
Gödel’s (‘dialectica’) and monotone
functional interpretations of arithmetic

Ana de Almeida Gabriel Vieira Borges

February 21, 2016

Contents

Introduction 1

1 Preliminaries 1
1.1 Intuitionistic and classical logic . 1
1.2 Heyting and Peano Arithmetic . 4
1.3 Weakly extensional Heyting and Peano arithmetic in all finite types 5

2 Gödel’s Functional (‘dialectica’) Interpretation 9

3 Majorizability and the Monotone Functional Interpretation 20
3.1 Majorizability . 20
3.2 Monotone Functional Interpretation . 29

References 30

Introduction

We present two functional interpretations of arithmetic: Gödel’s functional or ‘dialectica’ interpreta-
tion, with a full proof of its soundness in section 2 and the monotone functional interpretation, with an
overview of its soundness proof in section 3. On the way to those goals, we describe weakly extensional
Heyting arithmetic in all finite types, and mention some useful results in section 1. The whole work is
heavily based on chapters 3, 6, 8 and 9 of [Kohlenbach, 2008]. For more details and other references,
see the ones mentioned in that book.

1 Preliminaries

In this section we give some important definitions and basic results, thoroughly used in the remaining
sections of this work. We start by describing the language of intuitionistic and classical logic with and
without equality in 1.1. Then we move on to describe Heyting and Peano arithmetic in 1.2. Finally,
we describe how to add all the finite types to our description of arithmetic, and briefly discuss how to
deal with equality in higher types in 1.3.

1.1 Intuitionistic and classical logic

We start by defining intuitionistic first order logic without equality, IL−=.

1

Language of IL−= (L(IL−=))

• Logical symbols: ∧ (conjunction), ∨ (disjunction), → (implication), ⊥ (falsum), ∀ (universal
quantification) and ∃ (existential quantification).

• Variables: x, y, z, . . .

• Function symbols: for every arity n ≥ 0 there is a countable (possibly empty) set of function

symbols Fn = {f (n)1 , f
(n)
2 , . . .}. The symbols in F0 are called constant symbols.

• Predicate symbols: for every arity n > 0 there is a countable (possibly empty) set of predicate

symbols Pn = {p(n)1 , p
(n)
2 , . . .}.

Terms are defined as follows:

• Variables are terms;

• Constants are terms;

• If t1, . . . , tn are terms and f ∈ Fn is an n-ary function symbol, then f(t1, . . . , tn) is a term.

Formulas and prime formulas as defined as follows:

• ⊥ is a prime formula;

• If t1, . . . , tn are terms and p ∈ Pn is an n-ary predicate symbol, then p(t1, . . . , tn) is a prime
formula;

• If A,B are formulas, then (A ∧B), (A ∨B) and (A→ B) are formulas;

• If A is a formula and x is a variable, then (∀xA) and (∃xA) are formulas.

We further use (¬A) (negation) as shorthand for (A→⊥) and (A↔ B) (equivalence) as shorthand
for ((A→ B) ∧ (B → A)).

We often wish to omit the parenthesis around formulas. Hence, by convention, the priority of the
logical symbols is, from higher (left) to lower (right):

• ¬, ∀, ∃ • ∧, ∨ • →, ↔

Furthermore, → associates to the right, i.e., A → B → C is to be interpreted as A → (B → C).
Using this conventions greatly saves on the number of parenthesis necessary to understand a formula.

Formulas without both ∀ and ∃ are said to be quantifier-free, and are many times marked as so with
an underscore “0”, i.e., A0, B0, . . . represent quantifier-free formulas.

Definition 1.1 (Variables of a term (var(t)), free variables of a formula (fv(A)) and bound variables).
The variables of a term, var(·), are defined as:

• var(x) = {x};

• var(c) = ∅;

• var(f(t1, . . . , tn)) =
⋃n
i=1 var(ti).

The free variables of a formula, fv(·), are defined as:

• fv(⊥) = ∅;

• fv(p(t1, . . . , tn)) =
⋃n
i=1 var(ti);

• fv(A�B) := fv(A) ∪ fv(B), � ∈ {∧,∨,→};

• fv(4xA) := fv(A) \ {x}, 4 ∈ {∀,∃}.

Variables that are not free but do appear in the formula are said to be bound.

If a term has no variables, we say that it is a closed term. Similarly, if a formula has no free variables,
we say that it is a closed formula, or a sentence. When we write A(x), we mean that x ∈ fv(A), but
this does not necessarily implies that there cannot be other free variables in A.

2

Axioms of IL−=

Contraction: A→ A ∧A A ∨A→ A

Weakening: A ∧B → A A→ A ∨B

Symmetry: A ∧B → B ∧A A ∨B → B ∨A

Ex falso quodlibet : ⊥→ A

Quantifier: ∀xA→ A[t/x] A[t/x]→ ∃xA Where t is free for x in A.

The notation A[t/x] represents formula A where variable x is replaced in every place where it appears
free by term t. The substitution can only be made when it doesn’t lead to previously free variables in
t becoming bound in A[t/x], which we denote by t being free for x in A.

When we use the axiom ∀xA→ A[t/x], we say that we are instantiating x by t.

Rules of IL−=

Modus ponens:
A,A→ B

B

Exportation:
A ∧B → C

A→ B → C

Expansion:
A→ B

C ∨A→ C ∨B
Quantifier rules:

B → A

B → ∀xA
, x 6∈ fv(B)

Syllogism:
A→ B,B → C

A→ C

Importation:
A→ B → C

A ∧B → C

A→ B

∃xA→ B
, x 6∈ fv(B)

Remark 1.2. From the quantifier rule for ∀, it is easy to prove another rule:

A

∀xA

which we use often and call abstraction, or generalization.

There are many other descriptions of intuitionistic logic without equality, using other axioms and
rules. This one is particularly useful for proving theorems about it, which is our purpose. However, a
natural deduction description makes proving assertions inside the language much more straightforward.
See, for example, chapters 2 and 9 of [Sørensen and Urzyczyn, 2006] for a detailed overview, including
descriptions of semantics over intuitionistic logic.

PL−=

Classical first order logic without equality, PL−= is obtained from IL−= by adding the excluded middle
axiom schema:

A ∨ ¬A

for every formula A.
There are other (much simpler and more common) ways of defining PL−=, taking for example
→, ¬ and ∀ as logical symbols and writing the others as abbreviations, as is done in part II of
[Sernadas and Sernadas, 2012]. This also means that less axioms and rules are needed. However, as
we will mainly focus on IL−= here, we do not worry ourselves with them.

IL and PL

The versions of IL−= and PL−= with equality, IL and PL respectively, are obtained by adding a binary
predicate symbol = and the equality axioms:

Reflexivity: x = x;

3

Symmetry: x = y → y = x;

Transitivity: x = y ∧ y = z → x = z;

Substitution in functions:
∧n
i=1 xi = yi → f(x1, . . . , xn) = f(y1, . . . , yn);

Substitution in predicates:
∧n
i=1 xi = yi → p(x1, . . . , xn)↔ p(y1, . . . , yn).

We often use x 6= y as abbreviation for ¬(x = y).

1.2 Heyting and Peano Arithmetic

We now want to be able to talk about the natural numbers and primitive recursive functions from the
natural numbers to themselves.

