Exercises week 5.

1. A At the bottom of Page 19 there is a hint at the definition of $F_{v}(t)$. Give this definition in full detail. (Hint: it might be an idea to work with two sequences. One sequence σ that builds up F, and another τ, that is built up almost pari passu in the following sense. Everywhere in σ where reasonable, t is substituted for v to obtain τ, except at places where v is being quantified. At these places τ will be identical to σ.)

B On Page 43 , Boolos supposes a Σ-pterm sub (t, i, x). Read Footnotes 5 and 9 carefully and write down a formula $\operatorname{Sub}(\mathrm{t}, \mathrm{i}, \mathrm{x}, \mathrm{y})$. Of course you are allowed to use all previously defined formulas like Finseq and the like.
2. Prove by induction on x that $\forall x \exists y \operatorname{Num}(x, y)$ and that $\forall x \exists y \operatorname{Num}(x, y)$.
3. Should the first boldface 3 in Formula (58) of Chapter 3 really be boldface?
4. Calculate Num(3).
5. Calculate Num(0). Also calculate Num(Num(0)).
6. Calculate $\operatorname{sub}\left(0,17,\left\ulcorner v_{0}=\mathrm{S} 0\right\urcorner\right)$. Also calculate $\operatorname{su}\left(0,17,\left\ulcorner v_{0}=\mathrm{S} 0\right\urcorner\right)$.
7. A Show that if $\mathrm{PA} \vdash \operatorname{Bew}(\ulcorner A\urcorner)$, then $\mathrm{PA} \vdash A$. (Hint: If $\mathrm{PA} \vdash \varphi$, then $\mathbb{N} \models \varphi$.
B Show that if $\operatorname{Bew}(x)$ were a Δ-formula in PA, then PA would be inconsistent. (Hint: Use provable Σ_{1}-completeness.)
8. True, false or ill-defined:

1. $\mathrm{PA} \vdash \operatorname{su}\left(v_{j}, j, \operatorname{su}\left(v_{j}, j,\left\ulcorner v_{j}=\mathrm{S} 0\right\urcorner\right)\right)=\left\ulcorner\operatorname{Num}\left(v_{j}\right)=\mathrm{S} 0\right\urcorner$
2. $\mathrm{PA} \vdash \operatorname{su}\left(v_{j}, j, \operatorname{su}\left(v_{j}, j,\left\ulcorner v_{j}=\mathrm{S} 0\right\urcorner\right)\right)=\left\ulcorner\operatorname{Num}\left(\operatorname{Num}\left(v_{j}\right)\right)=\mathrm{S} 0\right\urcorner$
3. $\mathrm{PA} \vdash \operatorname{su}\left(v_{j}, j, \operatorname{su}\left(v_{j}, j,\left\ulcorner v_{j}=\mathrm{S} 0\right\urcorner\right)\right)=\left\langle=,\left\langle\operatorname{Num}\left(v_{j}\right),\langle\ulcorner\mathrm{S}\urcorner,\ulcorner 0\urcorner\rangle\right\rangle\right\rangle$
4. None of the above options hold.

What about $\operatorname{su}\left(v_{j}, j, \operatorname{su}\left(v_{j}, j, \operatorname{su}\left(v_{j}, j,\left\ulcorner v_{j}=\mathrm{S} 0\right\urcorner\right)\right)\right)$?
9. Prove by induction on v_{j} that

$$
\begin{equation*}
\forall v_{j} \forall v_{i}\left(v_{i}=v_{j} \rightarrow \operatorname{Bew}\left[v_{i}=v_{j}\right]\right) \tag{*}
\end{equation*}
$$

(In the lectures we proved $(*)$ without using induction. This yielded a shorter witness y to $\operatorname{Pf}\left(y, \operatorname{su}\left(v_{j}, j, \operatorname{su}\left(v_{i}, i,\left\ulcorner v_{i}=v_{j}\right\urcorner\right)\right)\right)$. Compare this witness to the inductively defined witness in this exercise.)
10. Give the missing argument for disjunction on Page 48.
11. Do we have $\vdash \operatorname{Bew}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Bew}[\varphi]$? And do we have $\vdash \operatorname{Bew}[\varphi] \rightarrow$ $\operatorname{Bew}(\ulcorner\varphi\urcorner)$? Provide a proof or a counterexample.
12. Show that the formula $\square(\square p \rightarrow q) \vee \square(\square q \rightarrow p)$ is valid in all linearly ordered Kripke models (more generally, if the relation R is reflexive and linear).
13. How many pairwise inequivalent formulas in one propositional variable are there (a) in classical propositional logic; (b) in K4.
(Answer for (b): infinitely many. Hint: iterate \square. Show inequivalence by exhibiting countermodels.)
14. Find realizations $*$ and \sharp such that

- $\mathrm{PA} \vdash(\square p)^{*}$
- $\mathrm{PA} \nvdash(\square p)^{\#}$

15. Show that $\mathbf{G L} \vdash \neg \square \square \perp \rightarrow(\neg \square \neg \square \perp \wedge \neg \square \neg \neg \square \perp)$. What is the arithmetical content of this formula?
16. Show that GLト $\square((\square p \rightarrow p) \rightarrow \neg \square \square \perp) \rightarrow \square \square \perp$.
17. Show that $\mathbf{K 4} \vdash \square A \rightarrow \square(\square A \wedge A)$
18. Show that $\mathbf{K} \vdash \square A \rightarrow \square(\square \square A \wedge \square A \rightarrow \square A \wedge A)$ and also that $\mathbf{K} \vdash \square A \rightarrow \square(\square(\square A \wedge A) \rightarrow \square A \wedge A)$. Show that $\mathbf{K} \vdash \square(\square A \wedge A) \rightarrow \square \square A$. Finally show that $\mathbf{G L} \vdash \square A \rightarrow \square \square A$. Prove that $\mathbf{K} \mathbf{4} \subset \mathbf{G L}$.
19. Prove that $\mathbf{K 4} \nvdash \square(\square A \rightarrow A) \rightarrow \square A$. Is it possible to find a finite countermodel?
20. (a) Give an example of a K4-consistent formula which is not S4-consistent. (b) The same question for the logics \mathbf{K} and $\mathbf{K 4}$.
21. Clonnectives (forget about this term after this exercise (Lev says they are just called connectives)) comprise the following symbols: $\{\neg, \square, \diamond, \rightarrow$ $, \wedge, \vee\}$. If a modal sentence contains n clonnectives, how many subsentences does it maximally have? Give an example where this maximum is met and give an example where this maximum is not met.
22. Show: $\square(\square p \rightarrow p) \rightarrow \square p$ is true in all upwards well-founded ${ }^{1}$, transitive Kripke models.
23. Let M be a Kripke model and $x \in M$. Show: the set $\{\phi:(M, x) \models \phi\}$ is maximal consistent.
24. Show that any maximal consistent set of formulas is closed under modus ponens.
[^0]
[^0]: ${ }^{1}$ That is, there is no infinite chain $x_{1} R x_{2} R x_{3} R \ldots$ of elements of the model.

