Final exam

The Logic of Provability and Interpretability

The exam is from 13:00-16:00.
You are allowed to use the book and the notes from the internet.
Write your name and student number on every paper you hand in.

1. Decide for each of the following formulas if they are provable in GL or not. Motivate your answer.
(a) $\square(A \rightarrow B) \vee \square(B \rightarrow A)$
(b) $\square(\square A \rightarrow \square B) \vee \square(\square B \rightarrow \square A)$
(c) $\square(\square A \rightarrow A) \rightarrow \square(\square A \wedge A)$
(d) $\square(A \rightarrow(\square B \rightarrow B)) \rightarrow \square(A \rightarrow B)$
(e) $\diamond(p \wedge \neg q) \rightarrow \diamond(p \wedge \neg q \wedge \square(p \rightarrow q))$
2. (a) Write down a Δ_{0}-formula Divides (a, b), that holds on a and b iff (if and only if) a divides b. We will also write $a \mid b$.
(b) Write down a Δ_{0}-formula Prime (a), that holds on a iff a is a prime number. (You may use the abbreviation that denotes the formula you have just defined in 2a .)
(c) Goldbach's conjecture states that every even number larger than two can be written as the sum of two prime numbers. Express Goldbach's conjecture by a $\Pi\left(\Pi_{1}^{0}\right)$ sentence.
(d) If PA does not prove the negation of goldbach's conjecture, then it must actually be true. Explain this.
3. (a) Prove that IL $\vdash \square A \leftrightarrow \neg A \triangleright \perp$.
(b) Rewrite Löb's axiom to an equivalent formula only containing the \triangleright symbol.
4. In this exercise G_{1} and G_{2} are two (different) fixed points of $\neg \operatorname{Bew}(x)$, that is, PA $\vdash G_{1} \leftrightarrow \neg \operatorname{Bew}\left(\left\ulcorner G_{1}\right\urcorner\right)$ and $\mathrm{PA} \vdash G_{2} \leftrightarrow \neg \operatorname{Bew}\left(\left\ulcorner G_{2}\right\urcorner\right)$.
(a) Give an elementary proof of the fact that $\mathrm{PA} \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Bew}\left(\left\ulcorner G_{1}\right\urcorner\right)$. (Hint: Try to prove the contraposition by applying provable Σ_{1-} completeness.)
(b) Prove that PA $\vdash G_{1} \leftrightarrow G_{2}$. (You may use theorems from the book.)
(c) Now use the fact that actually PA $\vdash G_{1} \leftrightarrow \operatorname{Con}(T)$ to show that $\mathrm{PA} \nvdash \operatorname{Con}(\mathrm{T}) \rightarrow \neg \operatorname{Bew}\left(\left\ulcorner\neg G_{1}\right\urcorner\right)$. (We would need here ω-consistency or 1-consistency.)
5. (a) Show that IL $\vdash A \triangleright \diamond B \rightarrow \diamond A \triangleright B$.
(b) Show that $\mathbf{I L} \nvdash(A \triangleright B) \vee(B \triangleright A)$.
(c) Show that ILM $\vdash A \triangleright \diamond B \rightarrow \square(A \rightarrow \diamond B)$.
6. This exercise concerns the iteration of consistency statements. We define a sequence of sentences inductively as follows.

$$
\begin{aligned}
& \operatorname{Con}^{0}(\top):=\top \\
& \operatorname{Con}^{n+1}(\top):=\operatorname{Con}_{\mathrm{PA}}\left(\operatorname{Con}^{n}(\top)\right) \quad\left(=\neg \operatorname{Bew}_{\mathrm{PA}}\left(\left\ulcorner\neg \operatorname{Con}^{n}(\top)\right\urcorner\right)\right)
\end{aligned}
$$

Furthermore, we define a sequence of theories inductively as follows.

$$
\begin{aligned}
& \operatorname{Cons}^{0}(\mathrm{PA}):=\mathrm{PA} \\
& \operatorname{Cons}^{n+1}(\mathrm{PA}):=\operatorname{Cons}^{n}(\mathrm{PA})+\operatorname{Con}_{\text {Cons }^{n}(\mathrm{PA})}(\top)
\end{aligned}
$$

(a) Show that $\mathrm{PA} \vdash \square_{\mathrm{PA}+\alpha} \beta \leftrightarrow \square_{\mathrm{PA}}(\alpha \rightarrow \beta)$. (We have omitted the quotes \urcorner here.)
(b) Use 6a to show that PA $\vdash \diamond_{\mathrm{PA}+\alpha} \top \leftrightarrow \diamond_{\mathrm{PA}} \alpha$.
(c) Apply the definition to write down the expression for $\operatorname{Cons}^{2}(\mathrm{PA})$.
(d) We call two theories U and V extensionally equivalent, we write $U \Leftrightarrow V$, iff they have the same set of theorems.
Prove by induction on n that

$$
\mathrm{PA}+\operatorname{Con}^{n}(\mathrm{~T}) \Leftrightarrow \operatorname{Cons}^{n}(\mathrm{PA}) .
$$

