rather tricky, and leaves one with the impression that something much more
subtle is going on here than actually is. In fact, when one takes the Tarski-Gödel proof
apart, one sees that it really boils down to the observation that arithmetic lacks its own
satisfaction predicate, which in turn is a direct consequence of the Russell paradox, as we
saw above.

Under the interpretation of '∈ ' as the relation of satisfaction, Russell's paradox is known
as 'the paradox of 'heterological''. Grelling was the discoverer of this paradox, and he
obtained it by reflecting on Russell's paradox. Call a predicate of English autological if it is
true of itself, and heterological otherwise. (For example, 'polysyllabic' is autological and
'monosyllabic' is heterological.) A problem arises when we ask whether 'heterological' is
itself heterological. 'heterological' is heterological iff 'heterological' is not true of
'heterological', iff 'heterological' is not heterological—a contradiction. If we interpret 'x ∈ y'
to mean 'y is true of x', then the formula 'x ∉ x' means that x is heterological, and the
derivation of the Grelling paradox is formally identical to the above derivation of the Russell
paradox.

Gödel mentions the liar paradox (and the paradox of Richard) as sources for the
reasoning leading to his theorems. He does not mention Russell's paradox, or the paradox
of 'heterological', although the Tarski-Gödel results are more naturally motivated by appeal
to them, as we have seen. That Russell's paradox and Grelling's paradox can be most
naturally put to this use is perhaps a fact known to some logicians, but to the author's
knowledge, it is not mentioned in the printed literature.

In fact, some logicians have probably misunderstood the relation between the liar
paradox on the one hand and Russell's and Grelling's paradoxes on the other. That the
Gödel-Tarski results can be motivated in the two ways is no surprise, for, in fact, on one
way of stating the liar paradox it just is the Grelling paradox. The liar paradox is
traditionally stated in terms of sentences like 'This sentence is false'. One way to get a liar
sentence without using locutions like 'this sentence' is via the sentence ''Yields a falsehood
when appended to its own quotation' yields a falsehood when appended to its own
quotation'. Since the result of appending the phrase mentioned in the sentence to its own
quotation is the sentence itself, the sentence says of itself that it is false. (A briefer way of

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

56

writing the sentence is as follows: ''Is not true of itself' is not true of itself'.) Quine gives
this version of the liar paradox in "The Ways of Paradox". But he goes on to say that this
antinomy is "on a par with the one about 'heterological'" ("The Ways of Paradox", in The
Ways of Paradox, New York, Random House, 1966; p. 9). This is at best misleading,
especially in this context, for the paradox simply is the Grelling paradox, since 'is
heterological' means the same as 'yields a falsehood when appended to its own quotation'.

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

57

Lecture VIII

Many-one and One-one Reducibility.

Given that not all sets are recursive, and indeed that some r.e. sets are not recursive, we may
want to ask of some nonrecursive set A whether the problem of deciding membership in it
can be reduced to that of deciding membership in some other set B. This idea gives rise to a
number of reducibility notions in recursion theory; in this section, we shall discuss two of
the simplest such notions.

We say that a set A is many-one reducible to B (in symbols, A ≤m B) if there is a total
recursive function φ such that for all m, m ∈ A iff φ(m) ∈ B. (We also say m-reducible for
many-one reducible.) We also write φ: A ≤m B when φ is a total recursive function
satisfying this condition. If φ: A ≤m B and φ is 1-1, then we say that A is 1-1 reducible (or
1-reducible) to B (in symbols, A ≤1 B).

One way to think of this informally is in terms of oracles. Suppose there were an
oracle that could tell you, for an arbitrary number, whether it is an element of B. Then if A
≤m B, you will have a way to use the oracle to find out whether an arbitrary number is an
element of A: to see whether m ∈ A, simple compute φ(m) and consult the oracle. If the
oracle tells you that φ(m) ∈ B, then you know that m ∈ A, and if it tells you that φ(m) ∉ B,
then you know that m ∉ A.

Here's a simple example of 1-1 reducibility. Let A be an arbitrary set, and let B = {2m:
m ∈ A}. Then we see that A ≤1 B by letting φ(m) = 2m. And intuitively, we can effectively
determine whether m ∈ A by consulting the oracle about whether 2m ∈ B.

