
Catala: A Programming Language for the Law

Denis Merigoux, Nicolas Chataing, Jonathan Protzenko

Inria, Microsoft Research

April 27th, 2022

Law and Algorithms

US Tax Code, Section 121
(a) Exclusion
Gross income shall not include gain from the sale or exchange of property if, during the 5-year
period ending on the date of the sale or exchange, such property has been owned and used by
the taxpayer as the taxpayer’s principal residence for periods aggregating 2 years or more.
(b) Limitations — (1) In general
The amount of gain excluded from gross income under subsection (a) with respect to any sale
or exchange shall not exceed $250,000.

Scope of this work

Ï Decision without human intervention
Ï No ambiguity in the decision procedure
Ï Quantitative data

Law and Algorithms

US Tax Code, Section 121
(a) Exclusion
Gross income shall not include gain from the sale or exchange of property if, during the 5-year
period ending on the date of the sale or exchange, such property has been owned and used by
the taxpayer as the taxpayer’s principal residence for periods aggregating 2 years or more.
(b) Limitations — (1) In general
The amount of gain excluded from gross income under subsection (a) with respect to any sale
or exchange shall not exceed $250,000.

Scope of this work

Ï Decision without human intervention
Ï No ambiguity in the decision procedure
Ï Quantitative data

Law and Algorithms

US Tax Code, Section 121
(a) Exclusion
Gross income shall not include gain from the sale or exchange of property if, during the 5-year
period ending on the date of the sale or exchange, such property has been owned and used by
the taxpayer as the taxpayer’s principal residence for periods aggregating 2 years or more.
(b) Limitations — (1) In general
The amount of gain excluded from gross income under subsection (a) with respect to any sale
or exchange shall not exceed $250,000.

Scope of this work

Ï Decision without human intervention
Ï No ambiguity in the decision procedure
Ï Quantitative data

Turning Law into (Pseudo-)Code

INCOME_EXCLUSION =
if

...

then GAIN_FROM_SALE_OR_EXCHANGE
else $0

“Gross income shall not include gain from the sale or exchange of property if, [...]”

Turning Law into (Pseudo-)Code

INCOME_EXCLUSION =
if

... truncate(PERIODS_OWNED, DATE_SALE - 5 years) ...
and

... truncate(PERIODS_USED, DATE_SALE - 5 years) ...
then GAIN_FROM_SALE_OR_EXCHANGE
else $0

“[...] during the 5-year period ending on the date of the sale or exchange, such property
has been owned and used by the taxpayer as the taxpayer’s principal residence [...]”

Turning Law into (Pseudo-)Code

INCOME_EXCLUSION =
if

aggregate(truncate(PERIODS_OWNED, DATE_SALE - 5 years)) > 2 years
and

aggregate(truncate(PERIODS_USED, DATE_SALE - 5 years)) > 2 years
then GAIN_FROM_SALE_OR_EXCHANGE
else $0

“[...] for periods aggregating 2 years or more.”

Turning Law into (Pseudo-)Code

INCOME_EXCLUSION_UNCAPPED =
if

aggregate(truncate(PERIODS_OWNED, DATE_SALE - 5 years)) > 2 years
and

aggregate(truncate(PERIODS_USED, DATE_SALE - 5 years)) > 2 years
then GAIN_FROM_SALE_OR_EXCHANGE
else $0

INCOME_EXCLUSION =
if INCOME_EXCLUSION_UNCAPPED > $250,000
then $250,000 else INCOME_EXCLUSION_UNCAPPED

“The amount of gain excluded from gross income under subsection (a) with respect to
any sale or exchange shall not exceed $250,000.”

Public Legal Expert Systems: France

Name Open-source Language Size (lines)

Income tax open M/C 100k
Housing tax open C 10k
Corporate tax open Java 10k
Payroll taxes open SQL 20k
Social benefits open COBOL 6,9M
Unemployment benefits open Java 1,3M
Pensions closed ? ?
Estate tax closed ? ?

Not better in the US: IRS’ income tax in 60’s assembler!

https://federalnewsnetwork.com/tom-temin-commentary/2020/01/irs-programming-mystery-continues/

Public Legal Expert Systems: France

Name Open-source Language Size (lines)

Income tax open M/C 100k
Housing tax open C 10k
Corporate tax open Java 10k
Payroll taxes open SQL 20k
Social benefits open COBOL 6,9M
Unemployment benefits open Java 1,3M
Pensions closed ? ?
Estate tax closed ? ?