HA

Heyting arithmetic, also known as intuitionistic arithmetic, is denoted by HA. It has the logical
symbols of L(IL), as well as the axioms and rules of IL. Besides that, it has the following:

• Function symbols:

– 0 (zero - a constant);

– S (successor - an unary function symbol);

– Symbols for all the descriptions of primitive recursive functions.

• Successor axioms:

– S(x) 6= 0;

– S(x) = S(y)→ x = y.

• Defining equations for the primitive recursive functions;

• Induction schema:
A(0) ∧ ∀x (A(x)→ A(S(x)))→ ∀xA(x)

Remark 1.3. We could have equivalently formulated HA using the rule of induction instead of the
induction schema:

A(0), A(x)→ A(S(x))

A(x)

Lemma 1.4. HA ` ∀x (x = 0 ∨ x 6= 0).

Proof. The proof is by induction on x.
If x is 0, then (0 = 0 ∨ 0 6= 0) is a direct weakening of an instance of reflexivity.
We have S(x) 6= 0 by axiom, so with a weakening we immediately get (S(x) = 0 ∨ S(x) 6= 0), and

consequently (x = 0 ∨ x 6= 0)→ (S(x) = 0 ∨ S(x) 6= 0).
The result follows by the induction rule and abstraction on x.

Definition 1.5. We define some useful primitive recursive functions, using informal recursion:

x+ y

• x+ 0 := x

• x+ S(y) := S(x+ y)

x · y

• x · 0 := 0

• x · S(y) := (x · y) + x

sign

• sign(0) := S(0)

• sign(S(x)) := 0

pred(x)

• pred(0) := 0

• pred(S(x)) := x

x
.
− y

• x
.
− 0 := x

• x
.
− S(y) := pred(x

.
− y)

|x− y|

• |x− y| := (x
.
− y) + (y

.
− x)

4

Lemma 1.6.

1. HA ` x = y ↔ |x− y| = 0

2. HA ` x = 0 ∧ y = 0↔ x+ y = 0

3. HA ` x = 0 ∨ y = 0↔ x · y = 0

4. HA ` (x = 0→ y = 0)↔ sign(x) · y = 0

Proof. We omit the proof, which is tedious. It goes by double induction on x, y and uses Lemma
1.4.

From now on we will often use the notation t to mean a (possibly empty) tuple of terms t1, . . . , tk,
and |t| := k. In particular, t, s := t1, . . . , tk, s1, . . . , sl. Furthermore, we use 4x in the place of
4x1 4x2 · · ·4xn, where 4 ∈ {∀,∃}.

Proposition 1.7. Let A0(x) be a quantifier-free formula of L(HA), with all of its free variables in x.
Then there is a primitive recursive function represented by a symbol f in HA such that:

HA ` ∀x (f(x) = 0↔ A0(x))

Proof. The proof is by induction on the logical structure of A0.
Notice that, as the only propositional symbol in L(HA) is =, the prime formulas of HA are either
⊥ or of the form s = t for terms s and t. And clearly

HA ` 0 = S(0)↔⊥

so even ⊥ can be seen as an equality between terms.
The result then follows from Lemma 1.6: item 1 takes care of the base of induction, and the other

three items of the steps for each logical symbol: ∧, ∨ and →, respectively.

Corollary 1.8. If A0 ∈ L(HA) is a quantifier-free formula, then:

HA ` A0 ∨ ¬A0

Proof. Direct from Proposition 1.7 and Lemma 1.4.

PA

Peano (or classical) arithmetic (PA) results from HA by adding the law of excluded middle as axiom
schema:

A ∨ ¬A

for all formulas A.

1.3 Weakly extensional Heyting and Peano arithmetic in all finite types

Definition 1.9 (Finite types). The finite types are described inductively as:

• 0 is a finite type;

• If ρ, τ are finite types, then (ρ→ τ) is a finite type.

The type 0 should be though of as the natural numbers, and the type ρ → τ as the type of the
functions from objects of type ρ to objects of type τ . The parenthesis associate to the right, and we
omit them when possible, to simplify the notation.

Remark 1.10. Any type ρ 6= 0 can be uniquely written as ρ = ρ1 → ρ2 → · · · → ρk → 0.

5

WE-HAω

We now enrich IL−= with variables xρ, yρ, zρ, . . . and quantifiers ∀xρ ,∃xρ for all types and ob-
tain ILω−=. The language L(WE-HAω) of weakly extensional Heyting arithmetic in all finite types,
WE-HAω, is built on top of ILω−= and besides everything in ILω−=, it also contains:

• Constant symbols:

– 00 (zero);

– S0→0 (successor);

– Πρ,τ of type ρ→ τ → ρ, for all types ρ, τ (projectors);

– Σδ,ρ,τ of type (δ → ρ→ τ)→ (δ → ρ)→ δ → τ , for all types δ, ρ, τ ;

– (Rρ) = (R1)ρ, . . . , (Rk)ρ where ρ = ρ1, . . . , ρk and each Ri has type:

0→ ρ1 → · · · → ρk → (ρ1 → · · · → ρk → 0→ ρ1)→ · · · → (ρ1 → · · · → ρk → 0→ ρk)→ ρi

(simultaneous recursors).

Notice that we do not have any function symbols with non-zero arity. We do have typed terms
though, and the type of a term determines exactly what “arguments” that term (which might
be seen as a function) can “receive”, or rather, be applied to. This will allow us to do everything
already possible in HA (see ahead) and more.

• Predicate symbol: =0 (equality of type 0).

Terms all have a type, are defined as follows:

• Variables of type ρ are terms of type ρ;

• Constants of type ρ are terms of type ρ;

• If T ρ→σ and sρ are terms, then (Ts) is a term of type σ.

We think of (Ts) as “T applied to s”, as if T were an unary function and s an argument. However,
if σ = τ → δ, the same term T could appear as ((Ts)uτ)δ, and now it looks like it should be a binary
function. In reality, all of the options above are valid term constructions, as long as the types are
correct. The parenthesis associate to the left, which means that Tsu is the same as ((Ts)u).

We often omit the type superscript of a term, when it is possible to determine its type by the context.

Formulas and prime formulas as defined as follows:

• If s0, t0 are terms, then s =0 t is a prime formula;

• If A,B are formulas, then (A ∧B), (A ∨B) and (A→ B) are formulas;

• If A is a formula and xρ is a variable, then (∀xρA) and (∃xρA) are formulas.

If A0 is a quantifier-free formula, B ≡ ∀xA0 and C ≡ ∃xA0, we say that B is a purely universal
formula, and that C is a purely existential formula.

Besides the abbreviations for ¬ and ↔ already introduced for IL−=, we add the following:

• ⊥ is an abbreviation of 0 =0 S0;

• If ρ = ρ1 → · · · → ρk → 0 is a type, and s, t are of type ρ, then

(s =ρ t) ≡abrv (∀ yρ11 , . . . , y
ρk
k sy1 . . . yk =0 ty1 . . . yk)

where y1, . . . , yk are not free variables of either s or t.

We usually omit the subscript of equality, when the type is evident from the context.

Axioms and rules of WE-HAω:

• All axioms and rules of ILω−=;

• Axioms for =0:

6

Reflexivity: x =0 x;

Symmetry: x =0 y → y =0 x;

Transitivity: x =0 y ∧ y =0 z → x =0 z.

