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1 Godel 2

We had concluded that PA in a certain sense can not see its own consis-
tency (Godel’s second incompleteness theorem). What do we mean by “in a
certain sense”? Well, of course, going all the way to the predicate Bew(z),
there were many choices that we have made. How to represent syntax and
syntactical operations? Which axiomatization of PA do we take, and how do
we represent this? Although these were all choices to be made, everybody
aggreed that they are natural choices.

Of course we could also make non-natural choices. We could say that
the sentence SO = S0 is a representation of the consistency of PA inside PA.
We just fix this representation like this just in the same way that we fixed
the representation of the symbol L to be SO. Under this representation we
see that PA does prove its own consistency.

Of course one can (and should) object here by saying that this represen-
tation is not a natural one in the sense that, first of all we do not represent
a sufficient part of SYNTAX to be able to compare that part of SYNTAX
and its representation. Second, The structure of the consistency statement
is by no means' reflected in the statement SO = S0.

There are, as we shall see, more natural representations for which the
second incompleteness theorem fails to hold. Therefor we consider Fefer-
man’s variant of Peano Arithmetic. The predicate Bewpap(z) is constructed
in precisely the same way as was Bewpa(z). The only difference is in the
arithmetical representation of the axiom set.

By PAy we denote the set containing all the axioms of PA with Godel
number at most y. In symbols: x € PAJy < Axpa(z) A x<y. It is now also
clear what we mean by Con(PATy).

1Someone could object here, “But the consistency of PA is true, whence any true state-
ment faithfully represents it”. But it is precisely this jump from truth to representation
in a formal system that we are allergic to.



Exercise 1.1 Give this definition. More general, describe how one would
get for some theory U the statement Con(U). Should U necessarily be an
arithmetical theory?

Definition 1.2 Axpar(z) := Axpa(z) A Con(PAx).

It is clear that extensionally PAF and PA are one and the same theories,
as PA and certainly every finite part of it is actually consistent. Intensionally
we are dealing with a completely different theory namely one that has a built
in consistency.

Exercise 1.3 Suppose that PAF = Pfpar(p,”L7). Reason to the effect that
PA + Pfpa(p,"L7).
Show that

e PAF Opapp — Opap,?
e PAF Opap — Oparp V Opa L,
e PAF ¢ < PAF F .

o [t turns out that Oparpp — OpaOpary is not for all ¢ provable. Is
this mot violating provable X1 -completeness?

Exercise 1.4 Show that PA F Con(PAF).

Shavrukov has written a nice paper that fully describes the behavior of
these two provability predicates when acting together in one system.[Sha94]

We have just seen that with some effort we can surpass the second in-
completeness theorem. The first however remains valid although other fixed
points have to be considered. In the case of PAF, one could object that the
way of representing the axioms of PAF (the same as those of PA) is not
natural. If we do fix a natural representation of our axioms® there is no
escape from the second incompleteness theorem.

Now, one still can object, that there were a lot of choices that were made
in the course of fixing our coding techniques. Might it be so that if we would
have chosen another Gédel numbering or another pairing function or another
representation of finite sequences, that then in such a case, PA does prove its
own consistency? To answer this question would include a description of a
possible coding technique. And really some demands should be made upon
the coding. For again there are simple* but somehow pathological codings

2We have returend to sloppy notation here. What would be the proper notation?

30ne could for example demand syntactical constraints like the formula representing
it being % or just ¥; for that matter.

4Primitive recursive!



known with really strange behavior.

In our program we now come quite naturally to the notion of inter-
pretability. For as we shall see, somehow a natural coding can be seen
as an interpretation. Interpretations do have an independent interest as is
described in the other handout.

2 Interpretations and their arithmetizations.

In the other handout we have defined the notion of interpretability. Some-
how this needs to be made a bit more precise. We will see that it is quite
understandable that nowhere in the literature anyone has ever fully worked
out the arithmetization process. This is just because it is a complete hassle
but obviously executable.

We will also not give a fully detailed treatment. However, we find it
instructive to reflect on some features. Again, what is our goal: to give
an arithmetization of U > V', the fact that there is a relative interpretation
(0, F') such that F and 6 are indeed of the required form and that U proves
any translated axiom of V.

