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Lecture IX

Cantor's Diagonal Principle

A relation is calledarithmeticalif it is definable in L, the language of arithmetic. Since L
contains RE, it follows that all r.e. relations are arithmetical. Also, since L contains negation,
it follows that all complements of r.e. relations are arithmetical. That L contains negation
also implies that the enumeration theorem fails for arithmetical sets, i.e. there is no
arithmetical relation that enumerates all the arithmetical relations; similarly, there is no
recursive relation that enumerates all the recursive relations.

The best way to see this is by proving a general theorem. As in the enumeration
theorem for r.e. sets, if R is a two-place relation, we weitR{y: R(x, y)}. We give the
following

Definition: Let X be a set, F be a family of subsets of X, and R a two place relation
defined on X. R is said wsupernumeraté iff for any S[I F, there is an kI X such that
S = R. Ris said tenumeratd- iff R supernumerates F and for allIXX, Ry [I F.

The content of the enumeration theorem is thus that there is an r.e. relation which
enumerates the r.e. sets. Next we have

Cantor's Diagonal Principle: The following two conditions are incompatible:

() R supernumerates F
(i) The complement of thgiagonal Sets in F (the Diagonal Set is {X X: R(X, X)}).

Proof: Suppose (i)-(ii) hold. Then by (i) X-{k] X: R(x, x)} ={x O X: ~R(x, x)} O F.
By (i), {x O X: ~R(x, X)} = R, for some y. But then R(y, X) iff ~R(x, x) for allX X, so
in particular R(y, y) iff ~R(y, y), contradiction.

Cantor applied this lemma in the case F = power set of X to show that a set is never in
1-1 correspondence with its own power set. We can apply it to formal languages by letting
F be the family of sets definable in a given language and letting R be a relation definable in
the language. Unless the language is very strange indeed, (ii) will be satisfied, so (i) will be
false. In the case of RE, we know from the enumeration theorem that (i) is satisfied, so it
follows that (ii) fails, and therefore that negation is not definable in RE. In the case of L, on
the other hand, (ii) holds, so (i) must fail. The same applies to the language Lim. Finally, if
we let F be the family of recursive sets and R be an arbitrary recursive relation, (ii) clearly
holds, so (i) fails and no recursive relation enumerates the recursive relations. (To see that
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(i) holds in this case, let R be a recursive relation, and let A(X, y) and B(X, y) define R and

-R, respectively, in RE. Then the diagonal set is defined in RE by A(x, X), and its
complement is defined by B(x, x).)

A First Version of G6édel's Theorem.

We now know enough to prove a version of Godel's first incompleteness theorem. A
sentence is said to bedecidablen an axiom syster if neither it nor its negation is a
theorem of’, andr is said to béncompletaf some sentence is undecidable in it. We
normally use the same letter to denote a set of axioms and its set of theorems. If a set of
axioms is r.e., so is its set of theorems (by the Generated Sets Theorem). Similarly, if a set
of axioms is arithmetical, so is its set of theorems. We have the following

Theorem: Every arithmetical sdt of true sentences of the language L is incomplete.

Proof: Sincel” consists of true sentenced; ifvere complete, then the true sentences of L
would be precisely the theoremslof But ad™ is arithmetical, the set of theoremd ak

also arithmetical, i.e. definable in L. And as we have seen earlier, the set of true sentences of
L is not definable in L.

The theorem implies that every r.e. set of true sentences of L is incomplete.

In Godel's original result the assumption thad a set of true sentences was weakened,
and hence Gddel's original result is stronger. An axiom systarthe language L is said
to bew-consistentf there is no formula A(x) such thEtfi ((x)A(x) but " fi ~A(0(M) for
all n. Obviously, an axiom system consisting of true sentences of-cassistent. An
axiom system can be consistent without beiigconsistent, however. Godel showed (in
effect) that ifl” is an r.ew-consistent extension of Q, thEns incomplete. We shall not
prove the full result this time, though we shall prove some related results. Rosser later
showed that the assumptionweconsistency can be weakened still further, and that no
consistent.e. extension of Q is complete.

One of Godel's main intents was to prove the theorem we just gave. The reason he gave
a stronger result must be understood in the light of the fact that, in the discovery and
presentation of his results, he was oriented by Hilbert's program. In a nutshell, Hilbert's
program demanded a proof of the consistency of the formal systems that codified the
theories of classical mathematics, a proof in which, roughly, no appeal to notions or
principles involving infinities was made: only so called "finitistic' principles and methods of
proof were to be employed in proofs about the properties of formal systems. The notion of
truth in the standard interpretation of the language of arithmetic is a typically non-finitistic
one, and hence not usable within the context of Hilbert's program. However, the notions of
w-consistency and consistency are finitistic.
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More Versions of Gddel's Theorem

If B(x;) is a formula of L that defines a set S, let us say that a sysieoorrectfor B if I
fi B(0(M) implies that ] S, anccompletefor B if n 0 S implies thaf fi B(0(M).

Theorem: If I" is r.e. and B defines a set which is not r.e., thennot both correct and
complete for B. That is, the set S' = {fi:fi B(0(N)} is different from S.

Proof: This is simply because S'is r.e., since it is defined by the formula
(3¢)(Cm)(Num(m,n)d NSubstQ®),x,[0(1),00)],m) O Th(x)) where Th(x) is an RE formula
defining the set of theorems ofand k is the Godel number of B(¥we can use naive
substitution because we may assume that B does not contain bound occurreces of x

So when S is not recursively enumerable there's a difference between being an element of S
and being provably an element of S lis a true set of axioms, and thus correct, there will
be an instance B(") that is true but unprovable frof

This is a slight generalization of a result due to Kleene. Kleene's result was that no r.e.
axiom system can be complete and correct for any formula that defines -K, and thus in
particular for the formula ~W(x, x). In fact, this holds for formulae defining -S whenever S
iS a nonrecursive r.e. set.

Thus the interest of the theorem depends on the previous proof thatréeee
nonrecursive sets (which in turn depends on the Enumeration Theorem). We can, however,
state a theorem which does not depend on this fact (or on any important fact of recursion
theory), and which says that any formal system must be incomplete for any formula
defining the complement gsbmer.e. set:

Theorem: If I' is an r.e. set of true axioms, then there is an r.e. set S such tha) if A(x
defines -S, some instance0dY) is true but unprovable.

Proof: Suppose, for a contradiction, that for every r.e. set S at least one formyla A(x
defining -S is such thal is complete for A. Then the following relation would be a
supernumeration of the complements of the r.e. sets: R(m,n)={<m,n>: m is a Godel number
of a formula A(%) and m is provable of n}; this relation is clearly r.e., using the same
reasoning as in the proof above. But now we can use Cantor's Diagonal Principle, and
conclude that the complement of the diagonal set {n:R(n,n)} cannot be the complement of
an r.e. set. But this is absurd, since {n:R(n,n)} is an r.e. set (if B(X,y) is an RE formula that
defines R, then B(x,x) defines {n:R(n,n)}).

Q is RE-Complete
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Call a sef” RE-completéf every true sentence of RE is a theorerf,adndRE-correct
if every theorem of which is a sentence of RE is true. Whendv&rA(0(M) iff n O S for
all n, A(x) is said taveakly represers inl", and S is said to beeakly representabla I
if some formula weakly represents itfin (We also say that Smumerablen ") Thus,
any r.e. set is weakly representable in any RE-complete and correct axiom system.
Moreover, ifl" is an r.e. set which is RE-complete and correct, then the sets weakly
representable if arepreciselythe r.e. sets, since any set weakly representable in an r.e.
axiom systenfi is r.e. (To see this, recall that if A\(xeakly represents Sin k is a
Godel number of A@, and Th(x) is an RE formula that defines the set of theorems of
then the RE formula)(Cm)(Num(m,n)d NSubstQ(k),x,[0(1),00)],m) O Th(x)) defines S.)

It turns out that Q is RE-complete and correct. Q is obviously RE-correct, because all
of its axioms are true; it takes a bit more work to show that Q is RE-complete. The main
fact we need to show this is

(Fact 1) Q fi (f)(x1 <0 = (x, =00...0xq = 0(-1))) for all n > 0, and
Q fi (x1) ~(x1 <0)

Another useful fact is
(Fact 2) For all n, Q fi @(x, =0M Ox; <0 O 0N < xy)

Fact 2 is not necessary to prove that Q is RE-complete, however. We shall not prove either
fact, but we shall give a proof that Q is RE-complete.