Not better in the US: IRS’ income tax in 60’s assembler!

https://federalnewsnetwork.com/tom-temin-commentary/2020/01/irs-programming-mystery-continues/

Industrial Failures: Costly and Impactful

Louvois/SourceSolde
French army payroll software, very complicated rules for bonuses (174 of them).
⇒ 2011-2013: catastrophic failures, penniless soldiers
⇒ 465M€ computation errors in 2012
⇒ Project cost in 2018: 80M€ + 156M€.

Economic Impact Payment
US stimulus checks distributed to all US citizens.
⇒ Almost 1M received incorrect EIP in 2020
⇒ 10k ineligible due to commercial tax software error
⇒ 10k military ineligible due to programming expired data error

http://www.senat.fr/rap/a18-149-7/a18-149-711.html
https://files.gao.gov/reports/GAO-21-191/index.html#appendix24

Industrial Failures: Costly and Impactful

Louvois/SourceSolde
French army payroll software, very complicated rules for bonuses (174 of them).
⇒ 2011-2013: catastrophic failures, penniless soldiers
⇒ 465M€ computation errors in 2012
⇒ Project cost in 2018: 80M€ + 156M€.

Economic Impact Payment
US stimulus checks distributed to all US citizens.
⇒ Almost 1M received incorrect EIP in 2020
⇒ 10k ineligible due to commercial tax software error
⇒ 10k military ineligible due to programming expired data error

http://www.senat.fr/rap/a18-149-7/a18-149-711.html
https://files.gao.gov/reports/GAO-21-191/index.html#appendix24

Code Validation: Current State of the Art

Test cases
⇒ Common under-testing:
Ï Thousands of cases required in a typical legal expert system
Ï Complete review and update necessary after legislative change
Ï Written by lawyers, costly

Need of a better communication medium for lawyers and programmers

Code Validation: Current State of the Art

Test cases
⇒ Common under-testing:
Ï Thousands of cases required in a typical legal expert system
Ï Complete review and update necessary after legislative change
Ï Written by lawyers, costly

Need of a better communication medium for lawyers and programmers

Bringing Code and Law Together

Highlight of this work
Let’s mix code and law in a single document and make it easy for lawyers and
programmers to work on it.
⇒ Domain-specific Language for the Law

Three major contributions:
❶ Domain-specific language usable and reviewable by lawyers
❷ Formalized semantics for legal reasoning
❸ Partially certified compiler

Bringing Code and Law Together

Highlight of this work
Let’s mix code and law in a single document and make it easy for lawyers and
programmers to work on it.
⇒ Domain-specific Language for the Law

Three major contributions:
❶ Domain-specific language usable and reviewable by lawyers
❷ Formalized semantics for legal reasoning
❸ Partially certified compiler

❶ Catala: A Language Reviewable by lawyers

US Tax Code, Section 132, (c)(1) Qualified employee discount

The term “qualified employee discount” means any employee discount with respect to
qualified property or services to the extent such discount does not exceed—
(A) in the case of property, the gross profit percentage of the price at which the property
is being offered by the employer to customers

❶ Catala: A Language Reviewable by lawyers

US Tax Code, Section 132, (c)(1) Qualified employee discount

The term “qualified employee discount” means any employee discount with respect to
qualified property or services to the extent such discount does not exceed—
(A) in the case of property, the gross profit percentage of the price at which the property
is being offered by the employer to customers

scope QualifiedEmployeeDiscount :
definition qualified_employee_discount

under condition is_property consequence equals
if employee_discount >$ customer_price *$ gross_profit_percentage then

customer_price *$ gross_profit_percentage
else employee_discount

❶ Catala: A Language Reviewable by lawyers

US Tax Code, Section 132, (c)(1) Qualified employee discount

(B) in the case of services, 20 percent of the price at which the services are being offered
by the employer to customers.