Thus it seems reasonable to construct formulas:

e Domainspecifier;;(x) that is to hold on (codes of) formulas that have
one free variable and is provably (in U) non-empty.>

e Translation(z) that is to hold on (codes of) formulas that have one free
variable and meet all the conditions that a translation F' imposes.

e Interpretation(x) that expresses that x is a pair comprising a domain
specifier and a translation.

e A ¥ definiable function Termtrans(t, F, p) that translates the term ¢
with n free variables to a formula ¢ with the same n variables plus an
additional one, representing the “read-off variable”. In this formula ¢,
every occurence of a symbol of our language is replaced in the right
way with the corresponding formula that is provided by our translation
F. We will often refer to the value of the corresponding ¥-pterm as
t!" or even t/ for some interpretation j.

e A X definable function trans(p, F, J, ') that translates the formula ¢
with n free variables to a formula ' with precisely the same free n

®From now on we will omit the subscript U and the statement “(codes of)” and other
trivialities of this sort.



variables free such that every occurrence of a symbol of our language
is replaced in the right way with the corresponding formula that is
provided by our translation F' and moreover, every quantifier is rela-
tivized using §. We will often refer to the value of the corresponding
Y-pterm as ¢/,

If you think of how such arithmetical statements can best be made, im-
mediately one observes a problem of “variable clashes” where in the trans-
lation variables that were not bound become bound in the translation or
the other way round. These are technical matters concerning « conversion.
Sometimes one moves to a fresh set of variables that are only used during
the translation process.

Exercise 2.1 Which of the formulas above is likely to be the most involved
one? Ezxplain your choice.

In providing all these arithmetizations we should first realize how our
theories U and V are actually represented. In the general case, this is
rather more complicated than the case we are in. We commit ourselves to
only consider extensions of PA of the form PA + «. This leads us to the
following (not hard to write down in full detail (arithmetized!)) definition
of an interpretation.

Definition 2.2 An interpretation is a pair (5, F) where § is (the code of,
Ooooh no, we promised not to say these sort of things any more) a formula
with one variable that is actually a domain specifier. F is a quadruple of
pairs, consecutively written as

("07, Zero)

("8, Successor)

("+7, Addition)

("-7, Multiplication).

Here Zero, Successor, Addition and Multiplication are all formulas with the
required properties. For example for Zero we require that it be a formula
with precisely one variable which provably holds for precisely one element.

Now that we have become more concrete it is easier to think of how the
necessary formulas are composed.

5We have chosen to translate = to =. This is not a real restriction. If we would not
have done so, it seems strange to demand that there is just one element satisfying Zero.
They will only have to lie in the same equivalence class.



Definition 2.3 Supose we had all the above formulas at our disposal. We
then define Int(a, 3), we will more often write a > 3, to be the formula’

j(interpretation(5) A Va (Axpasg(z) — Ip (Pfpata(p,27))))
Note that this is a Y3 notion.

Exercise 2.4 Give the definition (in the style of Definition 2.3) of theo-
rems interpretability.

Exercise 2.5 Give a precise formulation of Axpag(x) using Axpa(x). Show
how theorem interpretability can be reduced to axiom interpretability.

Exercise 2.6 The identity interpretation s precisely what we think it should
be. Namely the one that does not do anything essential. Give this identity
interpretation (including the domain specifier).

Exercise 2.7 Suppose that PA - a — (3. Prove that PAF a> (3.
The previous exercise can be formalized giving rise to the following.
Exercise 2.8 Prove that PAFO(a — () — a> 3.

In the latter exercise o and (8 play no specific role so that indeed it
holds for any substitution and we have an interpretability principle of PA.
Actually we just made the first step in an arithmetical soundness proof of
ILM.

We can think of uniform operations on pairs of interpretations that are
useful. One of these constructions is the composition as is illustrated in the
next exercise.

Exercise 2.9 Prove that PA + (a> ) A (B> 7) — a> . Do this by
defining the composition operator. Describe how it should work rather than
giving the definition in full arithmetical detail.

Another operation on interpretations is the disjunction that is to be
defined and used in the next exercise.

Exercise 2.10 Prove that PA+ (a>~v) A (B>7vy) — aV B> 7.

The next exercise deals with an arithmetization of the fact that rela-
tivized interpretations give rise to relative consistency proofs.

Exercise 2.11 Prove that PA + (o> ) A Conae — Conf3.

"Note that we have chosen the notion of so-called azioms interpretability rather than
the notion of theorems interpretability.



3 More exercises

Exercise 3.1 Show that IL¥ (A>B)AN(A>C)— A>BAC.

Exercise 3.2 Show that IL¥ (A> B)V (B> A).

Exercise 3.3 Show that IL¥ A> B — O(A — B).

Exercise 3.4 Show that IL¥ A> B — O(A — BV $B).

Exercise 3.5 Show that IL¥ Ap> CA

Exercise 3.6 Describe (t = x)7.

Exercise 3.7 Show that the following statements are all provable in IL:
1. A A,

OOCAD CA,

(A B)AOB —-C)— A>C,

A (ANDO-A)V (AAN-O-4),

CA - C(ANTO-A),

A ANDO-A,

A AV OA,

ST S R R

AVOAD A,
9. AVB>C — (A>C)AN(B>C).
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