It is also worth noting that a natural strengthening of Fact 2, namely that§§x)(x
(X1 =% Ox1 <x O X <X, is false. We can show this by constructing an interpretation
in which the axioms of Q are true but the statemenf(® (X1 = X OX1 < X [0 X2 < Xg)
is false. The domain of this interpretatiomNig§] {a, B}, wherea andf3 are two new
elements not ilN. The constarf still denotes 0, and successor, addition and multiplication
have the same interpretations as before when restricted to the natural numbers. When the
arguments include or 3, we make the following stipulations:

Successor: a'=a,B =P

Addition: nta=a+n=a;n+P=F+n=p;a+a=0+PB=a;+P=p+a
=B

Multiplication: a-0=p0=0;an=0qa,BFn=RNn>0);na=a,nPB=p @ln);, aa=
Ba=o;Bp=aB=P

(where n ranges over the natural numbers) We leave it to the reader to verify that the
axioms of Q are true in this interpretation, but that netihei3 nor3 < a holds.
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We are now ready to prove our theorem about Q.

Theorem: Q is RE-complete.
Proof: We show by induction on the complexity of sentences that every true sentence of
RE is a theorem of Q.

(1) Atomic sentences. First, note that every true atomic sentence involving = is
provable, since any such sentence is of the @h¥ 0(") and therefore follows from the
identity axioms. Next, we show by induction on n tha(®J, 0("), 0(P) is provable for all
m, where p = m + n. &M, 0, 0(M) follows from axiom 4 of Q and is therefore provable.

If Q fi A(0(m), 0(n), 0(P)), then by axiom 5 we see that Q fio&y), 0(n+1), o(P+1). So Q
proves all the true atomic sentences involving A; that Q proves all the true atomic sentences
involving M follows similarly from the recursion axioms for multiplication.

(2) Conjunctions. Suppose A and B are theorems of Q if true. If their conjunction is
true, both of them are true, so both are provable, and so is their conjunction.

(3) Disjunctions. Similar to the preceding case.

(4) Existential quantification. Suppose any statement less complexX3)aix) is a
theorem of Q if true. Ifl(x)A(x) is true, so must be one of its instance@(N), which is
then provable. But then so iSx)A(X).

(5) Bounded universal quantification. Supposec@®M)A is a true RE sentence.

Then all of AQ), ... AQ(M-1)) are true, and hence provable by the inductive hypothesis.
Therefore Q fi (Y((xi =0 0...Ox; =0(-1) O A), and so by Fact 1, Q fijxx; <n O A).

It follows, as we have seen, that the sets representable in Q are precisely the r.e. ones.
We have a related result about Lim:

Theorem: Q proves, among the sentences of Lim, exactly the true ones.
Proof: This time, we show by induction on the complexity of sentences that for all
sentences A of Lim, Q fi Aif Alis true and Q fi ~A if A is false.

(1) Atomic sentences. We have already proved half our result; we only need to show
that all false atomic sentences are refutable in Q. Moreover, if we can show this for
sentences involving =, the result will follow for those involving A and M: #frp + n, then
Q fi A(0(m), o), 0(k)) (where k = m + n) and Q@K) # 0(9), so by the uniqueness axiom
for A, Q fi ~AQ(M), 0, 0(P)); and similarly for multiplication.

First, observe that by axiom 1 of Q, @# 0" when n > 0 (since the" is a term of
the form t'). Next, note that axiom 2 is equivalent td(kg) (X1 # X2 [I X1' # X2'), SO we
can show by induction on k that Qff") # 0(P) where p = n + k. It follows that whenever n
<m, Q fio(n) z 0(m). Finally, by the identity axioms we have that Q(f)z 0(n).

(2) Negation. Suppose A is the sentence ~B. If A is true, then B is false and by the
inductive hypothesis Q fi ~B, i.e. Q fi A. If Ais false, then B is true, so by the inductive
hypothesis Q fi B, so Q fi ~~B (= ~A).
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(3) Conjunction and disjunction. These are straightforward, and we shall only do the
case of conjunction. Suppose A =[(EC). If A is true, then so are B and C, so Q fi B, Q fi
C,and so Q fi (BIC). If Ais false, then either B or C is false; suppose B is. Then Q fi
~B, so Q fi (~B1J ~C), and so Q fi ~(BI C).

(4) Bounded universal and existential quantification. Again, we only do universal
quantification, as the other case is similar. jIK®&M)A is true, then AQ), ..., AOM-1) are
true, so Q fi AQ), ..., Q fi AO(™-1)), and by Fact 1, Q fi (x 0M)A. If (x; < 0M)A is false,
then AQ(K)) is false for some k < n, so Q fi ~a)); Lesspk), 0(N) is a true sentence of
RE, so Q fi Les§(%), 0(n), and so Q fil{x;)(Less(x, 0(M) O~A) and Q fi ~(x< 0(M)A.

A formula A(x) is said tdinumeratea set S in a systemiff for alln, nO Siff I" fi
A(0M) and nO S iff [ fi ~A(n). If some formula binumerates Slinthen we say that S is
binumerablein I (or numeralwise expressibler strongly representabler even simply
representable Clearly, if a set is binumerablelinthen both it and its complement are
numerable, so in particularlifis r.e., then any set binumerabld irs recursive. So not alll
r.e. sets are binumerable in Q. The converse, that all recursive sets are binumerable in Q, is
true but not evident at this point: if S is recursive, then we have some formula A which
numerates S in Q and some formula B which numerates -S, but we don't yetsimaye a
formula which numerates both S and -S. The theorem we just proved shows that all sets
definable in Lim are binumerable in Q, since if A(X) is a formula of Lim that defines S, then
A(X) binumerates S.

The facts about weak representability in Q just given also hold for arbitrary r.e.
extensions of Q that have true axioms. However, they do not hadsftrary extensions
of Q, or even arbitrary r.e. extensions. For exampl€, et an inconsistent set. Then
clearly extends Q, but only one set is weakly representableneimelyN itself (since for
any A and any n, &) is a theorem df). Also, no set is strongly representabl€ in
(since we will always have fi A(0(N) andr” fi ~A(0(M)). However, they do hold for
arbitraryconsistent.e. extensions of Q. That is[ifis a consistent r.e. extension of Q,
then the sets weakly representablE mre precisely the r.e. ones. (Again, it is easy to show
that all sets weakly representabld iare r.e.; the hard part is showing that all r.e. sets are
representable ih.) Moreover, as Shepherdson has shown, every r.e. set is weakly
represented il by some formula that actually defines it, though it is not necessarily the
case that every formula that defines it weakly represents it rhe proof of this result is
tricky, however. It is easier to prove if we only reqdiir® bew-consistent; we will prove
this later.

Letl be any consistent extension of Q whatsoever, and let A(x) be a formula of RE that
defines a set S. Then wheneldi ~A(0(M), nO S. To see this, suppoBdi ~A(0(M) and
nOS. Then AQM) is a true sentence of RE, and so Q O(AY; sincel” extends Q[ fi
A(0(M). But then both AZM) and ~AQ(M) are theorems df, contradicting our
assumption thdt is consistent. We thus have the following
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Theorem: Any consistent extension of Q is correct for negations of formulae of RE.
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Lecture X

True Theories are 1-1 Complete.

Theorem: If I' is an r.e. set which is RE-complete and correct, then the theoré&nfgrof
a 1-1 complete set.

Proof: Supposé is such a set. Let S be any r.e. set, and lg) Béxa formula of RE that
defines it; we can assume A to contain no bound occurrenced/\éé xlefinep(n) to be the
least among the Gddel numbers 00®)). @ is recursive: its graph {<n,y=(n)=y} is
defined in RE by the formuldin<y)(Num(m,n)d NSubstQ®k),y,[0(1),00],m) O Th(x) O
(w<y)(~NSubstQ®),w,[0(1),00)],m))) (where Th(x) is an RE formula defining the set of
theorems of and k is the Gddel number of B)jx notice that the use of negation in the
last conjunct is legitimate, since the formula it affects is equivalent to a formula tf Lim
Clearly@is 1-1, and for any n, @ S iff A(0(N) is true, iffl" fi A(OM), iff ¢(n) belongs to
the set of Godel numbers of theorem§ ofSo@: S<; {theorems of }. Finally, the set of
theorems of is r.e., and therefore is 1-1 complete.

It follows that the theorems of Q form a 1-1 complete set, and hence a nonrecursive set. In
fact, we can prove the stronger result thatig any r.e. set of true axioms, the set of
theorems of is 1-1 complete, as we will see shortly.

Let us say that a formula A(x) of the language of arithnmétiely weakly represents a
set S in a theorly if it weakly represents S inand also defines S. We may similarly
define "nicelystronglyrepresents”. Similarly, a formula A(x.., %,) nicely weakly
(strongly) represents an n-place relation R ihit both weakly (strongly) represents R in
I and also defines R.

