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1 Some definitions

In this note we will provide a proof of the modal completeness of GL which is
different from that of Boolos.

First we define a new modal consequence relation.

Definition 1.1 Let Γ be a set of GL formulas. If A is derivable from Γ using
only theorems of GL and Modus Ponens, we write Γ `GL A.

It is well known that we have the deduction theorem for this notion of
inference.

Theorem 1.2 Deduction Theorem Γ, A `GL B ⇔ Γ `GL A→ B.

Clearly if `GL A, also GL ` A.

Definition 1.3 We call a set Γ consistent if Γ 6`GL ⊥.

We suppose our language is countably infinite. The following lemma is
reminiscent to that of Lindenbaum and as a matter of fact, is proved in precisely
the same manner.

Lemma 1.4 Every GL-consistent set of sentences A can be extended to a max-
imal GL-consistent one.

The main idea of proving completeness is the same as always. We suppose
GL 6` A and we are going to make a (tree) model M such that M, r  ¬A. We
will work with infinite sets of sentences but actually we are only interested in a
finite part of it. Of course this part is precisely the part containing A and all
of its subformulas and single negations. The single negation of a formula of the
form ¬A is defined to be just A. The single negation of a formula that is not of
the form ¬A is just the regular negation.

Definition 1.5 A labeled GL frame is a triple 〈M,R, ν〉. Here 〈M,R〉 is a
GL frame and ν is a map that assigns to each world w in M a maximal GL-
consistent set ν(w).
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Definition 1.6 For two sets of modal sentences Γ and ∆ we define Γ ≺� ∆ to
hold iff �A ∈ Γ⇒ �A,A ∈ ∆.

Definition 1.7 A labeled frame 〈M,R, ν〉 is adequate if R is a transitive rela-
tion and xRy ⇒ ν(x) ≺� ν(y).

Every adequate labeled frame can be considered as a Kripke model by defin-
ing x  p ⇔ p∈ν(x). Actually we will not make any notational distinction
between these two.

Definition 1.8 Let D be a set of formulas and let 〈M,R, ν〉 be a labeled ade-
quate frame. We say that a truth lemma holds in 〈M,R, ν〉 w.r.t. D if

∀A∈D [〈M,R, ν〉, x ` A⇔ A∈ν(x)].

Definition 1.9 Let D be a set of formulas. A D-problem in a labeled frame
〈M,R, ν〉 is a pair 〈x,¬�A〉 such that x∈M and ¬�A∈ν(x) and for no y with
xRy we have ¬A ∈ ν(y).

We will assume that phrases like “a problem in x” and the like are completely
unambiguous.

2 The construction

It is easy to prove the following lemma.

Lemma 2.1 Let D be a set of formulas that is closed under subformulas and
single negation. Let 〈M,R, ν〉 be a labeled frame. A truth lemma holds in
〈M,R, ν〉 w.r.t. D iff there are no D-problems in 〈M,R, ν〉.

Our strategy to prove completeness is now evident. By successively eliminating
problems we finally get a model for which we have a truth lemma with respect to
a set of sentences containing the one for which we had to come up with a coun-
termodel. The following lemma will be the main engine behind our construction
method.

Lemma 2.2 Let Γ be a maximal GL-consistent set of sentences with ¬�A ∈ Γ.
There exists a a maximal GL-consistent set of sentences ∆ such that Γ ≺� ∆
containing both ¬A and �A.

Proof of Lemma 2.2. Suppose the contrary, that is

{B,�B | �B ∈ Γ} ∪ {¬A,�A} ` ⊥

In this case we get for some n, that

∧n∧
i=0

�Bi,¬A,�A ` ⊥.
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By the Deduction theorem we get

GL `
∧n∧
i=0

�Bi → (�A→ A).

Now, as there are no assumptions, we can do a necessitation and a distribution
axiom to obtain.

GL ` �(
∧n∧
i=0

�Bi)→ �(�A→ A). (∗)

By an instantiation of �p→ ��p we see that

GL ` �(
∧n∧
i=0

�Bi)↔
∧n∧
i=0

�Bi.