It can readily be shown that the relations ≤1 and ≤m are reflexive and transitive. Let us
write A ≡m B for A ≤m B & B ≤m A, and similarly for ≡1; it then follows that ≡m and ≡1 are
equivalence relations. The ≡m-equivalence classes are called many-one degrees or m-
degrees; similarly, the ≡1-equivalence classes are called 1-1 degrees or 1-degrees.

The relations ≤m and ≤1 do not coincide. To see this, let A = {even numbers}, and let
φ(m) = 0 if m is even, 1 if m is odd. Then we see that φ: A ≤m {0}. However, there is
clearly no 1-1 function φ such that x ∈ A iff φ(x) ∈ {0}, so A is not 1-reducible to {0}.

A set is many-one complete r.e. (1-1 complete r.e.) iff it is r.e. and every r.e. set is
many-one reducible (1-1 reducible) to it. If S is many-one complete r.e., then every r.e. set
is of the form {x: φ(x) ∈ S} for some total recursive φ. One example of a many-one
complete set (which is also 1-1 complete) is the set S = {[e, x]: x ∈ We}. To see that S is
1-1 complete, let S1 be any r.e. set. S1 is We for some e, so let φ(x) = [e, x]; x ∈ S1 iff x ∈
We iff φ(x) ∈ S. φ is clearly as required; in particular, φ is recursive, since its graph is
defined by the formula y = [0(e), x]. Another 1-1 complete set is the set T of Gödel
numbers of true RE sentences. To see this, note that if A(x1) defines a set S1, then n ∈ S1

iff A(0(n)) is true; so if φ(n) is a recursive function that picks a Gödel number of A(0(n)) (for

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

58

example, the smallest one), then x ∈ S1 iff φ(x) ∈ T. The set K can also be shown to be 1-1
complete, but the proof is a bit trickier.

If S1 ≤m S2 and S2 is r.e. (recursive), then S1 is also r.e. (recursive). An r.e. m-complete
set cannot be recursive: if S were an m-complete recursive set, then K ≤m S, and this would
imply that K is recursive, which it is not.

Some questions about reducibility naturally arise. First, is there an r.e. set which is
neither recursive nor many-one complete? Emil Post answered this question in the
affirmative, and we shall prove his result later on in the course. Second, are there any many-
one complete sets that are not 1-1 complete? The answer is no; this result is surprising, and
the proof is nontrivial; we shall give the proof later on. (The notion of being 1-complete and
of being m-complete are also equivalent to the notion of being creative, which we shall
define later on.)

Despite Post's result, all (or practically all) naturally arising r.e. sets are either 1-1
complete or recursive. That is, while r.e. sets that are neither 1-1 complete nor recursive
exist in great abundance, they tend to arise as cooked-up counterexamples rather than sets
which are interesting for separate reasons. A common way to prove that an r.e. set is
nonrecursive is to show that some 1-1 complete set reduces to it, which implies that it is 1-1
complete.

Another way to put this is in terms of degrees. Among the r.e. 1-1 degrees (i.e. ≡1-
equivalence classes containing r.e. sets), there is a degree on top (the degree of 1-1 complete
sets), and, excluding the degrees containing finite and cofinite sets, a degree on the bottom
(the degree of recursive sets with infinite complements), and many degrees in between.
However, all the naturally occurring r.e. sets are to be found on top or on the bottom.

Besides ≤m and ≤1, there are coarser-grained reducibility relations, all of which give an
intuitive notion of the idea that given an oracle for a set B, we can decide A. Post, who
originally formulated the notions of many-one and 1-1 reducibilities, gave a variety of
reducibility notions, still studied today. One of his notions, the broadest of all, was
supposed to capture the intuitive notion of being able to decide A given an oracle that will
answer all questions about set membership in B. He called this notion 'Turing-reducibility';
it has also been called 'relative recursiveness' and 'recursiveness in'. As we said above, Post
found an r.e. set that was not many-one complete (and therefore not 1-1 complete).
However, he was able to define another reducibility relation with respect to which this set
was still complete. In general, he found broader and broader reducibility relations, and more
complicated r.e. but not recursive sets that failed to be complete with respect to them.
However, he could not solve this problem for the basic notion of Turing-reducibility, and it
was a long-standing question whether there are any r.e. sets which are neither recursive nor
Turing-complete. This was answered in the affirmative in 1956 by Friedberg and Mucnik.