It follows from our results of the last lecture that any r.e. set is nicely weakly
representable ih whenever is true and extends Q. We shall now see that the latter
requirement, thdt extend Q, is unnecessary: any r.e. set is nicely weakly representable in
any sef of true axioms of the language of arithmetic. Before proving this, we shall need
the following theorem:

Deduction Theorem For any sel and any sentences A and B (of any first-order
language), if’, A fi B thenl” fi A O B. (Here[, AfiB meand O {A}fi B.)

Proof: Supposé, A fi B, and let M be a model &7 (i.e. an interpretation in which every
element of is true). If Ais true in M, then M is a modellof] {A}, and so by the
soundness of the predicate calculus B is true in M, BoBAs true in M. If A is false in
M, then again A1 B is true in M. So A1 B is true in all models df, and therefore by the
completeness theoremfi A [ B.
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The proof we just gave is model-theoretic; however, it is possible to establish the
deduction theorem proof-theoretically, by showing how to transform any proof of B from
[0 {A} into a proof of A0 B fromI". Such a proof-theoretic argument might be more
satisfying, since the model-theoretic argument merely shows that whenever a proof of A
from ™ [0 {A} exists, then a proof of A1 B from[ exists, and leaves it an open question
whether there is any direct way to transform the former into the latter.

Now let A(x;) be any sentence of RE that defines a set S; we claim that the formula Q
A(x1) nicely weakly represents S in any sysfemith true axioms. (By Q we mean here
some conjunction of the axioms of Q; such a conjunction exists because Q's axioms are
finite in number.) Clearly, @ A(x1) defines S; we must show thatQA(0(M) is a
theorem of” iff n O S. First, suppose thatthS. Since Q is RE-complete, Q fiof).
Clearly,l", Q fi A(0(M). By the deduction theorer fi Q 0 A(0(N). Conversely, suppos$e
fi Q O A(0(N). Then sincé is true, QJ A(0M) is also true. But Q is true, so0&) is
true. But AQ(M) is a sentence of RE, and is true iffirs. So r S, and we are done.
Therefore we have established this

Theorem: If I' is a set of true sentences of L, then every r.e. set is nicely weakly
representable iR.

Corollary: For such &, the set of all theorems bfis a set to which all r.e. sets are 1-1
reducible. Iff isr.e., ther's theorems form a 1-1 complete set.

Note that, while every r.e. set is nicely weakly representable in $ychieahave not
shown that every r.e. set is nicely representable by every formula that defines it, or even
every RE formula that defines it. If we requiréo extend Q, on the other hand, then every
RE formula that defines S represents it jibecause any su¢his RE-complete and
correct.

Church's Theorem

Note that the empty set @ is trivially a set of true axioms; it follows from our theorem that
every r.e. set is nicely weakly representable in &, and therefore that @'s theorems, i.e. the
valid formulae of L, form a 1-1 complete set (since @ isr.e.). So the set of valid formulae

of L is not recursive (when the set of theorems of a theory is not recursive, the theory is
calledundecidablethis use of the term ‘undecidable’ must not be confused with the use we
are familiar with, in which the term applies to sentences). This is €leth's Theorem

Note that whether a formula is valid does not depend on the interpretation of the nonlogical
vocabulary, and therefore that Church's theorem does not depend on the interpretation of the
predicates and function symbols of L: for any language with two 3-place predicates, one 2-
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place predicate, a constant, and a 1-place function symbol, the set of valid formulae of that
language is undecidable, and indeed 1-1 complete.

(Actually, there are two versions of Church's theorem, depending on whether the identity
predicate is regarded as a logical symbol. We have been regarding it as nonlogical; when it
is regarded as logical, so that the identity axioms are taken as logical axioms, Church's
Theorem states that the set of valid formulae (in the present sense of "valid") of a language
with two 3-place predicates, a constant and a 1-place function symbol is an undecidable set.
The proof is exactly the same.)

Clearly, this result also applies to first-order languages extending L. In fact, we can use
a few tricks to show that it also applies to some languages smaller than L. We already
know that the constaftis redundant in L, since the formula X+ equivalent to (y)A(x, v,

X). We can also eliminate the successor function sign, since the graph of the successor
function is defined byl)[(w)M(w, z, w) JA(X, z, y)]. Reasoning in this way, we can

show that Church's theorem applies to any language with two 3-place predicates. Using a
trick that we saw in an exercise, we can eliminate these predicates in favor of a single 3-place
predicate defining the graph of the exponentiation function plus a constant for 0 and a 1-
place function letter for successor. Using still more devious tricks, we can show that
Church's theorem applies to a language which contains only a single 2-place predicate.
However, we cannot go any further: the set of valid formulae of a language with only 1-
place predicates (with or without identity) is recursive.

(The reasoning we have given is not wholly rigorous. For one thing, while we can find a
language K which is properly included in L and which has the same expressive power, we
must also show that the above remarks about Q hold for some translation of Q into K. We
shall not enter into these considerations here; they will be addressed when we prove the
Tarski-Mostowski-Robinson theorem.)

The name "Church's Theorem", though traditional, does not make full justice to its
discoverers, since Turing proved the same theorem in his famous original paper on
computability; "the Church-Turing theorem" would be a more appropriate name. Also
Godel, in his paper on the incompleteness theorems, stated a very closely related result
which, from our vantage point, establishes Church's theorem; but Gédel may not have
realized that this was a consequence of his result. Godel's result is that for any formal
system with a primitive recursive set of axioms we can always find a sentence which is not
guantificationally valid, but such that the statement that it is not quantificationally valid is not
provable in the system.

Complete Theories are Decidable

Theorem: Consider a language in which the set of all sentences is recursive, lahe let
set of axioms in this languageIfis r.e. and the set of closed theoremB & not
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recursive (i.e., undecidablé) is incomplete.
Proof: We first give an informal proof using Church's Thesis. We can assunfieishat
consistent, for otherwise the set of theorenis isfsimply the set of all sentences, which by
hypothesis is recursive. Suppdses complete, and let A be any expression. We shall
show that either A or ~A is a theoremlof Since the set of sentences of the language of
is recursive, we can tell effectively whether A is a sentence. If A is a sentence, thén since
is complete, either A or ~A is a theorenTof So to see whether A is a theoreni @ not,
simply run through all the proofs from If you encounter a proof of A, then A is a
theorem; if you encounter a proof of ~A, then A is not a theorem; and'sis@@mplete,
you will eventually encounter a proof of A or of ~A, so this procedure will eventually
terminate. So we can effectively tell whether an arbitrary expression is a thedreamof
so the set of theorems Bfis recursive.

We now reason more formally. Suppésis complete; again, we may suppose Ehat
is consistent. Sindeis r.e., the set of theoremslofs defined in RE by some formula
Th(x). Sincd is complete, an expression A is a nontheoremjaét in case either A is a
nonsentence or ~A is a theorem. Thus the set of nontheorénmis défined by an RE
formula N(x) I (Cy)(Neg(x, y) Th(y)), where N(x) defines the set of nonsentences of the
language of and Neg(x, y) defines the relatigns the negation of. X\We know that such
an RE formula N(x) exists because by hypothesis the set of sentences of the lanGuage of
is recursive, and Neg(x, y) is easily defined using concatenation. It follows that the set of
theorems of is recursive.

It was a while before logicians realized this fact, despite the simplicity of its proof. This
may be because the decision procedure given is not intuitively a "direct” one, i.e. a
procedure which determines whether A is a theoreimasfnot by examining A itself.

Note that the requirement tHabe r.e. is essential here, as is seen by |ditiegual the
set of true sentences of the language of arithmetic: the set of theolems @f itself, is
certainly not recursive, but it is complete, and the set of sentences of L is recursive.

Replacing Truth byo-Consistency

Let us now state some incompleteness results aboansistent, but not necessarily true
formal systemsSchoolis the set of (consequences of) true atomic sentences of the
language of arithmetic and of true negations of atomic sentences.

Theorem: If T is arithmetical(-consistent and contains Schdois incomplete.

Proof: Supposd™ was complete. Sindeis arithmetical, it does not coincide with the set of
truths, so there must be a sentence A which is either true but unprovable or false but
provable fronT . If A is false but provable, since the system is complete, ~A must be true
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but unprovable¢-consistency implies consistency), and so is any prenex version of it.

Take the shortest example B of a true but unprovable sentence: among the prenex true
unprovable sentences, take one with the shortest number of quantifiers. This sentence must
have some quantifiers, sincd itontains School, all sentences made up from atomic
sentences by use of connectives are decidableTihe first quantifier in B will not be

existential, because if it were, some instance of it would be true, and thus a shorter true but
unprovable statement (unprovable, because if it were provable so would be its existential
generalization). So the first quantifier in B must be universal, which means that all its
instances must be true and provable, since they are shorterl” Srm@mplete, ~B must

also be provable. But this contradicts the hypothesig tisb-consistent.

