Exercises week 2.

1. Provide a reasoning to the effect that $\mathrm{PA} \vdash 3 \times 2=6$.
2. Show by means of the explicit definition of freeness on page 19 that v_{3} is free in $v_{3}=v_{4} \rightarrow \forall v_{2}\left(v_{2}=v_{4}\right)$, and in $v_{3}=4 \rightarrow \forall v_{3}\left(v_{3}=3\right)$.
3. Explicitely spell out the definition of $F_{x}(t)$.
4. Reason to the effect that
$\mathrm{PA} \vdash \forall \vec{x} \exists!y F(\vec{x}, y) \rightarrow \forall \vec{x}(\exists y(F(\vec{x}, y) \wedge A(y)) \leftrightarrow \forall y(F(\vec{x}, y) \rightarrow A(y)))$.
5. Dissabreviate, that is to say, write out, $B(h(g(x)), g(x))$ in two different ways.
6. Show that $\neg(\forall y<x, A(y)) \leftrightarrow \exists y<x, A(y)$,

$$
\text { and } \quad \neg(\exists y<x, A(y)) \leftrightarrow \forall y<x, \neg A(y) \text {. }
$$

7. Recast the definition on Page 25 of strict Σ-formula in terms of finite sequences as was done for the definition of terms of PA.
8. Prove that every atomic formula is a Σ-formula.
9. Prove that the negation of an atomic formula is a Σ-formula.
10. Express Goldbach's conjecture by a Π_{1}-sentence. Express its negation by a strict Σ-sentence.
11. Prove the following statement: Let π be a Π_{1}^{0}-statement. If π is an undecidable statement of PA, then $\mathbb{N} \models \pi$.
12. Give a proof strategy to show Lemma (21) on Page 27. We do not ask for full proofs here.
13. Give an inductive definition of the set of closed terms. Show that this set is equal to the set of terms where 0 is substituted for all the free variables.
14. Write down some different closed terms that all denote the number 10. What is the shortest one?
15. Show that v_{i} is free in $\exists x\left(\left(x+v_{i}\right)=x \cdot x\right)$ conform our definition on page 19.
(Recall that \exists is an abbreviation!)
16. Show that $\left(x+v_{i}\right)_{x}\left(v_{i}+3\right)=\left(\left(v_{i}+3\right)+v_{i}\right)$ and that
$(x \cdot x)_{x}\left(v_{i}+3\right)=\left(\left(v_{i}+3\right) \cdot\left(v_{i}+3\right)\right)$ by applying our definition of substitution on page 19 (footnote). Argue (informally) that we would like $\left(x+v_{i}=\right.$ $x \cdot x)_{x}\left(v_{i}+3\right)=\left(v_{i}+3+v_{i}=\left(v_{i}+3\right) \cdot\left(v_{i}+3\right)\right)$.
17. Provide proofs in PA of Lemmas (3) and (4) of Chapter 2.
18. Provide proofs in PA of Lemmas (5) and (6) of Chapter 2.
19. Prove Lemma (15) on Page 23.
20. Give a deatailed proof of (8) on Page 21 of Chapter 2.
21. We have seen the proof of the following fact. For every closed term t, for all i, if $t=i$, then $\mathrm{PA} \vdash t=\mathbf{i}$. As the set of closed terms is an inductively defined set, we could do our proof by closed term induction. We omitted the following inductive step from this proof.

If $t=t_{1} \times t_{2}$ and $t=i$, then $\mathrm{PA} \vdash t=\mathbf{i}$. Of course you work under the assumptions that $\forall i\left(t_{1}=i \rightarrow \mathrm{PA} \vdash t_{1}=\mathbf{i}\right)$ and $\forall i\left(t_{2}=i \rightarrow \mathrm{PA} \vdash t_{2}=\mathbf{i}\right)$. Write out the proof of this step.
22. Formulate Theorem (17) on Page $25, \Sigma_{1}$ completeness in such a way that the inductive structure of it becomes evident.