• Quantifier-free rule of extensionality:

A0 → s =ρ t

A0 → r[s/x] =τ r[t/x]

where A0 is a quantifier-free formula, xρ is a variable and sρ, tρ and rτ are terms;

• Successor axioms;

• Induction schema;

• Axioms for Π and Σ:

Πρ,τxy =ρ x, for xρ, yτ

Σδ,ρ,τxyz =τ xz(yz), for xδ→ρ→τ , yδ→ρ, zδ

• Axioms for the recursors:

Let ρ = ρ1, . . . , ρk be any tuple of types. Let x0, y = y1, . . . , yk with each yi of type ρi and
z = z1, . . . , zk with each zi of type ρ1 → · · · → ρk → 0→ ρi. The axioms are:

(Ri)ρ0yz =ρi yi

(Ri)ρ(Sx)yz =ρi zi(Rρxyz)x
for i ∈ {1, . . . , k}

Remark 1.11. We could have equivalently defined higher type equality by induction on the type:

(s =0 t) is already defined

(s =ρ→τ t) :≡ (∀ yρ sy =τ ty)

and will use both descriptions, depending on which one is more useful in the given context.

Remark 1.12. The reflexivity, symmetry and transitivity of higher-type equality are derivable in
WE-HAω, directly from the corresponding axioms for =0.

Lemma 1.13. Quantifier-free extensionality suffices to prove:

A0 → s =ρ t

A0 → (B[s/xρ]↔ B[t/xρ])

for any formula B such that s and t are free for x in B.

Remark 1.14 (Weak extensionality). Lemma 1.13 is a weaker result than the way we would really
like for equality at higher types to behave:

x =ρ y ∧A(x)→ A(y)

which is not provable in all its generality in WE-HAω. However, we cannot add full extensionality to
our system and still prove the soundness of Gödel’s interpretation (Theorem 2.7), which is one of our
main goals.

Definition 1.15 (λ-abstraction).

• (λxρ . x)ρ→ρ := Σρ,σ→ρ,ρΠρ,σ→ρΠρ,σ;

• (λxρ . tσ)ρ→σ := Πσ,ρt, if x 6∈ var(t);

• (λxρ . tσ→τuσ)ρ→τ := Σρ,σ,σ→τ (λx . t)(λx . u), if x ∈ var(tu).

Remark 1.16. var(λx . t) = var(t) \ {x}, as can be clearly seen by induction on the construction of
the lambda terms.

7

Proposition 1.17 (Combinatorial completeness). WE-HAω ` (λxρ . tτ)sρ =τ t[s/x].

Proof. The proof follows by induction on the construction of the lambda terms:

λx . x

(λxρ . x)sρ := ΣΠΠs

=ρ Πs(Πs)

=ρ s

=ρ x[s/x]

Where the second and third equalities follow from the axioms for Σ and Π, respectively.

λx . t, x 6∈ var(t)

(λxρ . tτ)sρ := Πts

=τ t

=τ t[s/x]

Where the last equality follows from the fact that x is not a variable of t.

λx . tu, x ∈ var(tu)

(λxρ . tσ→τuσ)sρ := Σ(λx . t)(λx . u)s

=τ (λx . t)s((λx . u)s)

=τ t[s/x](u[s/x])

=τ (tu)[s/x]

Where the next-to-last equality follows by induction hypothesis, noticing the association of the
parenthesis on the left.

We often write λx, y . t as shorthand for λx . (λ y . t). Furthermore, the notation λx . t should be
interpreted as (λx1, . . . , xk . t1), . . . , (λx1, . . . , xk . tl).

The expression Ts should be interpreted as (T1s1 . . . sn), . . . , (Tks1 . . . sn).

Corollary 1.18. For every term tτ and variable xρ, there exists a term T of type ρ→ τ and variables
var(T) = var(t) \ {x} such that:

WE-HAω ` Tsρ =τ t[s/x]

Proof. Taking T := λx . t, this is a direct consequence of Remark 1.16 and Proposition 1.17.

Proposition 1.19. HA is a subsystem of WE-HAω.

Proof. This is not too hard to see. One translates each symbol of HA into the language of WE-HAω.
The symbols 0 and S are translated by themselves. For the projectors, one uses λ-abstraction. Also
with the help of λ-abstraction, composition becomes application, and primitive recursion is handled
by the simultaneous recursors of WE-HAω.

For a detailed proof see [Troelstra, 1973](1.6.9).

Proposition 1.20. Let A0(x) be a quantifier-free formula of WE-HAω, with free variables among x.
Then there exists a closed term tA0

such that:

WE-HAω ` ∀x (tA0
x =0 0↔ A0(x))

Proof. By Proposition 1.19, there are terms in WE-HAω for the functions from Definition 1.5. Using
those terms, we simply repeat the proof from Proposition 1.7.

Corollary 1.21. For every quantifier-free formula A0 of WE-HAω:

WE-HAω ` A0 ∨ ¬A0

WE-HAω ` ¬¬A0 → A0

8

Proof. Follows from Proposition 1.20, Lemma 1.4 and Proposition 1.19, which ensures that we can use
Lemma 1.4.

Corollary 1.22 (Elimination of ∨). For every quantifier-free formula A0 of WE-HAω, there exists an
equivalent quantifier-free formula B0 without ∨.

Proof. Simply take B0 :≡ (tA0x =0 0), as given by Proposition 1.20. This is a prime formula, and
clearly doesn’t have any ∨.

Proposition 1.23 (Definition by cases). For every type ρ, there exists a closed term C such that:

WE-HAω ` ∀x0, yρ, zρ [(x = 0→ Cxyz = y) ∧ (x 6= 0→ Cxyz = z)]

Proof. Let
C := λx0, yρ, zρ . Rρxy(λ qρ, r0 . z)

Notice that C is well defined, for Rρ has type 0→ ρ→ (ρ→ 0→ ρ)→ ρ, x has type 0, y has type ρ
and λ qρ, r0 . z has type ρ→ 0→ ρ. Furthermore:

C0yz =ρ Rρ0y(λ qρ, r0 . z)

=ρ y

C(Sx)yz =ρ Rρ(Sx)y(λ qρ, r0 . z)

=ρ (λ qρ, r0 . z)(Rρxy(λ qρ, r0 . z))x

=ρ z

It only remains to notice that, as x 6=0 0→ x = S(predx), then x 6=0 0→ Cxyz =ρ z.

2 Gödel’s Functional (‘dialectica’) Interpretation

On this section we start by defining Gödel’s translation for every formula of WE-HAω. We then prove
two main theorems: the soundness of the translation, and the characterization theorem.

Definition 2.1 (Gödel’s translation). Let A ∈ L(WE-HAω) be a formula. Gödel’s translation AD of
A is a formula of the form

AD ≡ ∃x ∀yAD(x,y)

where the variable tuples x and y and their types are uniquely defined by the logical structure of A,
and AD(x,y) is a quantifier-free formula. Here is the definition of AD and AD (omitting the times):

• If A is a prime formula, AD :≡ AD :≡ A

Let AD ≡ ∃x ∀yAD(x,y) and BD ≡ ∃u ∀vBD(u,v).