The theorem does not hold if we replageonsistency by consistency. There are consistent
arithmetical, even recursive, sets of sentences containing School (and extensions of School)
which are complete. An example is the set of truths in the structure of the real numbers with
a constant for 0 and function letters for successor, addition and multiplication. This is
naturally a complete set, which, by a celebrated result of Tarski, is recursive.

On the other hand, If is r.e. and contains Q (not just School), the hypothesis of
consistency in the theorem can be weakened to consistency. We will prove this later. Now
we can establish the following

Theorem: If T is r.e.,-consistent and contains Q, tHems incomplete.

Proof: We know that if” contains Q, it is RE-complete and hence that it is correct for
negations of RE sentences. Let A(ke an RE-formula that defines K. Then ~A(x

defines -K. Sinc€ is r.e., the set {n: ~&(") is a theorem of } is r.e. and thus it does not
coincide with -K. Sincé is correct for negations of RE sentences, there is no false provable
statement of the form ~A{"), so there must be a statement of that form which is true but
unprovable. This does not yet tell us tha®) is also unprovable, sinfeneed not be a

set of true sentences. Let's take again, from among the prenex true unprovable sentences of
the form ~AQ(M), one with the shortest number of quantifiers. This sentence must have
some quantifiers, for the same reason as before. And it cannot begin with an existential,
again for the same reason. So the sentence must be of the form (x)C(x), and such that all of
its instances are provable. Now0&Y) cannot be provable, since it is equivalent to ~(xX)C(X)

and that would contradict-consistency.

The Normal Form Theorem for RE.

Although our incompleteness results are quite powerful, it is a bit unsatisfying that we have
not been able to construct effectively examples of undecidable sentences. One way to do
this uses a result that we will prove now.
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Normal Form Theorem for RE: Every r.e. relation is definable by a formula of the form
(Oy)B, where B is a formula of Lim in which there are no occurrences of negation.

This is a version of a theorem of Kleene, though what he showed was something weaker,
namely that every r.e. formula is defined by)B for some formula B that defines a
primitive recursiverelation.

To prove it, we prove by induction on the complexity of formulae that every RE formula
A is equivalent to a formuldai)B, with B a formula of Lim without negation.

(1) Ais atomic. Then Ais already in Lim without negation, and is equivaler)a, (
where y is a variable that does not occur in A. (That is, we get a formula of the required
form by adding a vacuous existential quantifier. Note that A is also equivaléijp<£ y
[JA), so the use of vacuous quantifiers is not really necessary.)

(2) Ais Ar OA,. By the inductive hypothesisyAand A are equivalent to formulae
(0y)B1 and (Oy)B,, where B and B are formulae of Lim without negation; so A is
equivalent to[(y)B1 U (0y)B,, which is equivalent td_§/)(B1 [JB»), which is of the
required form.

(3) Ais AL OA,. Again, A and A are equivalent td§)B1 and (dy)B», with B; and
B, formulae of Lim without negation, so A is equivalent(p)B1 [I (Cy)B,. By rewriting
bound variables, we see that A is equivalenti)g;' [1(Cw)B->', where B' and B' come
from B, and B by changing bound occurrences of y to z (or w) throughout. This is in turn
equivalent to(z)(CWw)(B1' I B'). This is not yet in the required form, since we have two
unbounded quantifiers. However, this is equivalenti((z < y)(Ow < y)(B1' OBy),
which is of the required form.

[The usual way to reduce this pair of unbounded quantifiers to a single quantifier uses
the pairing function; however, the present approach is simpler.]

(4) Ais (2)A1. Then A is equivalent tol{iv)B; for some formula Bof Lim without
negation, and so A is itself equivalent ta)(Cv)B1. As in (3), this is equivalent ta¥)([z
<y)wv <y)By.

(5) Ais (z <t)A. This s the trickiest case. Lei Ae equivalent tol{v)B1, with By in
Lim without negation. A is equivalent to (z <i))B;. We claim that this is equivalent to
(Oy)(z < t)[Ow < y)B;. To see this, first fix an assignment of values to the free variables.
Supposel(y)(z < t)[Cw < y)B; holds; then (z < t)jv < n)B, holds for some n, safortiori
(z <t)([@w)B1 holds. Conversely, suppose (z <i)§B; holds, and let n be the denotation
of t. Then for each m < n[i{)B,(w, m) holds, so Bk, m) holds for some patrticular k.
For each m < n, pick ayksuch that B(j, m) holds. Since there are only finitely mapysk
there is a number p such that pyfr all m <n. So for all m < n, there is a k < p (hamely
km) such that Bk, m) holds. Therefore, (z <)/ < p)B; holds, and sofy)(z < t)(Ow <
y)B1 holds. This completes the proof.

The normal form theorem yields very strong results when combined with the
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enumeration theorem. From the normal form theorem, we see that the relation W(e, x) is
defined by some formula¥)T(e, X, y), where T is a formula of Lim without negation. T is
a particular formula, and therefore hasxad number of bounded quantifiers amal
unbounded quantifiers. It follows that there is a single fixed n such that every r.e. setis
defined by some formula with at most n bounded quantifiers and only one unbounded
guantifier. This leaves open the possibility that n must be very large; in fact, however, it is
known that n can be made rather small.

Whenever we have a normal form theorem, we can combine it with the enumeration
theorem to get an analogous result. The most spectacular enumeration theorem we have
mentioned is that proved by Matijasevic (building on earlier work by Davis, Putnam and
Julia Robinson), that every r.e. set or relation is definable by a formula of the form
((X9)...(kn) t1 = b, where £ and $ are terms involving only the function symbols ', + and
(and the constatand the variables). Note that the formula t, is simply a polynomial
equation. Thus the decision problem for any r.e. set is equivalent to the decision problem
for some polynomial equation with integer coefficients. The Matijasevic theorem alone
does not give us an indication of how large the degree of such equations can be, or of how
many variables they may contain. If we apply the enumeration theorem, however, we see
that the relation W(e, x) is defined by sopaticular formula (3x4)...((ky) t1 = t, whose
free variables are e and x. Let us indicate the free variable e by writing this formula as
(CX9)...(%p) ta(e) = b(e). Everyr.e. setis therefore defined by the formiia)(..(Ck,)
t1(0(®)) = t,(0()), for some particular e. So not only is the decision problem for every r.e.
set equivalent to the problem of solving some polynomial equation; we can also
simultaneously bound the number of variables and the degree of the polynomial.

An immediate application of the normal form theorem is in the proof of the following
result:

Theorem: If T is r.e.,-consistent and contains Q, tHeis complete and correct for the
set of all formulae of the forni¥)B, where B is a formula of Lim without negation.
Proof: Completeness: Ify)B is true, then BI(M) is true, for some n. So &) will be
provable, since Q proves all the true sentences of Lim; @odtains Q. Therefore,if)B
will be provable too. Correctness: SuppdseR is provable but false. Then all the
negations of its instances will be true: GAFA(0")... So these are all provable, again
because Q is complete for the true sentences of Lim. But this contradiotssistency.

Corollary: If T is r.e.,wo-consistent and contains Q, then every r.e. set is nicely weakly
representable iR.

Corollary: If T is r.e.,w>-consistent and contains Q, then the theorerisfofm a 1-1
complete set.
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The hypothesis ab-consistency in these results could have been replaced by that of
consistency, but the corresponding proof is much trickier.

Exercises
1. Prove that if an r.e. set & 1-1 complete, there is an infinite r.e. setf$joint from §.

2. Prove that a nonempty set is r.e. iff it is the range of a total recursive function.
Note: this result is the origin of the term 'recursively enumerable'. That is, a nonempty set S
is r.e. iff there is a recursive functigrthat enumerates it, i.e. SED), ¢(1),...}.

3. The Goldbach conjecture is the statement that every even integer greater than 2 is the sum
of two primes. Show that this conjecture can be written in the form (x)A, where A is in Lim.
Suppose that the conjecture, written in this form, is undecidable in the system we have called
Peano Arithmetic. What, if anything, would follow regarding the truth of the Goldbach
conjecture itself? (Explain your answer; if nothing follows, explain why, or if something

does follow, explain what follows and why.)