Two sets A and B are called recursively isomorphic (in symbols, A ≡ B) if there is a 1-1
total recursive function φ which maps N onto N, and such that B = {φ(x): x ∈ A}. (It
follows that φ-1 is also such a function and that A = {φ-1(x): x ∈ B}.) If A ≡ B, then it is

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

59

easy to see that A ≡1 B, since φ: A ≤1 B and φ-1: B ≤1 A. The converse is also true, and is
highly nontrivial. It was once proposed that recursion theory be regarded as the study of
those properties of sets of natural numbers which are invariant under recursive
isomorphism. In fact, nearly all the properties studied by recursion theory are of this
nature; however, there are some exceptions.

The Relation of Substitution

In several occasions we have mentioned the relation of substitution of a term for all the free
occurrences of a variable in a formula, noting that we could use it to give alternative proofs
of some results. For example, we could have given an alternative proof that RE defines its
own satisfaction using definitions of the notion of formula and of the relation of
substitution. Also, we could have defined truth in RE by means of satisfaction in RE using
substitution, instead of Tarski's trick. We will now show how a certain notion of “naive
substitution” is definable within RE, leaving as an exercise showing how to define the
notion of proper substitution.

First, we will define a relation that we will call “term substitution”: specifically, we
shall define the relation {<t1, t2, v, t>: the term t2 comes from the term t1 by replacing all
occurrences of the variable v, if any, by the term t; if v does not occur in t1, then t1=t2}. This
is defined by the following formula of RE:

TSubst(t1, t2, v, t) =df. Vbl(v) ∧ Term(t1) ∧ Term(t2) ∧ Term(t) ∧ [((j≤t1)~([j,v] ∈ t1) ∧ t1=t2)
∨ ((∃ j≤t1)([j+1,v]∈ t1 ∧ (∃ l≤t)(Seql(t,l+1) ∧ Seql(t2,j+l+1) ∧ (y≤t)([l+1,y]∈ t ⊃ [j+l,y] ∈ t2)

∧ (i≤j+l)([i, [0(4), [0(1),0(1)]]] ∈ t2))))].

(Recall that all terms of RE are either of the form f1
1...f

1
10 or of the form f11...f

1
1xi, for some

i.)
We now show how to define the notion of “naive substitution”, that is the relation

{<m1, m2, v, m>: the sequence m2 comes from the sequence m1 by replacing all
occurrences of the variable v by the term m}. We call this “naive” substitution because the
result of a substitution of this kind may not be a formula, even if the expression operated
upon was one (note, for example, that even occurrences of the variable to be replaced within
quantifiers will be replaced, so if the replacing term is not a variable, substitution may
transform a quantifier into an expression that cannot form part of a formula.) Naive
substitution is definable by the following formula of RE:

NSubst(m1,m2,v,m)=df. (∃ l≤m1)(Seql(m1,l) ∧ Seql(m2,l) ∧ (i≤l)(y≤l)[(([i,y] ∈ m1 ∧
~(∃ j≤y)([j,v] ∈ y)) ⊃ [i,y] ∈ m2) ∧ (([i,y] ∈ m1 ∧ (∃ j≤y)([j,v] ∈ y)) ⊃ (z≤m2)(TSubst(y,z,v,m)

⊃ [i,z] ∈ m2))]).

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

60

This simply “says” that if y is a part of m1 in which v does not occur, it's left untouched in
m2, and if it is a term in which v occurs, v is replaced by m in y to obtain a term z which is
then part of the result m2.

The result of a naive substitution will not in general be a formula. It will be a formula,
however, if the variable to be replaced never occurs bound in the initial formula (and also if
the term replacing the variable in a formula is another variable). The utility of naive
substitution can be seen from the fact that it is sufficient for showing that the set of logical
axioms (of a given language) in the deductive system of the next section is r.e. Notice, in
particular, that axiom schema 4 only invokes naive substitution. In standard systems, in
place of axiom schemata 4 and 5 we find schemata 4' and 5', and the natural way of coding
these is more complicated. It involves proper substitution, that is, the relation {<m1, m2, v,
m>: the sequence m2 comes from the sequence m1 by replacing all free occurrences of the
variable v by the term t; and no variable occurring in m becomes bound in m2}. The
definition of proper substitution in RE is left as an exercise.