• [A ∧B]D :≡ ∃x,u ∀y,v [A ∧B]D

:≡ ∃x,u ∀y,v [AD(x,y) ∧BD(u,v)]

• [A ∨B]D :≡ ∃ z0,x,u ∀y,v [A ∨B]D

:≡ ∃ z0,x,u ∀y,v [(z = 0→ AD(x,y)) ∧ (z 6= 0→ BD(u,v))]

• [A→ B]D :≡ ∃U ,Y ∀x,v [A→ B]D

:≡ ∃U ,Y ∀x,v [AD(x,Y xv)→ BD(Ux,v)]

• [∃ zρA(z)]D :≡ ∃ z,x ∀y [∃ z A(z)]D

:≡ ∃ z,x ∀yAD(x,y, z)

• [∀ zρA(z)]D :≡ ∃X ∀ z,y [∀ z A(z)]D

:≡ ∃X ∀ z,yAD(Xz,y, z)

Notice that the tuples of variables that are quantified in AD should not contain any of the free variables
of A, and to find them one should start the translation from the inside, i.e., with the prime formulas.

9

Remark 2.2.

1. (AD)D ≡ AD, and consequently (A�B)D ≡ (AD �BD)D, for � ∈ {∧,∨,→}.

2. If A is a quantifier-free formula without ∨, then AD ≡ A.

3. If A ≡ 4xB0 where 4 ∈ {∀,∃} and B0 is a quantifier-free formula without ∨, then AD ≡ A.

Definition 2.3 (ACω). The schema of choice, ACω, is the union for all finite types ρ and τ of:

ACρ,τ : ∀xρ ∃ yτ A(x, y)→ ∃Y ρ→τ ∀xρA(x, Y x)

where A is any formula of WE-HAω.

Definition 2.4 (Mω). Markov’s principle, Mω, is the union for all tuples of finite types ρ of:

Mρ : ¬∀xρA0(x)→ ∃xρ ¬A0(x)

where A0 is a quantifier-free formula, possibly with more free variables other than x.

Remark 2.5. In [Kohlenbach, 2008], Markov’s principle is stated in a different form, namely:

M’ρ : ¬¬∃xρA0(x)→ ∃xρA0(x)

Both statements are intuitionistically equivalent (using the fact that quantifier-free formulas are stable
- Corollary 1.21), and we use the one in Definition 2.4 because it makes the proofs bellow more direct.

Definition 2.6 (IPω∀). The independence of premise schema for purely universal premises, IPω∀ , is the
union for all finite types ρ of:

IPρ∀ : (∀xA0(x)→ ∃ yρB(y))→ ∃ yρ (∀xA0(x)→ B(y))

where A0(x) is a quantifier-free formula and y is not free in A0.

Theorem 2.7 (Soundness of Gödel’s translation). Let P be a set of purely universal sentences of
L(WE-HAω) and A(a) ∈ L(WE-HAω) containing only a free. Then:

WE-HAω + ACω + IPω∀ + Mω + P ` A(a)

implies

WE-HAω + P ` ∀yAD(Ta,y,a)

where T is a tuple of closed terms which can be extracted from a proof of A(a).

Proof. The goal is to give a suitable tuple of closed terms T for each axiom and rule possibly used in
the proof of A(a). Each term in T will be interpreted as a “function” with input the free variables
a, which will do the part of the existentially quantified variables in AD, such that ∀yAD(Ta,y,a) is
provable in WE-HAω + P.

In some steps of the proof we will need a dummy term, that doesn’t need to have any particular
property besides being well-defined. We use Oρ := λxρ11 , . . . , x

ρk
k . 00 for ρ = ρ1 → · · · → ρk → 0.

We will omit the types, so as to avoid overloading the notation.

A→ A ∧A
The first step to find [A → A ∧ A]D is to find AD. Each of the three instances of AD

should have different quantified variables, so that there is no confusion. So let’s say that
AD ≡ ∃x ∀yAD(x,y,a), and use the pairs (u,v) and (q, r) for the other two instances (effec-
tively obtaining two α-equivalent versions of AD). During the rest of the proof we will always
use the pairs of variables (x,y), (u,v), (q, r), (o,p), in this order.

Then:

[A ∧A]D ≡ [∃u ∀vAD(u,v,a) ∧ ∃ q ∀ rAD(q, r,a)]D

≡ ∃u, q ∀v, r (AD(u,v,a) ∧AD(q, r,a))

and so:

10

[A→ A ∧A]D ≡ [∃x ∀yAD(x,y,a)→ ∃u, q ∀v, r (AD(u,v,a) ∧AD(q, r,a))]D

≡ ∃U ,Q,Y ∀x,v, r (AD(x,Y xvr,a)→ AD(Ux,v,a) ∧AD(Qx, r,a)) (2.1)

Now we need to chose closed terms TU , TQ and TY such that (2.1) is provable in WE-HAω +P.
Consider the following:

TU := λa,x .x

TQ := λa,x .x

TY := λa,x,v, r .

{
v if ¬AD(x,v,a)

r if AD(x,v,a)

Notice that we can define TY as shown, because, as AD(x,v,a) is a quantifier-free formula, by
Proposition 1.20 we know that there exists a closed term t such that

WE-HAω ` txva = 0↔ AD(x,v,a)

and hence checking whether AD(x,v,a) is the same as checking if t = 0, which we know how to
do due to Proposition 1.23.

Finally, notice that replacing the existentially quantified U , Q and Y by their respective terms
followed by a in (2.1) we obtain:{

∀x,v, r (AD(x,v,a)→ AD(x,v,a) ∧AD(x, r,a)) if ¬AD(x,v,a)

∀x,v, r (AD(x, r,a)→ AD(x,v,a) ∧AD(x, r,a)) if AD(x,v,a)

and in both cases the formulas are clearly provable in WE-HAω.

A ∨A→ A

Notice that:

[A ∨A→ A]D ≡
≡ [∃ z0,x,u ∀y,v ((z = 0→ AD(x,y,a)) ∧ (z 6= 0→ AD(u,v,a)))→ ∃ q ∀ rAD(q, r,a)]D

≡ ∃Q,Y ,V ∀ z,x,u, r
((z = 0→ AD(x,Y zxur,a)) ∧ (z 6= 0→ AD(u,V zxur,a))→ AD(Qzxu, r,a))

(2.2)

Consider the following terms:

TQ := λa, z,x,u .

{
x if z = 0

u if z 6= 0

TY := λa, z,x,u, r . r

TV := λa, z,x,u, r . r

where the definition by cases of TQ is possible due to Proposition 1.23.

Then replacing Q, Y and V by their respective terms followed by a in (2.2) we obtain:{
∀ z,x,u, r ((z = 0→ AD(x, r,a)) ∧ (z 6= 0→ AD(u, r,a))→ AD(x, r,a)) if z = 0

∀ z,x,u, r ((z = 0→ AD(x, r,a)) ∧ (z 6= 0→ AD(u, r,a))→ AD(u, r,a)) if z 6= 0

and in both cases the formulas are clearly provable in WE-HAω.

A ∧B → A

Let a′ be the free variables of A, a′′ be the free variables of B and a := a′,a′′.