4. Propersubstitution, as opposed to what we have called 'naive substitution’, is the
substitution of a term for a variable, subject to the following restrictions. ftaealy

occurrences of the variablgeare to be replaced by the term t; and the substitution is

improper if any variable occurring in t becomes bound in the result. Define proper
substitution in RE, that is, PSubst(m,v,m). where m is the result of a proper

substitution of the term m for free occurrences of the variable g .itUse the following

fact: an occurrence of a variablewithin a term is bound in a formula iff the formula is a
concatenation of three sequences m, n and p, where the occurrence in question is in the part
corresponding to n, and n is (the Gddel number of) a formula beginning it @nd/or

p are allowed to be empty. (This is a form of the usual definition.) Another treatment of
proper substitution, which is perhaps more elegant, will be sketched later. It should be clear
from the preceding why naive substitution is simpler, at least if this is the treatment adopted.
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Lecture Xl

An Effective Form of Gddel's Theorem

Recall that™ is w-consistent if we never havefi ((X)A(x) andl” fi ~A(n) for all n. I" is
said to bev-completaf whenever™ fi A(n) for all n,I" fi (X)A(x). T is winconsistentff it
is hotw-consistent, and similarly fap-incomplete

Let us call a formula A&; if A is of the form (Jy)B, where B is a formula of Lim, and
1y if it is of the form (y)B for B a formula of Lim. Note that a negationyyB of a%;
formula is equivalent to (y)~B, whichi$;, and that eacRl; formula (y)B is equivalent to a
negation ~{{iy)~B of aZ; formula (and these equivalences are provable). We sometimes
use the term&; andll, loosely to refer to formulae that are equivalent to formulae that are
21 orl1q in the strict sense; we also refer teedor relation as, (or4) if it is defined by
somez; (or14) formula. It follows from the normal form theorem for RE that the r.e. sets
are precisely th&,; sets and the complements of r.e. sets are precisdll thets.

We sometimes writ&? for 31 andr{ for M. The superscript zero indicates that the
unbounded quantifier ranges over numbers. Other superscripts are possible; in general,
when we talk about &) or M’} formula, m indicates the type of the variables in the
unbounded quantifiers, and the n indicates the number of alterations between unbounded
universal and unbounded existential quantifiers. This will be made more precise later on in
the course.

Supposé extends Q. If B is a sentence of Lim, then as we saw in Lecture IX, if B is
true, then B is a theorem of G. So lgp)B(y) be a truex; sentence. Since it is true,

B(0(N)) is true for some n and therefore is a theoref ot BO(M) logically implies
(Oy)B(y), so (¥)B(y) is also a theorem &f. So every tru&, sentence is a theoremIaf

in short,I" is Z;-complete. I is also consistent, then itlik-correct, i.e. everyl,

sentence provable Inis true. To see this, let A bdg sentence provable in If Ais

false, then ~A is true; but ~A, being the negation df gaentence, is provably equivalent to
aX; sentence, and is therefore provablE,isincel is 2;-complete. But then both A and
~A are theorems df, and sd” is incomplete. So a consistent extension of Q is bgth
complete andll;-correct.

Moreover, as we saw in the last lecture, ewegonsistent system extending Qis
correct. Recall the argument: suppbge such a system, and suppose it proves aJalse
sentencel{y)B(y). Since that sentence is falseo@é) is false for all n, and therefore,
sincel” extends QI fi ~B(O(n)) for all n, contradicting 's w-consistency. So ary-
consistent extension of Qig-complete and correct.

We can now prove an effective version of Gddel's theorem.

Effective Form of Gddel's Theorem Letl be an r.e. extension of Q. Then we can find
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effectively al'l; formula A such that

(1) If I is consistent, then A is true but unprovabl€ in
and

(2) If T is w-consistent, then ~A is also unprovablé in
Proof: Since W(e,x) is r.e., it is definable bg.aformula (iy)L(e,x,y) which can be
effectively found from the original RE formula and through the (effective) proof of the
normal form theorem for RE. So K is r.e., and it is definablé )t (x,x,y), which isZ;.
-K is then defined by thB; formula (y)~L(x,x,y). The set {n: (y)~Io{M,0(n),y) is
provable fronT} is r.e. (for the known reasons), and an RE formula that defines it can be
found effectively; therefore also its Godel number e can be found effectively. Then for all n,
(Oy)L(0(®),0(n),y) is true iff (y)~LOM),0(N),y) is provable. Sofy)L(0(€),0(€)y) is true iff
(y)~L(o(e)0(e)y) is provable. Then thid; formula (y)~L0(€),0(€)y) cannot be provable
from ", because given thhtis a consistent extension of Qis I1;-correct, so
(y)~L(0(e),0(€),y) would be true and so would be the equivalent formula
~(Oy)L(o(e)0(e)y), and on the other hand if (y)-aE),0(€)y) were provable
(Oy)L(0(e),0(e),y) would be true. We therefore may take A to be (yp&@0E€)y). A is
not provable, and thereforeG#L(0(€),0(€)y) and A itself are true.

Now suppose thdt is w-consistent. Theh is Z;-correct. ~A is logically equivalent to
a falsex; sentence, and is therefore not a theorem of

This is an informal argument in the sense that it appeals to the intuitive notion of
computability or effectiveness. We could now give a more formal proof without making
this appeal. It will be easier to give such a proof later, once we have some more results. We
can note here that the effectiveness of the construction of A depends on the fact that we use
K, for which the number e with appropriate properties can be effectively found from every
I". Not every r.e. nonrecursive set would have served the purpose of effectiveness, since as
we will show later, for some such sets the corresponding Gddel sentences cannot be
effectively found..

The hypothesis of our effective form of Gddel's theorem is already quite weak; in fact,
we can weaken it a bit more. In particular, the conditiontleatends Q can be weakened.
The only fact about Q needed in proving that Q is RE-complete and correct for negations of
RE sentences is Fact 1, along with the fact that all sentences of School are provable in Q.
So these are the only facts needed to show, using the normal form theorem, that Q is
complete andll;-correct. So the theorem will still hold if Q is replaced by any theory
containing School for which Fact 1 holds.

Godel's Original Proof.

The following is, nearly enough, Godel's own presentation of the first incompleteness
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theorem. Lefl be an r.e. system containing Q. Consider the relation Prov(x, y) which
holds if y is provable of x, i.e. if the result of replacing all (free) occurrencesiothxe
formula (coded by) y by the numeral for x is provable. We can take Proto siace it

can be written out in RE; so it is of the forik)L(X, y, z) for some formula L(X, y, z) of

Lim. Consider the formula ~Prov(xxy); it has some Goédel number m. Let G be the
sentence ~Pro@(™), 0(M)), i.e. ~(z)L(0(M), 0(M), z). Suppose G is provable; that is,
suppose the formula ~Proy(x,) is provable of m. Then D{™), 0(M), 0()) holds for

some k; since this is a true sentence of Lim, it is provable, and)¢q(™, o(m), z) is
provable. But G, which we are supposing to be provable, is just the senferye£0¢p),

0(m), 7). So if our system is consistent, G is not provable after all, i.e. ~Rrey)(is not
provable of m. But what G says is that the formula with Gédel number m, namely
~Prov(x, X1), is not provable of m; so G is true. Therefore G is true but unprovable. As
long as the system ¥5-correct, its negation is not provable either, and as we have seen, it
suffices for this that the system teconsistent.

Presented in this way, the proof seems rather tricky, and the undecidable sentence is
produced in a very devious way. As we have previously presented it, Godel's theorem
should seem more like the inevitable outcome of the Russell paradox. In fact, there is a way
of viewing Godel's original proof which makes it look this way.

Recall the proof that any fully classical language lacks its own satisfaction predicate. If
L, for example, has a predicate Sat(y,x) which defines the relation {<x, y>: y codes a
formula which x satisfies}, then L has a predicate Het(x) = ~Sat(x, x), which defines the set
of (Godel numbers of) heterological formulae. But then if we ask whether Het(x) is itself
heterological, we can derive a contradiction. (Indeed, that there is no formula defining the
set of heterological formulae follows directly from the inconsistency of the instance
()(X)(x Oy = x O x) of the unrestricted comprehension scheme, as we saw before.) It
follows from the indefinability of satisfaction that the formula Prov does not define
satisfaction.

We can show directly that the Gédel sentence G is true but unprovable, in a way that
imitates the reasoning of the last paragraph. Call a for@idi| heterologicaif is not
provable of itself; the formula ~Prowi(xx;) defines the set of Gédel heterological formulae.
Let us write this formula as GHeijx Now we ask, is "Godel heterological" Godel
heterological? The statement that "Godel heterological” is Godel heterological is simply the
statement GHe®M), where m is the Godel number of GHgl(xRather than leading to a
contradiction, our question has a definite answer "yes". Suppose "Gddel heterological”
were not Godel heterological, i.e. that GHet@eere provable of m. If GHet{kis
provable of m, then Pro®{™), 0(m)) is a theorem of Q and therefore of any system
extending Q; note that GHe({") is simply the negation of Pra¥("), 0(M)). So if
GHet(x) is provable of itself, then our system is inconsistent, since bothOPPN\G(™)
and its negation are provable; so if our system is consistent, then glitet@t provable
of itself, i.e. is Godel heterological. This is simply to say that GK@})(is true but not
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provable. A similar argument shows that ~GH&t)) is also unprovable, provided that the
system igv-consistent. Finally, note that GH)) is simply the sentence G of the last
paragraph. So we have really presented Godel's own proof, but with a different exposition
than is usual.