Deductive Systems.

We want, for a given language L, a deductive system in which all and only the valid
sentences of L are provable. When L does not contain function symbols, the following is
such a system.

The axioms are all of the instances (in L) of the following schemata:

1. A ⊃ (B ⊃ A);

2. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C));

3. (~A ⊃ ~B) ⊃ (B ⊃ A);

4. (xi)A ⊃ A', where A' is got from A by substituting all occurrences of xi in A by a

fixed term t, and neither (xi) nor (xj) occurs in A, where xj is any variable occurring in t;

5. A ⊃ (xi)A, where xi does not occur in A;

6. (xi)(A ⊃ B) ⊃ ((xi)A ⊃ (xi)B).

There are also two inference rules:

modus ponens (MP): A ⊃ B, A universal generalization (UG): A

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

61

________ ____

 B (xi)A

A proof in L is a finite sequence of formulae of L such that each formula is either an axiom
or follows from earlier formulae by one of the inference rules. A sentence is a theorem just
in case it occurs in a proof. More generally, a proof from Γ, where Γ is a set of sentences of
L, is a finite sequence of formulae in which each formula is either an axiom or an element of
Γ, or follows from earlier formulae by the inference rules. A sentence is a theorem of Γ just
in case it occurs in a proof from Γ. We write fi A to mean that A is a theorem, and Γ fi A to
mean that A is a theorem of Γ.

Remarks. The axiom schemata 1-3, along with MP, are sufficient to prove all tautologies.
We could have simply taken all tautologies (of L) as axioms, but the present approach will
prove more convenient later.

The present system differs from standard systems in that axiom schemata 4 and 5 are
usually formulated as follows:

4'. (xi)A ⊃ A', where A' is got from A by replacing all free occurrences of xi in A by a

fixed term t, where either t is a constant, or t is a variable xj and no free occurrence
of xi in A falls within the scope of a quantifier (xj).

5'. A ⊃ (xi)A, where xi does not occur free in A.

All instances of 4' and 5' that are not also instances of 4 and 5 prove to be derivable and
hence redundant. As we said, 4 and 5 are simpler to represent in our coding of syntax than
4' and 5'.

(In any deductive system which contains a version of universal instantiation, some
restriction like that in 4 or 4' must be made, for the prima facie more natural scheme

(xi)A ⊃ A', where A' comes from A by replacing all free occurrences of xi in A by
a fixed term t

is invalid. To see this, consider the instance (x)(∃ y) x ≠ y ⊃ (∃ y) y ≠ y. In any

interpretation whose domain has more than one element and in which = is interpreted as
identity, this sentence is false. The problem is that the instantial term, y, becomes bound
once it is substituted for x; as long as we prevent this sort of thing, the restricted scheme will
be valid.)

We say that a system is sound just in case every theorem is valid, and every theorem of
Γ is a consequence of Γ, for any Γ. A system is complete if every valid sentence is a
theorem, and strongly complete if for all Γ, every consequence of Γ is a theorem of Γ. The

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

62

proof that our system is sound is fairly easy by induction on the length of a proof of any
given theorem. We will sketch later the argument for completeness (and strong
completeness), with more discussion of variant formulations, and in particular of the
comprehensive virtues and drawbacks of 4 and 5 as opposed to 4' and 5'. In particular, how
to derive 4' and 5' from 4 and 5 will be sketched later.

The Narrow and Broad Languages of Arithmetic.

By the narrow language of arithmetic, we mean the language as given in lecture I. Recall
that the primitive connectives of that language are ⊃ and ~ and that (xi) is the only primitive
quantifier; so, perversely, the logical vocabulary of the narrow language is disjoint from that
of RE. By the broad language of arithmetic we mean the language which has all the
vocabulary of the narrow language, and in addition the primitive connectives ∧ and ∨ and the
quantifiers (∃ xi), (xi < t), and (∃ xi < t) (with the usual restrictions on t). So the broad
language of arithmetic literally contains the languages RE and Lim (but not Lim+). We
shall use L ambiguously to refer to both the broad and the narrow language of arithmetic;
when we wish to refer to them unambiguously, we shall use L- to refer to the narrow
language and L+ to refer to the broad language. Note that L- and L+ are equal in
expressive power, since the extra connectives of L+ are already definable in L-.

