
Exercises week 5.

1. A At the bottom of Page 19 there is a hint at the definition of Fv(t).
Give this definition in full detail. (Hint: it might be an idea to work
with two sequences. One sequence σ that builds up F , and another τ ,
that is built up almost pari passu in the following sense. Everywhere
in σ where reasonable, t is substituted for v to obtain τ , except at
places where v is being quantified. At these places τ will be identical
to σ.)

B On Page 43, Boolos supposes a Σ-pterm sub(t, i, x). Read Footnotes
5 and 9 carefully and write down a formula Sub(t, i, x, y). Of course
you are allowed to use all previously defined formulas like Finseq and
the like.

2. Prove by induction on x that ∀x∃y Num(x, y) and that ∀x∃y Num(x, y).

3. Should the first boldface 3 in Formula (58) of Chapter 3 really be boldface?

4. Calculate Num(3).

5. Calculate Num(0). Also calculate Num(Num(0)).

6. Calculate sub(0, 17, pv0 = S0q). Also calculate su(0, 17, pv0 = S0q).

7. A Show that if PA ` Bew(pAq), then PA ` A. (Hint: If PA ` ϕ, then
N |= ϕ.)

B Show that if Bew(x) were a ∆-formula in PA, then PA would be
inconsistent. (Hint: Use provable Σ1-completeness.)

8. True, false or ill-defined:

1. PA ` su(vj , j, su(vj , j, pvj = S0q)) = pNum(vj) = S0q

2. PA ` su(vj , j, su(vj , j, pvj = S0q)) = pNum(Num(vj)) = S0q

3. PA ` su(vj , j, su(vj , j, pvj = S0q)) = 〈=, 〈Num(vj), 〈pSq, p0q〉〉〉
4. None of the above options hold.

What about su(vj , j, su(vj , j, su(vj , j, pvj = S0q)))?

9. Prove by induction on vj that

∀vj∀vi (vi = vj → Bew[vi = vj ]) (∗)

(In the lectures we proved (∗) without using induction. This yielded a
shorter witness y to Pf(y, su(vj , j, su(vi, i, pvi = vjq))). Compare this wit-
ness to the inductively defined witness in this exercise.)

10. Give the missing argument for disjunction on Page 48.

11. Do we have ` Bew(pϕq) → Bew[ϕ]? And do we have ` Bew[ϕ] →
Bew(pϕq)? Provide a proof or a counterexample.
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12. Show that the formula 2(2p → q) ∨ 2(2q → p) is valid in all linearly
ordered Kripke models (more generally, if the relation R is reflexive and
linear).

13. How many pairwise inequivalent formulas in one propositional variable are
there (a) in classical propositional logic; (b) in K4.
(Answer for (b): infinitely many. Hint: iterate 2. Show inequivalence by
exhibiting countermodels.)

14. Find realizations ∗ and ] such that

• PA ` (2p)∗

• PA 0 (2p)]

15. Show that GL ` ¬22⊥ → (¬2¬2⊥∧¬2¬¬2⊥). What is the arithmeti-
cal content of this formula?

16. Show that GL ` 2((2p→ p)→ ¬22⊥)→ 22⊥.

17. Show that K4 ` 2A→ 2(2A ∧A)

18. Show that K ` 2A→ 2(22A ∧2A→ 2A ∧A) and also that
K ` 2A→ 2(2(2A ∧A)→ 2A ∧A). Show that
K ` 2(2A ∧ A) → 22A. Finally show that GL ` 2A → 22A. Prove
that K4 ⊂ GL.

19. Prove that K4 0 2(2A → A) → 2A. Is it possible to find a finite
countermodel?

20. (a) Give an example of a K4-consistent formula which is not S4-consistent.
(b) The same question for the logics K and K4.

21. Clonnectives (forget about this term after this exercise (Lev says they
are just called connectives)) comprise the following symbols: {¬,2,3,→
,∧,∨}. If a modal sentence contains n clonnectives, how many subsen-
tences does it maximally have? Give an example where this maximum is
met and give an example where this maximum is not met.

22. Show: 2(2p → p) → 2p is true in all upwards well-founded1, transitive
Kripke models.

23. Let M be a Kripke model and x ∈ M . Show: the set {φ : (M,x) |= φ} is
maximal consistent.

24. Show that any maximal consistent set of formulas is closed under modus
ponens.

1That is, there is no infinite chain x1Rx2Rx3R . . . of elements of the model.
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