❶ Catala: A Language Reviewable by lawyers

US Tax Code, Section 132, (c)(1) Qualified employee discount

(B) in the case of services, 20 percent of the price at which the services are being offered
by the employer to customers.

scope QualifiedEmployeeDiscount :
definition qualified_employee_discount

under condition is_services consequence equals
if employee_discount >$ customer_price *$ 20% then

customer_price *$ 20%
else employee_discount

The Non-Monotonic Legal Reasoning [Lawsky 2017, 2018]

(A) $500,000 Limitation for certain joint returns Paragraph (1) shall be applied by sub-
stituting “$500,000” for “$250,000” if— (i) either spouse meets the ownership requirements
of subsection (a) with respect to such property; (ii) both spouses meet the use requirements
of subsection (a) with respect to such property; and (iii) neither spouse is ineligible for the
benefits of subsection (a) with respect to such property by reason of paragraph (3).
(B) Other joint returns If such spouses do not meet the requirements of subparagraph (A),
the limitation under paragraph (1) shall be the sum of the limitations under paragraph (1)
to which each spouse would be entitled if such spouses had not been married. For purposes
of the preceding sentence, each spouse shall be treated as owning the property during the
period that either spouse owned the property.

US Tax Code, Section 121, (b), (2)

[Base case: condition] ⇒ [Base case: consequence]
[Exception: condition] ⇒ [Exception: consequence]

The Non-Monotonic Legal Reasoning [Lawsky 2017, 2018]

(A) $500,000 Limitation for certain joint returns Paragraph (1) shall be applied by sub-
stituting “$500,000” for “$250,000” if— (i) either spouse meets the ownership requirements
of subsection (a) with respect to such property; (ii) both spouses meet the use requirements
of subsection (a) with respect to such property; and (iii) neither spouse is ineligible for the
benefits of subsection (a) with respect to such property by reason of paragraph (3).
(B) Other joint returns If such spouses do not meet the requirements of subparagraph (A),
the limitation under paragraph (1) shall be the sum of the limitations under paragraph (1)
to which each spouse would be entitled if such spouses had not been married. For purposes
of the preceding sentence, each spouse shall be treated as owning the property during the
period that either spouse owned the property.

US Tax Code, Section 121, (b), (2)

[Base case: condition]

⇒ [Base case: consequence]
[Exception: condition] ⇒ [Exception: consequence]

The Non-Monotonic Legal Reasoning [Lawsky 2017, 2018]

(A) $500,000 Limitation for certain joint returns Paragraph (1) shall be applied by sub-
stituting “$500,000” for “$250,000” if— (i) either spouse meets the ownership requirements
of subsection (a) with respect to such property; (ii) both spouses meet the use requirements
of subsection (a) with respect to such property; and (iii) neither spouse is ineligible for the
benefits of subsection (a) with respect to such property by reason of paragraph (3).
(B) Other joint returns If such spouses do not meet the requirements of subparagraph (A),
the limitation under paragraph (1) shall be the sum of the limitations under paragraph (1)
to which each spouse would be entitled if such spouses had not been married. For purposes
of the preceding sentence, each spouse shall be treated as owning the property during the
period that either spouse owned the property.

US Tax Code, Section 121, (b), (2)

[Base case: condition] ⇒ [Base case: consequence]

[Exception: condition] ⇒ [Exception: consequence]

The Non-Monotonic Legal Reasoning [Lawsky 2017, 2018]

(A) $500,000 Limitation for certain joint returns Paragraph (1) shall be applied by sub-
stituting “$500,000” for “$250,000” if— (i) either spouse meets the ownership requirements
of subsection (a) with respect to such property; (ii) both spouses meet the use requirements
of subsection (a) with respect to such property; and (iii) neither spouse is ineligible for the
benefits of subsection (a) with respect to such property by reason of paragraph (3).
(B) Other joint returns If such spouses do not meet the requirements of subparagraph (A),
the limitation under paragraph (1) shall be the sum of the limitations under paragraph (1)
to which each spouse would be entitled if such spouses had not been married. For purposes
of the preceding sentence, each spouse shall be treated as owning the property during the
period that either spouse owned the property.

US Tax Code, Section 121, (b), (2)

[Base case: condition] ⇒ [Base case: consequence]
[Exception: condition]

⇒ [Exception: consequence]

The Non-Monotonic Legal Reasoning [Lawsky 2017, 2018]

(A) $500,000 Limitation for certain joint returns Paragraph (1) shall be applied by sub-
stituting “$500,000” for “$250,000” if— (i) either spouse meets the ownership requirements
of subsection (a) with respect to such property; (ii) both spouses meet the use requirements
of subsection (a) with respect to such property; and (iii) neither spouse is ineligible for the
benefits of subsection (a) with respect to such property by reason of paragraph (3).
(B) Other joint returns If such spouses do not meet the requirements of subparagraph (A),
the limitation under paragraph (1) shall be the sum of the limitations under paragraph (1)
to which each spouse would be entitled if such spouses had not been married. For purposes
of the preceding sentence, each spouse shall be treated as owning the property during the
period that either spouse owned the property.