The language L+ has redundancies, as its extra connectives and quantifiers are already
definable in L-. L- also has redundancies. For example, the negation sign is superfluous in
L-, as ~A is equivalent to A ⊃ 0 = 0'. If we had included the function symbols + and ., then
all the connectives would have been superfluous, since they could be eliminated in the
manner indicated in an exercise. Even in L+, we can eliminate all of the connectives except
for ∧ . To see this, let A be any formula of L+, and let A* be an equivalent formula in which
A and M are replaced by + and .. Let A** be an equivalent formula in which no
connectives appear, constructed in the way indicated in lecture II. Finally, let A*** be a
formula of L+ got from A** by Russell's trick. Since the only connective that Russell's
trick introduces is ∧ , ∧ is the only connective A*** contains; and A*** is equivalent to A.

Note that our deductive system only has axioms and rules for the connectives ~ and ⊃
and the quantifier (xi); when we are considering the broad language of arithmetic, we want
our system to prove all the valid formulae that contain the new logical vocabulary as well as
the old. This can be achieved by adding the following equivalence axiom schemes when we
are working in L+:

(A ∨ B) ≡ (~A ⊃ B)
(A ∧ B) ≡ ~(A ⊃ ~B)
(∃ xi)A ≡ ~(xi)~A
(xi < t)A ≡ (xi)(Less(xi, t) ⊃ A)

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

63

(∃ xi < t)A ≡ (∃ xi)(Less(xi, t) ∧ A)

(Note that ≡ is a defined rather than a primitive symbol, even in L+.) It can be shown
(though we will not show it here) that when these schemes are taken as axioms, every
formula of L+ is provably equivalent to a formula of L-, i.e. for every formula A of L+ there
is a formula A' of L- such that A ≡ A' is provable. Thus, the completeness of the system of
L+ follows from that for L-.

It is easy to show that the set of logical axioms for L (either L+ or L-) is r.e. We can
then prove, using the Generated Sets Theorem, that the set of provable formulae is r.e., and
that if Γ is an r.e. set of sentences of L, then the set of theorems of Γ is r.e. We can
generalize this to languages other than L. If K is a first order language such that the set of
formulae of K is r.e., then the set of provable formulae in K is r.e., and if Γ is an r.e. set of
sentences of K, then the set of theorems of Γ is r.e. For the set of formulae of K to be r.e.,
it is necessary and sufficient that the set {i: ai ∈ K} and the relations {<n, i>: Pni ∈ K} and
{<n, i>: fn

i ∈ K} be r.e.

The Theories Q and PA.

There are two theories in the language L that are traditionally given special attention. One is
the theory Q, also called Robinson's Arithmetic (after its inventor Raphael Robinson). Q is
usually given in the language with + and ., so our version of it is slightly nonstandard. In
the usual version, the axioms of Q are

1. (x1) 0 ≠ x1'
2. (x1)(x2) (x1' = x2' ⊃ x1 = x2)
3. (x1) (x1 = 0 ∨ (∃ x2) x1 = x2')
4. (x1) x1 + 0 = x1

5. (x1)(x2) x1 + x2' = (x1 + x2)'
6. (x1) x1.0 = 0
7. (x1)(x2) x1.(x2') = x1.x2 + x1

(Axioms 4-7 are usually called the recursion axioms.) To adapt this to our language, we
rewrite the axioms as follows:

1. (x1) 0 ≠ x1'
2. (x1)(x2) (x1' = x2' ⊃ x1 = x2)
3. (x1) (x1 = 0 ∨ (∃ x2) x1 = x2')
4. (x1) A(x1, 0, x1)
5. (x1)(x2)(x3) (A(x1, x2, x3) ⊃ A(x1, x2', x3'))

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

64

6. (x1) M(x1, 0, 0)
7. (x1)(x2)(x3)(x4) ((M(x1, x2, x3) ∧ A(x3, x1, x4) ⊃ M(x1, x2', x4))

(Note that axioms 1-3 are unchanged.) In addition, we need existence and uniqueness
axioms for addition and multiplication:

