Exercises week 2.

- 1. Provide a reasoning to the effect that $PA \vdash 3 \times 2 = 6$.
- 2. Show by means of the explicit definition of freeness on page 19 that v_3 is free in $v_3 = v_4 \rightarrow \forall v_2 \ (v_2 = v_4)$, and in $v_3 = 4 \rightarrow \forall v_3 \ (v_3 = 3)$.
- 3. Explicitly spell out the definition of $F_x(t)$.
- 4. Reason to the effect that $PA \vdash \forall \vec{x} \exists ! y \ F(\vec{x}, y) \rightarrow \forall \vec{x} \ (\exists y \ (F(\vec{x}, y) \land A(y)) \leftrightarrow \forall y \ (F(\vec{x}, y) \rightarrow A(y))).$
- 5. Dissabreviate, that is to say, write out, B(h(g(x)), g(x)) in two different ways.
- 6. Show that $\neg(\forall y < x, A(y)) \leftrightarrow \exists y < x, A(y),$ and $\neg(\exists y < x, A(y)) \leftrightarrow \forall y < x, \neg A(y).$
- 7. Recast the definition on Page 25 of strict Σ -formula in terms of finite sequences as was done for the definition of terms of PA.
- 8. Prove that every atomic formula is a Σ -formula.
- 9. Prove that the negation of an atomic formula is a Σ -formula.
- 10. Express Goldbach's conjecture by a Π_1 -sentence. Express its negation by a strict Σ -sentence.
- 11. Prove the following statement: Let π be a Π_1^0 -statement. If π is an undecidable statement of PA, then $\mathbb{N} \models \pi$.
- 12. Give a proof strategy to show Lemma (21) on Page 27. We do not ask for full proofs here.
- 13. Give an inductive definition of the set of closed terms. Show that this set is equal to the set of terms where 0 is substituted for all the free variables.
- 14. Write down some different closed terms that all denote the number 10. What is the shortest one?
- 15. Show that v_i is free in ∃x ((x + v_i) = x ⋅ x) conform our definition on page 19.
 (Recall that ∃ is an abbreviation!)
- 16. Show that $(x + v_i)_x(v_i + 3) = ((v_i + 3) + v_i)$ and that $(x \cdot x)_x(v_i + 3) = ((v_i + 3) \cdot (v_i + 3))$ by applying our definition of substitution on page 19(footnote). Argue (informally) that we would like $(x + v_i = x \cdot x)_x(v_i + 3) = (v_i + 3 + v_i = (v_i + 3) \cdot (v_i + 3))$.
- 17. Provide proofs in PA of Lemmas (3) and (4) of Chapter 2.
- 18. Provide proofs in PA of Lemmas (5) and (6) of Chapter 2.

- 19. Prove Lemma (15) on Page 23.
- 20. Give a deatailed proof of (8) on Page 21 of Chapter 2.
- 21. We have seen the proof of the following fact. For every closed term t, for all i, if t = i, then $PA \vdash t = i$. As the set of closed terms is an inductively defined set, we could do our proof by closed term induction. We omitted the following inductive step from this proof.

If $t = t_1 \times t_2$ and t = i, then $PA \vdash t = \mathbf{i}$. Of course you work under the assumptions that $\forall i \ (t_1 = i \rightarrow PA \vdash t_1 = \mathbf{i})$ and $\forall i \ (t_2 = i \rightarrow PA \vdash t_2 = \mathbf{i})$. Write out the proof of this step.

22. Formulate Theorem (17) on Page 25, Σ_1 completeness in such a way that the inductive structure of it becomes evident.