US Tax Code, Section 121, (b), (2)

[Base case: condition] ⇒ [Base case: consequence]
[Exception: condition] ⇒ [Exception: consequence]

The Core of Catala: Default Calculus

Behind the surface syntax, a formalized core!

Type τ ::= bool | unit boolean and unit types
| τ → τ function type

Expression e ::= x | true | false | () variable, literal
| λ (x : τ). e | e e λ-calculus
| d default term

Default d ::= 〈e∗ | e :- e〉 default term
| ⊛ conflict error
| ∅ empty error

The Core of Catala: Default Calculus

Behind the surface syntax, a formalized core!

Type τ ::= bool | unit boolean and unit types
| τ → τ function type

Expression e ::= x | true | false | () variable, literal
| λ (x : τ). e | e e λ-calculus

| d default term

Default d ::= 〈e∗ | e :- e〉 default term
| ⊛ conflict error
| ∅ empty error

The Core of Catala: Default Calculus

Behind the surface syntax, a formalized core!

Type τ ::= bool | unit boolean and unit types
| τ → τ function type

Expression e ::= x | true | false | () variable, literal
| λ (x : τ). e | e e λ-calculus
| d default term

Default d ::= 〈e∗ | e :- e〉 default term
| ⊛ conflict error
| ∅ empty error

❷ Formalized semantics for legal reasoning

〈∅,. . .,∅ | false :- e〉 −→∅

〈∅,. . .,∅ | true :- v〉 −→ v

〈∅,. . .,∅,v,∅,. . .,∅ | e1 :- e2〉 −→ v v ̸=∅

nonempty_count(v1,. . .,vn)> 1
〈v1,. . .,vn | e1 :- e2〉 −→ ⊛

❷ Formalized semantics for legal reasoning

〈∅,. . .,∅ | false :- e〉 −→∅

〈∅,. . .,∅ | true :- v〉 −→ v

〈∅,. . .,∅,v,∅,. . .,∅ | e1 :- e2〉 −→ v v ̸=∅

nonempty_count(v1,. . .,vn)> 1
〈v1,. . .,vn | e1 :- e2〉 −→ ⊛

❷ Formalized semantics for legal reasoning

〈∅,. . .,∅ | false :- e〉 −→∅

〈∅,. . .,∅ | true :- v〉 −→ v

〈∅,. . .,∅,v,∅,. . .,∅ | e1 :- e2〉 −→ v v ̸=∅

nonempty_count(v1,. . .,vn)> 1
〈v1,. . .,vn | e1 :- e2〉 −→ ⊛

❷ Formalized semantics for legal reasoning

〈∅,. . .,∅ | false :- e〉 −→∅

〈∅,. . .,∅ | true :- v〉 −→ v

〈∅,. . .,∅,v,∅,. . .,∅ | e1 :- e2〉 −→ v v ̸=∅

nonempty_count(v1,. . .,vn)> 1
〈v1,. . .,vn | e1 :- e2〉 −→ ⊛

Deploying Catala for Production

Interpreted ✕

Compiled ✓

“Single source of truth”
program.catala

program.c

Batch computation

program.js

Online simulators

program.r

Economic models

Deploying Catala for Production

Interpreted ✕ Compiled ✓

“Single source of truth”
program.catala

program.c

Batch computation

program.js

Online simulators

program.r

Economic models

Deploying Catala for Production

Interpreted ✕ Compiled ✓

“Single source of truth”
program.catala

program.c

Batch computation

program.js

Online simulators

program.r

Economic models

Compiling away the default term

e1 â e′1 · · · en â e′n ejust â e′just econs â e′cons

〈e1,. . .,en | ejust :- econs〉 â

process_exceptions : list(unit → τ) → option τ

process_exceptions ≜ fold_left (λ (a : option τ) (e′ : unit → τ).