(x1)(x2)(∃ x3) (A(x1, x2, x3) ∧ (x4)(A(x1, x2, x4) ⊃ x4 = x3))
(x1)(x2)(∃ x3) (M(x1, x2, x3) ∧ (x4)(M(x1, x2, x4) ⊃ x4 = x3))

(These are unnecessary for Q as it is usually stated, because their analogs in the language
with function symbols + and . rather than predicates A and M are logical truths.) Finally,
we did not include axioms for identity in our deductive system for the predicate calculus, so
we must include them here. The usual identity axioms are the reflexivity axiom (x1) x1=x1

and the axiom scheme (x1)(x2) (x1 = x2 ⊃ A ≡ A'), where A is any formula with at most x1

and x2 free and A' comes from A by replacing one or more free occurrences of x1 by x2. In
fact, we can get away with taking only finitely many instances of this scheme as axioms, and
the rest will be deducible. Specifically, we can take as our identity axioms the reflexivity
axiom and those instances of the above scheme in which A is an atomic formula not
containing the function symbol '. Since there are only finitely many predicates in L, there
are only finitely many such instances. Q, then, is the theory in L whose axioms are 1-7
above along with the existence and uniqueness clauses and the identity axioms just
specified.

PA, or Peano Arithmetic, comes from Q by deleting axiom 3 and adding all those
sentences which are instances in L of the induction scheme:

[A(0) ∧ (x1)(A(x1) ⊃ A(x1'))] ⊃ (x1)A(x1).

(Axiom 3 is a theorem of the resulting system, so we need not take it as an axiom.)
The intuitive idea behind the induction scheme is that if zero has a property, and if

whenever a number n has that property n' does too, then every number has that property.
This was the intuition that Peano, and Dedekind before him, intended to capture, through an
induction axiom, that we could formalize

(P)([P(0) ∧ (x1)(P(x1) ⊃ P(x1'))] ⊃ (x1)P(x1)).

However, since in our languages we do not have quantification over arbitrary sets of natural
numbers, the induction axiom cannot be formalized in them. Unlike Dedekind's and Peano's
axiom, the induction scheme of the system we call 'Peano Arithmetic' only guarantees that
when zero has a property definable in L and when a number n has it n' does too, then every
number has it. So the induction scheme is really weaker than the intuitive idea behind it, that

Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

65

Dedekind and Peano had in mind. In this respect, the name 'Peano Arithmetic' is somewhat
misleading.

The theory PA is adequate for elementary number theory, in the sense that all of
elementary number theory can be carried out within PA. This is not obvious, however, and
requires proof. Notice, for example, that before the work of Gödel, it was not obvious that
such simple functions as exponentiation could even be defined in the language in which PA
is given, and exponentiation should certainly be regarded as a part of elementary number
theory. This illustrates another respect in which the name 'Peano Arithmetic' is misleading,
since it suggests that elementary arithmetic can be developed in that system in a
straightforward, obvious manner.

Exercises

1. Consider a language REexp which has the same terms, connectives and quantifiers as RE
but has only one predicate letter P3

1. P
3
1xyz is interpreted as xy=z (it doesn't matter what to

say about the case 00; you can call P31xyz always false in that case, or give it the value 0 or
1). Prove that REexp defines the same sets and relations as RE. Prove also that in REexp

(for the same reason as in RE) disjunction is superfluous. (Remark: half of this exercise has
been done. To do the other direction, that is, defining the notions of RE in REexp, it is best
to proceed in the opposite order from what appears to be natural.)

2. Cantor proved that there can be no function φ mapping a set onto the set of all of its
subsets. Show directly that if there were such a mapping, then we would have an
interpretation of '∈ ' which makes true the unrestricted comprehension schema, including the
version with parameters. Remark: hence, any set-theoretical paradox that proves the
inconsistency of the schema also proves the theorem of Cantor in question. The case Cantor
actually used was once again the analog of Russell's paradox. Historically, this went the
other way around, since Russell discovered his paradox by analyzing Cantor's proof.

3. Show that the relations ≤m and ≤1 are reflexive and transitive.

4. Show that if A ≤m B and B is r.e. (recursive), then A is r.e. (recursive).

5. For the language of arithmetic, prove using the Generated Sets Theorem that if a set of
axioms is r.e., then the set of theorems logically provable from it is r.e.