An analogy is often drawn between the unprovability of the Gddel sentence and the liar
paradox. From the present exposition, we see that the analogy with the heterological
paradox is even closer. In fact, all we really need in order to see thatG¢PYa¥(") is
true but unprovable is to notice that ~Pa$W),0(M) says "Is not provable of itself" is not
provable of itself', i.e. "Gddel heterological” is Godel heterological': it is not essential to
our proof (though we may observe this afterwards) that it says "I am not provable”.

That there is an analogy both to the heterological paradox and to the liar paradox is no
accident, since the heterological paradox is really a special case of the liar paradox. The
heterological paradox involves the sentence ™Is not true of itself" is not true of itself'. To
say that "is not true of itself" is not true of itself is simply to say that the sentence "Is not
true of itself" is not true of itself' is not true, so this sentence says of itself that it is not true
—thatis, it is a liar sentence.

The Uniformization Theorem for r.e. Relations.

Definition: A uniformizationof a binary relation R is a relation S such that:

()SOR

(i) S and R have the same domain, i.e. for any x, there is a y such that R(x, y) iff there isa 'y
such that S(x, y)

(i) S is single valued, i.e. every x bears S to at most one y (i.e. S is the graph of a partial
function).

We can think of a relation R(X, y) asrany valuedunction, with x as the argument
and any y such that R(x, y) as one of the values for the argument x. Then, for example, an
r.e. relation is a partial recursive many-valued function. A uniformization of a many valued
function is a single valued function with the same domain.

S can be regarded as a choice function, i.e. S chooses, for each x, something that x bears
R to. This definition can be extended to n+1-place relations in an obvious way.

A uniformization theorem in general says that any relation in a particular class C can be
uniformized by a relation in C. If this is so, then C is said to havenif@mization
property Note that the class of all relations on the natural numbers has the uniformization
property. Taking the 2-place case for simplicity, any relation R(x, y) is uniformized by the
relation R(x, y)d (z < y)~R(X, z) (i.e. the relation ygzR(x, z)). This also shows that the
class of recursive relations has the uniformization property, since the relatimR(x z)
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is recursive if R is; the same applies to the class of relations definable in Lim and to the
arithmetical relations. And this argument can easily be generalized to relations of more than
two places.

A trickier case is the class of r.e. relations. The above argument will not show that this
class has the uniformization property, sincepzR(x, z) will not in general be r.e. when R
is. To see this, let X be any r.e. set which is not recursive, and let R be the r.e. relation {<x,
y> (y=00x0X) Oy = 1}. LetS be the relation ypzR(X, z). If xO X, then S(x) =0,
butif x 0 X, then S(x) = 1. Soif Sisr.e., then -X can be defined in RE byYo$(xBut by
hypothesis X is nonrecursive, so S is not r.e.

However, we can use a somewhat trickier proof to show that uniformization holds for
the r.e. relations. Let R be any 2-place r.e. relation, and let F(x, y) be some formula of RE
that defines it. By the normal form theorem, we can take F taze(X, y, z) for some
formula L of Lim. (Z)L(X, Y, z) is equivalent ta(v)(y = Kg(w) OL(x, K1(w), Ko(w))).

We can now define a uniformizing relation S bwj(y = Ky(w) O L(x, K1(w), Ko(w)) O (u
<w)~L(X, K1(u), Kx(u))) (intuitively, w is the smallest code of a pair [y,z] for which L(x,y,z)
holds). Since L is a formula of Lim, the formula defining the uniformizing relatiois a
formula and so S is an r.e. relation. This can be generalized to n+1-place r.e. relations in a
fairly obvious way. So we have proved the

Uniformization Theorem for r.e. Relations The class of r.e. relations has the
uniformization property.

Corollary: Every r.e. relation can be uniformized by a partial recursive function with the
same domain.

The Normal Form Theorem for Partial Recursive Functions.

An application of the proof of the uniformization theorem for r.e. relations is a normal form
theorem for partial recursive functions, due to Kleene.q@lbet any partial recursive

function, and let R be its graph. R is defined by sapfermula (I)L(X, y, z). As inthe

proof of the uniformization theorem, we see that R is defined by kK (x, K1(w),

Ka(w))). Since L(X, K(w), Ko(w)) is a formula of Lim, and Kis a function whose graph

is definable in Lim, we have the following:

Normal Form Theorem for Partial Recursive Functions Every n-place partial
recursive function is of the form U(UwRX.., %, w)) for some relation R definable in Lim
and some function U whose graph is definable in Lim.

Proof: The case n =1 was just proved, and the general case is proved similarly.
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This is not exactly what Kleene originally proved; he only required R and U to be primitive
recursive.

It is important not to forget the U; it is not true that every partial recursive function is of
the form pwR(¥, ..., %, w) for some R definable in Lim. Even if we allow R to be an
arbitrary recursive relation, this is still wrong. If, on the other hand, we require the function
@to be total, thep(X, ..., %) IS Hy(@X1, ..., %) =Y), SO we can drop the U by taking R to
be @s graph; but then we cannot require R to be definable in Lim.
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Lecture XllI

An Enumeration Theorem for Partial Recursive Functions

We can use the uniformization theorem for r.e. relations to prove an enumeration theorem
for partial recursive functions. First we recall that we have a general version of the
Enumeration Theorem for n-place r.e. relations. That is, there is an n+1-place relation
Wn+l(e, m, . . ., m) that enumerates the n-place r.e. relations. (ZeWh) is just our
previous relation W(e, y). We will usually omit the superscript when the context makes it
clear which one is intended.) The easiest way to prove this is by defifiitie\W,...,m,)

as W&(e, [my, . .., m]). ltis clear that this enumerates the n-place r.e. relations. We now
have:

Theorem: For all n, there is an n+1-place partial recursive funebr which enumerates
the n-place partial recursive functions, i.e. for each n-place partial recursive figpitteva

is a number e such th@t+e, x, ..., %) = @Xq, ..., %) for all xq, ..., %, for which@is

defined, and is undefined on g, X., % when@is undefined on ..., %.

Proof: We only prove the theorem in the case n = 1. (The general case can be proved
either by imitation of this case, or via the pairing function.) Consider the relafiovhith
enumerates the 2-place r.e. relations. Being an r.e. relation itself, it is uniformized by some
2-place partial recursive functioh Now letp be any 1-place partial recursive function, and
let R beg's graph. R is \glfor some e, i.e. for some e 3®, X, y) holds iffp(x) = y. Since

® uniformizes W, ®(e, x) =y iff @x) = y; moreover, ifp(x) is undefined, then W, X, y)
does not hold for any y, and 8dge, x) is undefined.

The number e is called amdexof the functionp. Kleene's notation fab(e, x) is {e}(x);
so {e} denotes the partial recursive function with index e.

Just as no recursive relation enumerates the recursive sets, no total recursive function
enumerates the total recursive functions. To see this, sugppdideenumerate the total
recursive functions. Leg be the total recursive functidk(x, x) + 1; then there is an e such
thatg(x) = W(e, x) for all e. So in particulape) =¥(e, e). Buip(e) =W(e, e) + 1, so we
haveW(e, e) =¥(e, e) + 1, which is impossible.

Why doesn't this show that an enumeration optm#ial recursive functions is
impossible? Lefp(x) = ®(x, X) + 1. @is a partial recursive function, so it has an index e; so
d(e, X) =P(x, x) + 1 for all x, and in particulab(e, e) =P(e, e) + 1. But this is not a
contradiction, for it only shows thdt(e, e) is undefined. It is this fact about partial
recursive functions, that they can be undefined, that allows there to be an enumeration
theorem for partial recursive functions, and indeed this was the point of studying partial
recursive functions (as opposed to just total recursive functions) in the first place.
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(In some presentations, a new "number” u is introduced to represent an undefined value,
i.e. we declare thai(x) = u wheng(x) is undefined. Then every function we care to deal
with has a value, of sorts, for every argument. The argument of the last paragraph shows
that we must have u = u + 1: we showed @@, e) =P(e, e) + 1, from which it follows
that®(e, e) = u (¢ n + 1 for all n other than u), and therefore that u =u + 1. A similar
argument shows thgfu) = u for all partial recursive functiogsi.e. u is a fixed point of all
partial recursive functions. We will not use u in this course, however.)