11

Notice that:

[A ∧B → A]D ≡ [∃x,u ∀y,v (AD(x,y,a′) ∧BD(u,v,a′′))→ ∃ q ∀ rAD(q, r,a′)]D

≡ ∃Q,Y ,V ∀x,u, r (AD(x,Y xur,a′) ∧BD(u,V xur,a′′)→ AD(Qxu, r,a′))
(2.3)

Let:

TQ := λa,x,u .x

TY := λa,x,u, r . r

TV := λa,x,u, r .O

Then, replacing each quantified variable by its term followed by a, we obtain:

∀x,u, r (AD(x, r,a′) ∧BD(u,O,a′′)→ AD(x, r,a′))

which is a generalized instance of A ∧B → A, and hence provable in WE-HAω.

A→ A ∨B

[A→ A ∨B]D ≡
≡ [∃x ∀yAD(x,y,a′)]D → [∃ z0,u, q ∀v, r ((z = 0→ AD(u,v,a′)) ∧ (z 6= 0→ BD(q, r,a′′)))]D

≡ ∃Z,U ,Q,Y ∀x,v, r
(AD(x,Y xvr,a′)→ (Zx = 0→ AD(Ux,v,a′)) ∧ (Zx 6= 0→ BD(Qx,v,a′′))) (2.4)

Let:

TZ := λa,x . 00

TU := λa,x .x

TQ := λa,x .O

TY := λa,x,v, r .v

Then:

∀x,v, r (AD(x,v,a′)→ (0 = 0→ AD(x,v,a′)) ∧ (0 6= 0→ BD(O,v,a′′)))

A ∧B → B ∧A

[A ∧B → B ∧A]D ≡
≡ [∃x,u ∀y,vAD(x,y,a′) ∧BD(u,v,a′′)→ ∃ q,o ∀ r,pBD(q, r,a′′) ∧AD(o,p,a′)]D

≡ ∃Q,O,Y ,V ∀x,u, r,p
(AD(x,Y xurp,a′) ∧BD(u,V xurp,a′′)→ BD(Qxu, r,a′′) ∧AD(Oxu,p,a′))

(2.5)

Let:

TQ := λa,x,u .u

TO := λa,x,u .x

TY := λa,x,u, r,p .p

TV := λa,x,u, r,p . r

Then ∀x,u, r,p (AD(x,p,a′) ∧BD(u, r,a′′)→ BD(u, r,a′′) ∧AD(x,p,a′)).

12

A ∨B → B ∨A

[A ∨B → B ∨A]D ≡
≡ [∃ z0,x,u ∀y,v ((z = 0→ AD(x,y,a′)) ∧ (z 6= 0→ BD(u,v,a′′)))

→ ∃w0, q,o ∀ r,p ((w = 0→ BD(q, r,a′′)) ∧ (w 6= 0→ AD(o,p,a′)))]D

≡ ∃W,Q,O,Y ,V ∀ z,x,u, r,p ((z = 0→ AD(x,Y zxurp,a′)) ∧ (z 6= 0→ BD(u,V zxurp,a′′))

→ (Wzxu = 0→ BD(Qzxu, r,a′′)) ∧ (Wzxu 6= 0→ AD(Ozxu,p,a′)))
(2.6)

Let:

TW := λa, z,x,u . sign(z)

TQ := λa, z,x,u .u

TO := λa, z,x,u .x

TY := λa, z,x,u, r,p .p

TV := λa, z,x,u, r,p . r

Then:

∀ z,x,u,r,p ((z = 0→ AD(x,p,a′)) ∧ (z 6= 0→ BD(u, r,a′′))

→ (z 6= 0→ BD(u, r,a′′)) ∧ (z = 0→ AD(x,p,a′)))

⊥→ A

[⊥→ A]D ≡ [⊥→ ∃x ∀yAD(x,y,a)]D

≡ ∃x ∀y (⊥→ AD(x,y,a)) (2.7)

Let Tx := λa .O. We obtain ∀y (⊥→ AD(O,y,a)), clearly provable in WE-HAω.

∀ z A→ A[t/z], t free for z in A

Let the free variables of A be in a′, z, and the variables of t be a′′ (possibly including z). Then
a = a′,a′′ are the free variables of ∀ z A→ A[t/z].

[∀ z A→ A[t/z]]D ≡ [∃X ∀ z,yAD(Xz,y,a′, z)→ ∃u ∀vAD(u,v,a′, t)]D

≡ ∃U , Z,Y ∀X,v (AD(X(ZXv),Y Xv,a′, ZXv)→ AD(UX,v,a′, t))
(2.8)

Let:

TU := λa,X .Xt

TZ := λa,X,v . t

TY := λa,X,v .v

Then ∀X,v (AD(Xt,v,a′, t)→ AD(Xt,v,a′, t)).

A[t/z]→ ∃ z A, t free for z in A

Let the free variables in A be in a′, z, and the variables of t be a′′ (possibly including z). Then
a = a′,a′′ are the free variables of A[t/z]→ ∃ z A.

[A[t/z]→ ∃ z A]D ≡ [∃x ∀yAD(x,y,a′, t)→ ∃ z,u ∀vAD(u,v,a′, z)]D

≡ ∃Z,U ,Y ∀x,v (AD(x,Y xv,a′, t)→ AD(Ux,v,a′, Zx)) (2.9)

13

Let:

TZ := λa,x . t

TU := λa,x .x

TY := λa,x,v .v

Then ∀x,v (AD(x,v,a′, t)→ AD(x,v,a′, t)).

Modus ponens

Recall the modus ponens rule:
A,A→ B

B

Notice that:

AD ≡ ∃x ∀yAD(x,y,a′)

[A→ B]D ≡ ∃U ,Y ∀x,v (AD(x,Y xv,a′)→ BD(Ux,v,a′′))

BD ≡ ∃u ∀vBD(u,v,a′′)

So, by induction hypothesis, there are closed terms T1, T2 and T3 such that:

∀yAD(T1a
′,y,a′) (2.10)

∀x,v (AD(x,T3axv,a
′)→ BD(T2ax,v,a

′′)) (2.11)

Let o be the result of replacing each variable that appears in a′ and not in a′′ by O of the
appropriate type, and leaving the others alone. Take T4 as:

T4 := λa′′ .T2oa
′′(T1o)

Instantiate x in (2.11) by T1o and v by itself, obtaining:

AD(T1o,T3oa
′′(T1o)v,o)→ BD(T2oa

′′(T1o),v,a′′)

Now instantiate y in (2.10) by T3oa
′′(T1o)v, thus obtaining AD(T1o,T3oa

′′(T1o)v,o). By
modus ponens, we are able to conclude BD(T2oa

′′(T1o),v,a′′). Then T4 is the closed term we
are looking for.