let e′ : τ = try Some (e′()) with ∅ → None in

match (a, e′) with

| (None, e′) → e′

| (Some a, None) → Some a
| (Some a, Some e′) → raise ⊛) None

Compiling away the default term

e1 â e′1 · · · en â e′n ejust â e′just econs â e′cons

〈e1,. . .,en | ejust :- econs〉 â
let rexceptions = process_exceptions [λ _ → e′1;. . .;λ _ → e′n] in

match rexceptions with Some e′ → e′ | None → if e′just then e′cons else raise ∅

process_exceptions : list(unit → τ) → option τ

process_exceptions ≜ fold_left (λ (a : option τ) (e′ : unit → τ).

let e′ : τ = try Some (e′()) with ∅ → None in

match (a, e′) with

| (None, e′) → e′

| (Some a, None) → Some a
| (Some a, Some e′) → raise ⊛) None

Compiling away the default term

e1 â e′1 · · · en â e′n ejust â e′just econs â e′cons

〈e1,. . .,en | ejust :- econs〉 â
let rexceptions = process_exceptions [λ _ → e′1;. . .;λ _ → e′n] in

match rexceptions with Some e′ → e′ | None → if e′just then e′cons else raise ∅

process_exceptions : list(unit → τ) → option τ

process_exceptions ≜ fold_left (λ (a : option τ) (e′ : unit → τ).

let e′ : τ = try Some (e′()) with ∅ → None in

match (a, e′) with

| (None, e′) → e′

| (Some a, None) → Some a
| (Some a, Some e′) → raise ⊛) None

The Catala compiler

Source code

Surface language

Desugared language

Scope language

Default calculus

λ-calculus

OCaml, Python, ...

Ï Multiple passes architecture

Ï 13 000 lines of OCaml
Ï Looking for contributors!
Ï github.com/CatalaLang/Catala

github.com/CatalaLang/Catala

The Catala compiler

Source code

Surface language

Desugared language

Scope language

Default calculus

λ-calculus

OCaml, Python, ...

Ï Multiple passes architecture
Ï 13 000 lines of OCaml
Ï Looking for contributors!
Ï github.com/CatalaLang/Catala

github.com/CatalaLang/Catala

❸ Certifying the compilation of default terms

Simulation theorem:

ed e′d

eλ e′
λ

etarget

−→

â â
−→

∗

−→ ∗

✔ Proven in F⋆
(3500 lines)

The F⋆ certification theorem

module D = DefaultCalculus; module L = LambdaCalculus
val translation_correctness (de: D.exp) (dtau: D.ty) : Lemma

(requires (D.typing D.empty de dtau)) (ensures (
let le = translate_exp de in let ltau = translate_ty dtau in
L.typing L.empty le ltau ∧ begin

if D.is_value de then L.is_value le else begin
D.progress de dtau; D.preservation de dtau;
let de' = Some?.v (D.step de) in
translation_preserves_empty_typ de dtau;
translation_preserves_empty_typ de' dtau;
let le' : typed_l_exp ltau = translate_exp de' in
exists (n1 n2:N) (target: typed_l_exp ltau).

(take_l_steps ltau le n1 == Some target ∧
take_l_steps ltau le' n2 == Some target) end end))

Removing exceptions

∅ â None

Removing exceptions

∅ â None
〈e1, . . . ,en | ejust :- econs〉 â

match handle_exceptions [e_1, . . ., e_n] with
| None -> bind e_just ~f:(fun b -> if b then e_cons else None)
| Some v -> Some v

Future work: Catala as a proof platform

Properties we want to prove (with Alain Delaët, Aymeric Fromherz and
Raphaël Monat):
Ï Well-behaved execution: absence of ∅, ⊛
Ï High-level functional properties: progressiveness of taxes, absence of loopholes,

etc.

Proof by refinement
Syntax-directed certified program transformations:

P0 P1 P2 ... Pn−1 Pn

c1 c2 c3 cn−1 cn

Verification condition provers

Conclusion

Turning law into code is difficult; programmers and lawyers need better tooling

The Catala language – https://catala-lang.org

❶ Domain-specific language usable and reviewable by lawyers
❷ Formalized semantics for legal reasoning
❸ Partially certified compiler

Future work: compilation to other languages (C/CUDA?), connection to proof
backends

denis.merigoux@inria.fr

https://catala-lang.org