Combining this with (∗) and applying Löb’s axiom we get

GL `
∧n∧
i=0

�Bi → �A.

But this clearly violates the assumption that Γ is consistent.
qed

We now prove the completeness theorem.

Theorem 2.3 Completeness Let A be such that GL 6` A. We can find a tree
model M such that at the root r, ¬A holds.

Proof of Theorem 2.3. Let D be the smallest set of formulas containing
both all the subformulas of A and their (single) negations.

Start with a labeled GL-frame F0, consisting of just one point (the root) r.
We set ν(r) = Γ where Γ is some maximal consistent set containing ¬A.

We define level(y), for points y living in some extension of F0 to be the
length of the longest R-chain starting in r and ending in y. By definition we
have level(r)=0.

Lemma 2.2 provides us a way to eliminate a D-problem in an arbitrary level
of some labeled adequate frame Fn by adding a new world together with its
label to Fn. Although the idea is completely clear, let us spell out how this
eliminations runs.

Let therefor Fn be given by 〈Mn, Rn, νn〉 and let 〈x,¬�A〉 be some D-
problem. Let y be some object not yet in Mn. Let ∆ be the maximal GL-
consistent set that is provided by Lemma 2.2 by taking Γ to be νn(x). We

define Fn+1 := 〈Mn ∪ {y}, Rn ∪ {〈x, y〉}
Tr
, νn ∪ {〈y,∆〉}〉. Here S

tr
denotes

the transitive closure the relation S, that is, the smallest relation containing S
that contains 〈x, z〉 whenever it contains both 〈x, y〉 and 〈y, z〉. It is now also
immediately clear that the label of the newly added world y contains stricly less
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problems than x does. This is the key observation to obttain termination of our
elimination process. Also it is clear that the newly obtained labeled frame is
again adequate.

It is clear that the number of D-problems in r is finite. Now we can eliminate
all problems at a certain level by the process we described above. As the newly
added worlds have strictly less problems, the process finally terminates.

qed

We note that changing the order in which you eliminate problems can yield
different counter models. The “minimal countermodel” is obtained by always
first eliminating problems at the highest level.

3 Applications

The step-by-step method can now be used for example to construct counter
models. The method in full detail works with maximal consistent sets. Of
course we will not write these down in there full description. Rather we will
just write a finite part of information of this set. As we will later see, the range
of applications is rather wide. We will now just give one worked out example of
this step-by-step method.

Lemma 3.1 GL 6` A→ �A (∗)

Proof of Lemma 3.1. If (∗) were indeed the case we would be able to start
the construction. So, let us do so.

We have assumed that (∗) as a scheme. Thus, we are to come up with an
instantiation of the scheme that is not provable. We take as our instantiation
A := p and we commit ourselves to show that GL 6` p → �p. Supposing this
is so, we can find a maximal GL consistent set Γ that contains ¬(p → �p).
We form our set D relative to ¬(p → �p). That is, D := {¬(p → �p), (p →
�p),�p,¬�p, p,¬p}.

We are going to make a labeled frame for which a truth lemma w.r.t. D holds.
In view of Lemma 2.1 we are to give a labeled frame without D-problems. Our
first approach of a countermodel is the labeled frame consisting of just one world
r with label Γ.

As ¬(p → �p) ∈ Γ and as Γ is a maximal consistent set, both p and ¬�p
are in Γ. Clearly 〈r,¬�p〉 is a problem. Lemma 2.2 gives us a ∆ such that
Γ ≺� ∆ and ¬p,�p ∈ ∆. As �p ∈ ∆, ¬�p 6∈ ∆ and so ∆ is problem free.
Our final labeled frame is thus 〈M,R, ν〉 with M = {r, y}, R = {〈r, y〉} and
ν = {〈r,Γ〉, 〈y,∆〉}. The corresponding model is obtained by just reading of the
values of the propositional variables. Of course the only salient facts are those
concerning p. Thus r  p and y  ¬p. We now easily check that this is indeed
a countermodel, that is, that indeed at the root r we have what we wanted. In
symbols r  ¬(p → �p). Hereby we conclude (invoking the soundness of GL)
that GL 6` p→ �p.

qed
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