Syllogism

Recall the syllogism rule:
A→ B,B → C

A→ C

Notice that:

[A→ B]D ≡ ∃U ,Y ∀x,v (AD(x,Y xv,a′)→ BD(Ux,v,a′′))

[B → C]D ≡ ∃Q,V ∀u, r (BD(u,V ur,a′′)→ CD(Qu, r,a′′′))

[A→ C]D ≡ ∃Q,Y ∀x, r (AD(x,Y xr,a′)→ CD(Qx, r,a′′′))

By induction hypothesis, there are terms T1, . . . ,T4 such that:

∀x,v (AD(x,T2a
′a′′xv,a′)→ BD(T1a

′a′′x,v,a′′)) (2.12)

∀u, r (BD(u,T4a
′′a′′′ur,a′′)→ CD(T3a

′′a′′′u, r,a′′′)) (2.13)

Let o be the result of replacing each variable that appears in a′′ but not in a′,a′′′ by O of
appropriate type. Take T5 and T6 as:

T5 := λa′,a′′′,x .T3oa
′′′(T1a

′ox)

T6 := λa′,a′′′,x, r .T2a
′ox(T4oa

′′′(T1a
′ox)r)

14

Instantiate x in (2.12) by itself. Now instantiate u in (2.13) by T1a
′ox and r by itself. Finally,

instantiate v in (2.12) by T4oa
′′′(T1a

′ox)r. In the end we obtain:

AD(x,T2a
′ox(T4oa

′′′(T1a
′ox)r),a′)→ BD(T1a

′ox,T4oa
′′′(T1a

′ox)r,o)

BD(T1a
′ox,T4oa

′′′(T1a
′ox)r,o)→ CD(T3oa

′′′(T1a
′ox), r,a′′′)

By the syllogism rule applied to the previous two expressions, we conclude:

AD(x,T2a
′ox(T4oa

′′′(T1a
′ox)r),a′)→ CD(T3oa

′′′(T1a
′ox), r,a′′′)

Then T5 and T6 are closed terms such that:

∀x, r (AD(x,T6a
′a′′′xr,a′)→ CD(T5a

′a′′′x, r,a′′′))

Exportation and importation

Recall the exportation and importation rules:

A ∧B → C

A→ B → C

A→ B → C

A ∧B → C

Notice that:

[A ∧B → C]D ≡ ∃Q,Y ,V ∀x,u, r (AD(x,Y xur,a′) ∧BD(u,V xur,a′′)→ CD(Qxu, r,a′′′))

[A→ B → C]D ≡ ∃Q,V ,Y ∀x,u, r (AD(x,Y xur,a′)→ BD(u,Vxur,a′′)→ CD(Qxu, r,a′′′))

As both expressions are equal modulo the importation and exportation rules, and interchanging
Q with Q and V with V, a solution for one is a solution for the other, and we are done.

Expansion

Recall the expansion rule:
A→ B

C ∨A→ C ∨B
Notice that:

[A→ B]D ≡ ∃U ,Y ∀x,v (AD(x,Y xv,a′)→ BD(Ux,v,a′′))

[C ∨A→ C ∨B]D ≡ ∃W,O,U ,R,Y ∀ z, q,x,p,v
((z = 0→ CD(q,Rzqxpv,a′′′)) ∧ (z 6= 0→ AD(x,Y zqxpv,a′))→
(Wzqx = 0→ CD(Ozqx,p,a′′′)) ∧ (Wzqx 6= 0→ BD(Uzqx,v,a′′)))

By induction hypothesis there are terms T1 and T2 such that

∀x,v (AD(x,T2a
′a′′xv,a′)→ BD(T1a

′a′′x,v,a′′))

We need to find terms T3,T4, . . . ,T7 such that:

∀ z, q,x,p,v ((z = 0→ CD(q,T6azqxpv,a
′′′)) ∧ (z 6= 0→ AD(x,T7azqxpv,a

′))

→(T3azqx = 0→ CD(T4azqx,p,a
′′′)) ∧ (T3azqx 6= 0→ BD(T5azqx,v,a

′′)))

Let:

T3 := λa, z, q,x . z

T4 := λa, z, q,x . q

T5 := λa, z, q,x .T1a
′a′′x

T6 := λa, z, q,x,p,v .p

T7 := λa, z, q,x,p,v .T2a
′a′′xv

Then:

∀ z, q,x,p,v ((z = 0→ CD(q,p,a′′′)) ∧ (z 6= 0→ AD(x,T2a
′a′′xv,a′))

→ (z = 0→ CD(q,p,a′′′)) ∧ (z 6= 0→ BD(T1a
′a′′x,v,a′′)))

15

Quantifier rule (∀)

Recall the quantifier rule for ∀:
B → A

B → ∀ z A
, z 6∈ fv(B)

Let the free variables of A be in z,a′, and the free variables of B be in a′′ (where z is not one
of the a′′i).

Notice that:

[B → A]D ≡ ∃X,V ∀u,y (BD(u,V uy,a′′)→ AD(Xu,y, z,a′))

[B → ∀ z A]D ≡ ∃X ,V ∀u, z,y (BD(u,V uzy,a′′)→ AD(Xuz,y, z,a′))

By induction hypothesis, we know that there exist terms T1 and T2 such that:

∀u,y (BD(u,T2za
′a′′uy,a′′)→ AD(T1za

′a′′u,y, z,a′)) (2.14)

We need to find closed terms T3 and T4 such that:

∀u, z,y (BD(u,T4a
′a′′uzy,a′′)→ AD(T3a

′a′′uz,y, z,a′)) (2.15)

is provable in WE-HAω. Let:

T3 := λa′,a′′,u, z .T1za
′a′′u

T4 := λa′,a′′,u, z,y .T2za
′a′′uy

Then (2.15) reduces to:

∀u, z,y (BD(u,T2za
′a′′uy,a′′)→ AD(T1za

′a′′u,y, z,a′))

This can be proved using (2.14), the induction hypothesis: first instantiate u by itself, then
generalize at z and finally generalize at u.

Quantifier rule (∃)

Recall the quantifier rule for ∃:
A→ B

∃ z A→ B
, z 6∈ fv(B)

Let the free variables of A be in z,a′, and the free variables of B be in a′′ (where z is not one
of the a′′i).

Notice that:

[A→ B]D ≡ ∃U ,Y ∀x,v (AD(x,Y xv, z,a′)→ BD(Ux,v,a′′))

[∃ z A→ B]D ≡ ∃U ,Y ∀ z,x,v (AD(x,Y zxv, z,a′)→ BD(Uzx,v,a′′))

By induction hypothesis, there are terms T1 and T2 such that:

∀x,v (AD(x,T2za
′a′′xv, z,a′)→ BD(T1za

′a′′x,v,a′′)) (2.16)

We need to find closed terms T3 and T4 such that

∀ z,x,v (AD(x,T4a
′a′′zxv, z,a′)→ BD(T3a

′a′′zx,v,a′′))

is provable in WE-HAω. Take:

T3 := λa′,a′′, z,x .T1za
′a′′x

T4 := λa′,a′′, z,x,v .T2za
′a′′xv

These terms do the job. Then we only need to generalize the induction hypothesis (2.16) over z.

16

=0 and S

The axioms for type 0 equality and for the successor are composed of only prime formulas, ∧ and
→. Hence, by Remark 2.2.2, they remain unchanged after the Gödel translation is performed.
In other words, if A is one of these axioms, the formula ∀yAD(Ta,y,a) is none other than A
itself, and to prove it in WE-HAω a single application of that axiom suffices.

Quantifier-free extensionality rule

Recall the quantifier-free extensionality rule, without the abbreviation for higher type equality:

A0 → ∀z (sz =0 tz)

A0 → ∀w (r[s/x]w =0 r[t/x]w)

where z and w are of the appropriate types.