This also provides an example of a partial recursive function which is not totally
extendible, i.e. which is not extended by any total recursive function. Specifiea@lguch
a function. For suppos# is a total recursive function extendifhy and letp(x) = W(x, X)

+ 1. Y is a total recursive function with some index e. Tééa, x) =(xX) = W(x, x) + 1
for all x on which y is defined, which is all x, singas total. Sab(e, e) =((e) =W(e, e) +
1. Since¥ extendsb, and therefore agrees dnwheneverd is defined (e, e) =(e) =
W(e, e) + 1, which is impossible.

Given a 2-place partial recursive function which is not totally extendible, we can find a
1-place partial recursive function which is not totally extendible via the pairing function: if
@(x, y) is such a 2-place partial function, yebe a partial recursive 1-place function such
that([x, y]) = @(x, y) wheneveryx, y) is defined. Iip were totally extendible to some
functiony’, then we could lep(x, y) =d'([X, y]), and@ would be a total recursive function
extendingyp. Alternatively, we could simply observe that the functgbg = d(x, x) + 1 is
not totally extendible, using the argument of the last paragraph.

Reduction and Separation.

Let C be any class of sets. C is said to havedbaration propertyf for any disjoint $
and S OC, thereisan 8 C suchthat -8 C, S 0 S, and $00-S. Sis said to separate
S; and S.

Separation fails for the r.e. sets. A pair of r.e. sets which is not separated by any
recursive set is calledracursively inseparable paiifhe proof that there are recursively
inseparable pairs of r.e. sets is due to Kleene, @inget § = {m: ®(m, m) = 0}, and let
S ={m: ®(m, m) is defined and > 0}. Clearly; 8nd $ are disjoint r.e. sets. If
separation held for the r.e. sets, then there would be a recursive § Wi &d S0 -S.
But we can easily derive a contradiction by considering the characteristic functiap. df S,
®(m, m) = 0 thenp(m)=1; if d(m, m) > 0 thenp(m)=0. Since S is recursivg,is recursive,
and so partial recursive, and therefore, for alpim)=®(e, m) for some e. Thendi(e, e) =
0, Y(e)=1=b(e, e); and itb(e, e)>0(e)=0=d(e, e). Contradiction.

Let C be any class of sets. C is said to haveethaction propertyf forany S, S [

C, there are disjoint setg'@nd S 0 Csuchthat 0 S, S' 0S5, S 0S' =50 S,.

The class of r.e. sets has the reduction property. This can be seen by an application of

88



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

the uniformization theorem. Specifically, let&hd $ be r.e. sets, and let R be the many-
valued function that takes the value 1 qrafd O on $(and therefore takes both values on
S1 n $); apply uniformization to shrink R to a single-valued function R' with the same
domain. Then we let;S{m: R'(m,1)} and $={m: R'(m,0)}. ' and $' obviously have

the desired properties.

If a class C has the reduction property, the corresponding claéXCX [OC} has the
separation property. For suppose we have two disjoint setsdSs in Cq. Then -§ [
-S,=N. Applying to -§ and -$ the reduction property of C, we know that there atar®i
S, in C such that -(§ [0 -Sy, -(S') O -S,, and such that -¢§ [ () =-S 0 -S, =N,
and -(8') and -($') are disjoint. So S0 Sy'=N and §' and $' are disjoint and therefore
S'=-(S1"); and moreover 1 S;'and S 0 S)'. So §' separates;Sand 3.

This fact can be used to prove that separation holds fétitkets (which are the co-r.e.
sets). On the other hand, they cannot have the reduction property, because that would imply
that theX; sets (i.e., the r.e. sets) have the separation property, and they don't. We may also
note that thél, relations do not have, unlike the relations, the uniformization propety: if
they did, we could imitate the proof we gave for the r.e. sets to prove thht $eés have
the reduction property.

Functional Representability.

We have said what it is for a relation to be weakly or strongly representable in a theory; we
now define a notion of representability in a theory for partial functions.

Definition: A partial functiong is representedn a theoryl” by a formula A(X, ..., %, Y)
iff wheneverq(ay, ..., &) = b, fi A(0(@), ...,0(@n), o(b)) O (y)(A(0(@), ...,0(@n), y)Oy =
O(b)). @isrepresentablen I' iff some formula represents itin

Notice that in our definition we do not say what happens w(@n..., @) is undefined. In
particular, we do not require that0{@w), ...,0(&), 0(b)) not be a theorem. So whenever a
formula A represents a functignn I', A also represents each subfunctioxp,ah

particular, every formula represents the completely undefined function in every theory.
Also, if A representgin ' andg has an infinite domain, thephas 2o subfunctions, and
so A represents-2 functions inl". It follows that not every function that A represents is
partial recursive, since there are only partial recursive functions. Notice also that in an
inconsistent theory, every formula represents every function.

Notice that representability is different from definability: a formula can represent a
function without defining it, and vice versa. Notice also thAtaktendd™, then every
function representable nis representable ify, since if AQ(21), ...,0(&n), 0(b)) O
(y)(A(0(®), ...,0(@), y) Oy =0(D)) is a theorem df , then it is also a theorem &f
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We now set out to prove the theorem that every partial recursive function is
representable in Q. To this effect we prove the following two lemmas.

Lemma 1:If two partial 1-place functiong, andg, are both representable in a thebigo
is their compositiom(@y(X)).

Proof: Let Ry(x,y) and R(y,z) represenp; and@, respectively. Then it is not difficult to
verify that the formulal{y)(R1(x,y) U Rx(y,z)) represents their composition.

Lemma 2 Any partial function whose graph is definable in Lim is representable in Q.
Proof: Let@be any 1-place partial function whose graph is defined by the formula A(x, y)
of Lim. Let B(x, y) be the formula A(X, y) (z < y)~A(X, z). We claim that B represemts
in Q. Suppose(a) = b. We have to verify two things: namely, thaa(®) 0(b)) is a
theorem of Q, and that (y)(8@), y) 0y =0()) is a theorem of Q. Clearly, 8(@), 0o(b))
is a theorem of Q, since @@), 0(b)) is a true RE sentence. To show that Q &®&) 0(P)),
we must also show that Q fi (zoﬁb))~A(O(a), z). But again, this is a true sentence of RE,
and is therefore a theorem of Q.

Next, we must show that Q fi (y)@&@), y) Oy =0(b)). Here we use Fact 2 about Q
from Lecture 1X, i.e. for all n, Q fi @(x, = 0(N) Ox; <0(N) 0 0(N) < x;). Using this fact,
we establish (y)(B(@), y) O y = 0(b)) by reasoning within Q. Supposed&), y), i.e.
A(0(®), y) and (z < y)~AQ(®), z). We want to show that y&t0). By Fact 2, there are three
possibilities: y =0(0), or y <0(0), oro(b) <'y. 1f0(b) <y, then ~AQ(@), 0(b)), since
~A(0(®), Z) for all z <0(b). So suppose y&b). We know that BY(&), 0(b)), and so (z <
0()~A0(), z). So in particular ~&(3), y), contradiction. So neithetb) <y nory <
0(b) holds, and so y e(b). This reasoning can be carried out formally in Q, as can easily
be verified, and so Q fi (y)B(2), y) Oy =0(b)). This completes the proof that B
represent®in Q.

We can now prove the desired

Theorem: Every partial recursive function is representable in Q (and therefore in any
axiom system extending Q).

Proof: For simplicity we only prove the theorem for 1-place functions.¢lbet a partial
recursive function. Then by the normal form theorem for partial recursive funggjs,
U(nyR(X, y)) for some relation R definable in Lim and some U whose graph is definable in
Lim. (In fact, of course, we can take U to bg)KThen the functions U and pyR(X, y) both
have graphs definable in Lim, so by Lemma 2, both are representable in Q; by Lemma 1,
their composition, which i, is representable in Q.

