next up previous contents
Next: The construction Up: The modal completeness and Previous: The general construction of

Tools

Definition 4.1   With a fixed sentence ${\mathit A}$ we associate a corresponding set of relevant sentences $R({\mathit A})$, or sometimes written just as R. This is the smallest set of sentences containing $\neg
\mathit{A}$ which is closed under taking single negation and subformulas.

Definition 4.2   We say Prop(B) is the set of propositional variables occurring in B and define $\widetilde{M}:= \{ \Gamma \mid \Gamma \mbox{ maximal
$\mathit{ILM}$ -consistent...
...l
\mathrm{A} \in \Gamma , \ \ Prop( \mathrm{A}) \subset Prop(
\mathcal{A}) \}. $

Definition 4.3   $ \mathit{BR}(\mathcal{A})$ is defined to be the smallest set including the relevant sentences $R(\mathcal{A})$, such that if $ A \rhd B \in \mathit{R}( \mathcal{A} )$ then both $ \Box \neg A $ and $ \Box \neg B $ are in $ \mathit{BR}(\mathcal{A})$.

Definition 4.4   We define for $\Gamma , \Delta \in \widetilde{M} $
$\Gamma \prec \Delta \Leftrightarrow \forall \mathrm{A}\ ( \ \Box \mathrm{A}
\i...
...s \Box
\mathrm{A} \in (\Delta \setminus \Gamma ) \cap \mathit{BR}(\mathcal{A})$

Definition 4.5   We define for $\Gamma , \Delta \in \widetilde{M} $
$\Gamma \prec_{\mbox{\footnotesize {B}}} \Delta \Leftrightarrow \Gamma \prec \De...
...} \in \Gamma
\mbox{ one has } \neg \mathrm{A} , \Box
\neg \mathrm{A} \in \Delta$. We say that $ \Delta $ is a B-critical successor of $\Gamma$.

The following three lemmas form the mathematical fundaments of the modal completeness proof of $\mathit{ILM}$.

Lemma 4.6   Let $ \Gamma \in \widetilde{M} $ and $ \neg ( A \rhd B ) \in \Gamma \cap R $. There exists $ \Delta $ such that $ \Gamma \prec_{\mbox{\footnotesize {B}}} \Delta$and $ A \in \Delta $. Moreover, $ \Delta $ can be chosen to be maximal w.r.t. the number of $\Box$-formula`s.


\begin{trivlist}% latex2html id marker 1622
\item[\hskip\labelsep{\sc
Proof~of~{...
...footnotesize {B}} \! \succ \Gamma$ .
\par\hspace*{\fill} {\sc qed}\end{trivlist}

Lemma 4.7  

Let $ \Gamma \in \widetilde{M} $ with $ A \rhd B \in \Gamma $ and let $\Delta \in \widetilde{M} $ be such that $ \Gamma \prec_{\mbox{\footnotesize {C}}} \Delta $ and $ A \in \Delta $. There exists $ \Delta' \ _{\footnotesize {C}} \! \succ \Gamma$ , with $ B \in \Delta' $.


\begin{trivlist}% latex2html id marker 1631
\item[\hskip\labelsep{\sc
Proof~of~{...
...lta'$\space is thereby demonstrated.
\par\hspace*{\fill} {\sc qed}\end{trivlist}

Lemma 4.8  

Let $ \Gamma \in \widetilde{M} $ with $ A \rhd B \in \Gamma $ and let $\Delta \in \widetilde{M} $ be such that $ \Gamma \prec_{\mbox{\footnotesize {C}}} \Delta $ and $ A \in \Delta $. There exists $ \Delta' \ _{\footnotesize {C}} \! \succ \Gamma$ , $ B \in \Delta' $ and moreover
$ \Box E \in \Delta \Rightarrow \Box E \in
\Delta'$. Again $\Delta' $ can be chosen to be maximal with respect to $\Box$-inclusion.


 \begin{trivlist}% latex2html id marker 1640
\item[\hskip\labelsep{\sc
Proof~of~{...
...the same as in lemma \ref{lemm:een}.
\par\hspace*{\fill} {\sc qed}\end{trivlist}


next up previous contents
Next: The construction Up: The modal completeness and Previous: The general construction of
Joost Joosten
2000-02-07