Notice that, by Proposition 1.22, A0 can be written without ∨. Hence, by Remark 2.2.2, (A0)D ≡
A0. By Remark 2.2.3, Gödel’s translation of the purely universal formulas doesn’t change them
either. Then:

[A0 → ∀z (sz =0 tz)]D ≡ ∀z (A0 → (sz =0 tz))

[A0 → ∀w (r[s/x]w =0 r[t/x]w)]D ≡ ∀w (A0 → (r[s/x]w =0 r[t/x]w))

Noticing that ∀x (A→ B(x))↔ (A→ ∀xB(x)) is an intuitionistic truth (as long as x 6∈ fv(A)):

[A0 → ∀z (sz =0 tz)]D ↔ A0 → ∀z (sz =0 tz)

[A0 → ∀w (r[s/x]w =0 r[t/x]w)]D ↔ A0 → ∀w (r[s/x]w =0 r[t/x]w)

And we prove the desired using the quantifier-free extensionality rule itself.

Induction schema

For simplicity, we will use the induction rule instead of the schema. Notice that they are equiv-
alent, so this is not a problem.

Suppose that the free variables of A are in z0,a′. Recall the induction rule:

A(0,a′), A(z,a′)→ A(Sz,a′)

A(z,a′)

Notice that:

[A(0,a′)]D ≡ ∃x ∀yAD(x,y, 0,a′)

[A(z,a′)→ A(Sz,a′)]D ≡ ∃U ,Y ∀x,v (AD(x,Y xv, z,a′)→ AD(Ux,v, Sz,a′))

[A(z,a′)]D ≡ ∃x ∀yAD(x,y, z,a′)

By induction hypothesis, there are closed terms T1,T2 and T3 such that:

∀yAD(T1a
′,y, 0,a′) (2.17)

∀x,v (AD(x,T3za
′xv, z,a′)→ AD(T2za

′x,v, Sz,a′)) (2.18)

Choose T4 such that: {
T40a′ = T1a

′

T4(Sz)a′ = T2za
′(T4za

′)

This is possible using the simultaneous recursors.

We need to prove:
∀yAD(T4za

′,y, z,a′)

We will do it using the induction rule. So, in order to conclude the desired, we first need to show
that: {

∀yAD(T40a′,y, 0,a′)

∀yAD(T4za
′,y, z,a′)→ ∀yAD(T4(Sz)a′,y, Sz,a′)

17

Using the definition of T4, it suffices to show that:{
∀yAD(T1a

′,y, 0,a′)

∀yAD(T4za
′,y, z,a′)→ ∀yAD(T2za

′(T4za
′),y, Sz,a′)

The first line coincides with our first induction hypothesis (2.17). For the second, instantiate x
by T4za

′ and v by itself in (2.18), obtaining:

AD(T4za
′,T3za

′(T4za
′)v, z,a′)→ AD(T2za

′(T4za
′),v, Sz,a′) (2.19)

Assume ∀yAD(T4za
′,y, z,a′). Then we can instantiate y by T3za

′(T4za
′)v, obtaining the

antecedent of (2.19). Thus we con conclude its consequent, and, generalizing on v, we have:

∀vAD(T2za
′(T4za

′),v, Sz,a′)

as we wanted to show.

Π,Σ,R

The axioms for Π,Σ and R are all higher type equalities between prime formulas. Hence they are
composed of universal quantifications followed by a prime formula, and by Remark 2.2.3, their
Gödel’s translations are themselves, and can be proved by themselves. There are no existentially
quantified variables, so there is no need for witnesses.

ACω

Recall the schema of choice:

∀ z ∃wA(z, w)→ ∃W ∀ z A(z,Wz)

The Gödel translations of the antecedent and consequent are the same:

[∀ z ∃wA(z, w,a′)]D ≡ [∀ z ∃w ∃x ∀yAD(x,y, z, w,a′)]D

≡ ∃W,X ∀ z,yAD(Xz,y, z,Wz,a′)

[∃W ∀ z A(z,Wz)]D ≡ [∃W ∀ z ∃x ∀yAD(x,y, z,Wz,a′)]D

≡ ∃W,X ∀ z,yAD(Xz,y, z,Wz,a′)

So, as [B → C]D ≡ [BD → CD]D by Remark 2.2.1, the only thing we actually need in this step
is to know that the soundness theorem holds for D → D, for any formula D.

Notice that:
[D → D]D ≡ ∃U ,Y ∀x,v (DD(x,Y xv,a)→ DD(Ux,v,a))

Choosing

TU := λa,x .x

TY := λa,x,v .v

clearly does the job.

Mω

Recall Markov’s principle:

(∀ zA0(z)→⊥)→ ∃z (A0(z)→⊥)

Notice that, since A0 is a quantifier-free formula and hence can, by Corollary 1.22, be written
without ∨, we know by Remark 2.2, that the Gödel translation of ∀ zA0(z) and A0(z) →⊥
doesn’t change either of those formulas. So:

[(∀ zA0(z)→⊥)]D ≡ ∃z (A0(z)→⊥)

[∃ z (A0(z)→⊥)]D ≡ ∃z (A0(z)→⊥)

and we are again in the case where proving the soundness of D → D suffices (see the step for
ACω).

18

IPω∀

Recall the independence of premise schema for purely universal premises:

(∀ zA0(z)→ ∃wB(w))→ ∃w (∀ zA0(z)→ B(w))

Notice that:

[∀ zA0(z)→ ∃wB(w)]D ≡ ∃w,x,Z ∀y (A0(Zy)→ BD(x,y, w))

[∃w (∀ zA0(z)→ B(w))]D ≡ ∃w,x,Z ∀y (A0(Zy)→ BD(x,y, w))

and we are yet again in the case where proving the soundness of D → D suffices (see the step
for ACω).

P
As P only contains purely universal formulas, and by Remark 2.2.3 the Gödel translation doesn’t
change these formulas, there is nothing to be done: they prove their own translation.

Theorem 2.8 (Characterisation Theorem). For all formulas A of WE-HAω:

WE-HAω + ACω + Mω + IPω∀ ` AD ↔ A

Proof. The proof follows by induction on the logical structure of A. We won’t do every detail of the
proof: we will simply give an overview and state witch rules are necessary for each step.

A is a prime formula

Follows directly form the fact that AD ≡ A and A↔ A.

A ∧B
By induction hypothesis, AD ↔ A and BD ↔ B, so all we need to show is that:

[A ∧B]D ↔ AD ∧BD

i.e.

∃x,u ∀y,v (AD(x,v) ∧BD(u,v))↔ ∃x ∀yAD(x,v) ∧ ∃u ∀vBD(u,v)

This is a straightforward verification in both directions, since x,y 6∈ fv(BD) and u,v 6∈ fv(AD).

A ∨B
Following the same reasoning as in the last step, we need to show:

∃ z0,x,u ∀y,v ((z = 0→ AD(x,y))∧(z 6= 0→ BD(u,v)))↔ ∃x ∀yAD(x,y)∨∃u ∀vBD(u,v)

From left to right, one needs to use the fact that z = 0∨z 6= 0 is provable in WE-HAω (Corollary
1.21).

From right to left, one needs to chose a suitable term to witness the statement ∃ z0 · · · . Simply
choosing z := 0 when considering AD and z := S0 when considering BD will suffice.

∃ z A(z)

We want to show:
∃ z,x ∀yAD(x,y, z)↔ ∃ z ∃x ∀yAD(x,y, z)

which is obvious, since the only difference between the formulas is the notation used to represent
consecutive existential quantifications.