Corollary: Every recursive set is strongly representable in every consistent extension of Q.
Proof: Letl" be some consistent extension of Q, and let S be any recursive spbel8s
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characteristic function, and let R(x, y) be some formula which repregen€3, and

therefore in". (Such an R exists by the preceding theorem.) Let B(x) be the formula R(X,
0). IfnO S, thenp(n) = 1, sd fi R(O(n), 0. If, on the other hand,d S, thenp(n) = 0,

sorl fi (y)(RO(N), y) Oy =0), sor fi ~R©O(N), 0') (since0#0' is a theorem of Q). So R(x,

0') strongly represents Sin

This corollary extends our previous result: before, we only knew that every set definable in
Lim is strongly representable in Q (and therefore in any consistent extension of Q).
We can use our results to prove Rosser's form of Gédel's theorem:

Rosser's Theoremif I' is a consistent r.e. extension of Q, ties incomplete.
Proof: We can give two different proofs using results we have proved. The first, closer in
spirit to Rosser's is this. Consider the functig(, x). We know that the setg-§m:
®(m, m) = 0}, and &={m: ®d(m, m) is defined and > 0} are recursively inseparable. Let
A(x, y) be a formula that represents the functifr, x) inl". So we have that 6(m, m) =
0 thenr™ fi A(0(M), 0) O (y)(A(0(M), y) Oy =0); and ifd(m, m) is defined and =n> 0 then
I i A(o(M), o(n)) O (y)(A0(M), y) Oy =0(N)). By the second conjunct in the last formula,
if ®(m, m) is defined and > 0, fi ~A(O(m), 0). Sincel is consistent, it is not the case that
fi A(0(M), 0) andr fi ~A(0(M), 0). Let R={m: I fi A(0(M), 0)} and Re={m: T fi ~A(0(M),
0)}. These are disjoint (sindeis consistent) and, if were complete, they would be the
complement of each other (and so exh&l)siThey are r.e., for the usual reasons. So if
they were the complement of each other, they would be recursive, and teal&be a
recursive set that would separaieaBd $, and we prove that no set does that. So we can
conclude thaf is not complete.

A second way of proving the theorem is the following. Suppose, for a contradiction, that
I" is a consistent r.e. extension of Q that is complete. Simceomplete, the set of
theorems of is recursive. Consider the relation R = {<e, m>: e is a Gddel number of a
formula A(x), and Ao(m)) is a theorem df}. I being recursive, R is a recursive relation.
Moreover, R enumerates the recursive sets, in the sense that each recursiydg@et is R
some e. To see this, let S be a recursive set, and lgtb&(a formula that strongly
represents it ilf; then if e is a Godel number of AjxS = {m:T fi A(O(M)} = Re. So R
is a recursive enumeration of the recursive sets. But as we saw in Lecture X, this is
impossible. Therefore, no suEtcan exist, and so any r.e. consistesitending Q is
incomplete.

Exercises

1. (a) Prove that an infinite set S of natural numbers is r.e. iff it is the range of a 1-1 total
recursive function.
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(b) Prove that an infinite set S of natural numbers is recursive iff it is the range of a 1-1
monotone increasing total recursive function.
(c) Prove that every infinite r.e. set has an infinite recursive subset.

2. Reduction property within a) If S1 and $ are two r.e. sets, prove that there are two
r.e. sets $ and ' such that $00S1, '00S, and §'0Sp'=510S, such that § is
weakly represented by a formula A(x) argl I8/ a formula B(x) and (x)~(A(XB(x)) is a
theorem of Q.

(b) Hence, if two r.e. sets1@nd S are in fact disjoint, they can be weakly represented
by two formulae A(x) and B(x) such that (x)~(A(B(x)) is a theorem of Q.

3. (a) Show that the following instance of the naive comprehension scheme is
inconsistent: [y)(X)(x Oy =~0w)(x O w Ow O x)).

(b) Analogous to the construction of K using Russell's paradox, use the result in (a) to
obtain a corresponding r.e. set which is not recursive.

(c) Given an r.e. axiom systdimextending Q, define a number n to®édel-
unreciprocatedf m is a Godel number of a formula Apand there is no n such that n is
the Godel number of a formula Bpwith A(0(N)) and BO(M)) both provable iffr.
(Otherwise, m i$36del-reciprocated Show, analogously to the treatment of 'Gédel-
heterological', that the sentence "Go6del-unreciprocated" is Godel-unreciprocated' has the
properties of the Godel statement, i.e. iti$;statement that is true but unprovablE i§
consistent and not disprovabld ifs w-consistent. (Note: this is the Gddelian analog of
the paradox of part (a), and is meant to illustrate the theme that set-theoretic paradoxes can
be turned into proofs of Gddel's theorem.)

4. (a) Show that there is a recursive functjgm,n) such thaf(m,n) is a code of the n-
term sequence all of whose terms are m.

(b) The Upwards Generated Sets Theorem says that if G is a set generated by a
recursive basis set and some recursive generating relations such that for each generating
relation R, the conclusion of R is greater than or equal to all of the premises, then G is
recursive. Prove this theorem. [Hint: prove that every element m of G occurs in a proof
sequence for G such that all elements preceding m in the sequence are strictly less than m.
Then use (a).]

(c) Use (b) to prove that the set of Godel numbers of formulae of the narrow first order
language of arithmetic is recursive.

(d) Extend this result to any first order language (in the narrow formulation) with
finitely many function letters and primitive predicate letters and constants.

5. Gddel's Theorem via a language with self-reference and extra constants.
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The following is a method of proving the Godel theorem that directly captures the idea that
the Godel sentence says "I am not provable". It goes by adding additional constants to the
narrow first order language of arithmetic; as we have formulated that language, it has only a
single constantjastanding for zero. We now add all of the othegsd&sa ...) which will

denote various numbers. Call the expanded language L*. If we havie af seioms in L,

once we know what we want the extra constants to ddrotell be obtained by adding to

[ all axioms of the forma; = 0(M"), where my is the number we wanga to denote.

(We may not care what certain of thg denote, in which case we do not add any axiom
involving a,+1to*.) Notice that the language L* and the axiom sysiérare a mere

variant of L and", since all we've done is to add special names for various particular
numbers, and nothing can be expressed or proved that couldn't be expressed or proved
already.

(a) Use the last remark to prove thdt it expanded to an axiom $étwith at most
one axiom of the given form for each constant, then any prdédféan be transformed
into a proof i by replacing each constant by the corresponding numeral and using the
axiom (X)(x=x).

(b) Hence, show that every theorent fbecomes a theorem bfwhen constants in
the theorem, if any, are replaced by the corresponding numerals. Also shbtishat
consistent iff” is, and that the same holds éoconsistency.

Now let us make a particular choice af,ras follows: if n is a Gddel number of a
formula A of L in which x does not occur bound (but in which variables other thanay
occur free), let mbe the least Godel number of the formulaAfpobtained from A by
naive substitution of xby a,+1 throughout, and include the sentenga & o(mn) in r*,

(Notice that intuitively, if A says something Afxthen under our interpretation of the
meaning of a.1, A(an+1) says "l have property A(X'. Observe that what numbers are the
Godel numbers of a given formula is independent of which interpretation we give to the
extra symbols.)

(c) Show that if" r.e., then so iB* and therefore so is the set of theoremBE*of

(d) Show that there is therefor&€laformula (%)B(x1, X2), where B(X, Xp) Is a
formula of Lim, and which is satisfied by precisely those numbers that are not Godel
numbers of theorems 6f We may assume that in this formujadoes not occur bound.
Let n be the smallest Godel number of this formula. Assumé teends Q. Prove that
if I is consistent, then £)B(an+1, X2) is true but not provable frof¥, and therefore that
(x2)B(0(Mn), x,) is also true but unprovable fram

(e) Show that if * is w-consistent, then ~g}B(an+1, X2) IS not provable fronh* and
that if " is w-consistent, ~(2§B(0(m”), Xp) is not provable fronh.

Remark: (d) and (e) prove Gddel's theorem botli fand for the original systeim. The

point of this exercise is to show that the use of "self-reference"” in Godelian arguments,
usually obtained by a rather indirect method, can be obtained by directly constructing a
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formula of the form "a is not provable”, where a rsaaneof the formula itself. Godel
himself may have been under a certain amount of misapprehension about this point. See his
Collected Worksyol. | (Oxford, 1986), p. 151, n. 15: "Contrary to appearances, such a
proposition involves no faulty circularity, for initially it [only] asserts that a certain well-
defined formula (namely, the one obtained fromdtheformula in the lexicographic order
by a certain substitution) is unprovablenly subsequently (and so to speak by chance)
does it turn out that this formula is precisely the one by which the proposition itself was
expressed (Emphasis added) In the present construction, this is not at all "by chance".
On the contrary, we have deliberately set up the denotation so that the formula refers to
itself. Nonetheless, there is no "faulty circularity”, because the constant a denotes the
(smallest) Godel number of a definite string of symbols, and this number is determined
independently of any interpretation of a. We can then assign that number to a as
denotation. There are other ways of accomplishing this type of 'direct’ self-reference.

(M In this version of the construction, why are infinitely many constants introduced?
Only one constant is used in the undecidable formula.

6. Letpbe a uniformization of the relation defined by W(Xjy>2x. Let S be the range of
0]

(a) Prove that Sisr.e.

(b) Prove that S intersects every infinite r.e. set.

(c) Prove that the complement of S is infinite.

(d) Prove that S is neither recursive nor 1-1 complete, citing a previous exercise.
Remark: This is the promised example of an r.e. set that is neither recursive nor 1-1
complete. As | have said, such sets rarely arise in practice unless we are trying to construct
them. Later it will be proved that is 1-1 complete.

94