19

∀ z A(z)

We want to show:
∃X ∀ z,yAD(Xz,y, z)↔ ∀ z ∃x ∀yAD(x,y, z)

From left to right, one eventually needs to find a witness for the statement ∃x · · · . Simply chose
x := Xz.

From right to left, |x| applications of ACω suffice.

A→ B

This is the most complicated step of the proof, and the only one that requires Markov’s principle
and the independence of premise schema. We want to show:

∃U ,Y ∀x,v (AD(x,Y xv)→ BD(Ux,v))↔ (∃x ∀yAD(x,y)→ ∃u ∀vBD(u,v))

Consider the following steps:

(1) ∃x ∀yAD(x,y)→ ∃u ∀vBD(u,v)

(2) ∀x [∀yAD(x,y)→ ∃u ∀vBD(u,v)]

(3) ∀x ∃u [∀yAD(x,y)→ ∀vBD(u,v)]

(4) ∀x ∃u ∀v [∀yAD(x,y)→ BD(u,v)]

(5) ∀x ∃u ∀v ∃y [AD(x,y)→ BD(u,v)]

(6) ∃U ∀x ∀v ∃y [AD(x,y)→ BD(Ux,v)]

(7) ∃U ∃Y ∀x ∀v [AD(x,Y xv)→ BD(Ux,v)]

Clearly it is enough to show (i) ↔ (i + 1), i ∈ {1, . . . , 6}. All of the implications (i + 1) → (i)
are easy-to-prove intuitionistic truths, as are (1) → (2) and (3) → (4). Both (5) → (6) and
(6) → (7) are direct applications of ACω. The implication (2) → (3) is justified by IPω∀ , noting
that ∀yAD(x,y) is a purely universal formula. Finally, (4)→ (5) is a not-so-direct consequence
of the Markov principle; we basically need to show that:

(∀yA0(y)→ B0)→ ∃y (A0(y)→ B0)

for all quantifier-free formulas A0, B0 such that y 6∈ fv(B0).

Taking into consideration that B0 is quantifier-free and Corollary 1.21, there are two cases
to consider: either B0, or ¬B0. Suppose B0. Then A0(y) → B0 clearly follows, and hence
∃y (A0(y)→ B0). Suppose now that we have ¬B0, and assume ∀yA0(y)→ B0. It is intuition-
istically the case that (C → D) → (¬D → ¬C) for any formulas C,D, so from ∀yA0(y) → B0

and ¬B0 we conclude ¬∀yA0(y). By Markov’s principle we get ∃y ¬A0(y). Let y0 be a witness
to that statement, that is to say, y0 is such that ¬A0(y0). Then it is clear that A0(y0) → B0

and we are finally able to conclude ∃y (A0(y)→ B0).

3 Majorizability and the Monotone Functional Interpretation

In this section we aim to state and prove the soundness theorem for another functional interpretation:
the monotone functional interpretation, due to Kohlenbach ([Kohlenbach, 1996]). In 3.1 we give the
preliminary definitions and prove Howard’s majorization theorem. In 3.2 we explore the monotone
functional interpretation.

3.1 Majorizability

We wish to define a “less than” predicate between type 0 terms (<0) and a “maximum” term
(max0→0→0

0) in WE-HAω. It is possible to define both (in order to define a new predicate, define
instead its “characteristic term” - a closed term that is equal to 0 if and only if the predicate holds)
such that the following lemma is provable:

Lemma 3.1 (Axioms for <0 and max0).

20

1. x1 =0 x2 ∧ y1 =0 y2 ∧ x1 <0 y1 → x2 <0 y2;

2. ¬(x <0 0);

3. x <0 y ∨ x =0 y ∨ x >0 y;

4. x <0 Sy ↔ x ≤0 y;

5. x <0 y → Sx <0 Sy;

6. x <0 y ∧ y <0 z → x <0 z;

7. max0 xy ≥0 x;

8. max0 xy ≥0 y;

9. max0 xy =0 x ∨max0 xy =0 y.

We further extend <0 to complex types as:

x <ρ→τ y :≡ ∀ rρ (xr <τ yr)

and define the following useful abbreviations:

• x ≤ρ y :≡ x <ρ y ∨ x =ρ y;

• x >ρ y :≡ y <ρ x;

• x ≥ρ y :≡ y <ρ x ∨ x =ρ y.

We also define the maximum for complex types as:

maxρ→τxy := λ rρ .maxτ (xr)(yr)

Definition 3.2 (s-maj). We define strong majorizability x∗ s-majρ x between terms of type ρ by
induction on the type:

x∗ s-maj0 x :≡ x∗ ≥0 x

x∗ s-majρ→τ x :≡ ∀ r, r∗ (r∗ s-majρ r → x∗r∗ s-majτ xr ∧ x∗r∗ s-majτ x
∗r)

Lemma 3.3. WE-HAω proves:

1. x =ρ y ∧ x∗ =ρ y
∗ ∧ x∗ s-majρ x→ y∗ s-majρ y;

2. x∗ s-majρ x→ x∗ s-majρ x
∗;

3. x s-majρ y ∧ y s-majρ z → x s-majρ z;

4. x∗ s-majρ x ∧ x ≥ρ y → x∗ s-majρ y;

5. For ρ = ρ1 → · · · → ρk → τ :

x∗ s-majρ x↔ ∀ r1, r∗1 , . . . , rk, r∗k

(
k∧
i=0

(r∗i s-majρi ri)→ x∗r∗ s-majτ xr ∧ x∗r∗ s-majτ x
∗r

)

Proof of 1. By induction on the type:

0 Direct from Lemma 3.1.1 and the quantifier-free extensionality rule.

ρ→ τ

Assume the following:

x =ρ→τ y (3.1)

x∗ =ρ→τ y
∗ (3.2)

x∗ s-majρ→τ x ≡ ∀ r, r∗ (r∗ s-majρ r → x∗r∗ s-majτ xr ∧ x∗r∗ s-majτ x
∗r) (3.3)

We wish to prove:

y∗ s-majρ→τ y ≡ ∀ r, r∗ (r∗ s-majρ r → y∗r∗ s-majτ yr ∧ y∗r∗ s-majτ y
∗r)

Take any r, r∗ of the appropriate types, such that r∗ s-majρ r.

Notice that:

21

(i) From (3.1) and the definition of =ρ→τ we have xr =τ yr;

(ii) From (3.2) and the definition of =ρ→τ we have x∗r∗ =τ y
∗r∗;

(iii) From (3.2) and the definition of =ρ→τ we have x∗r =τ y
∗r.

By induction hypothesis, (3.3), (i) and (ii) we conclude y∗r∗ s-majτ yr. By induction hypothesis,
(3.3), (ii) and (iii) we conclude y∗r∗ s-majτ y

∗r.

Proof of 2. We differentiate between 0 and complex types:

0 Direct from the fact that x∗ ≥0 x
∗.

ρ→ τ

Notice that:

x∗ s-majρ→τ x ≡ ∀ r, r∗ (r∗ s-majρ r → x∗r∗ s-majτ xr ∧ x∗r∗ s-majτ x
∗r)

→ ∀ r, r∗ (r∗ s-majρ r → x∗r∗ s-majτ x
∗r)

↔ ∀ r, r∗ (r∗ s-majρ r → x∗r∗ s-majτ x
∗r ∧ x∗r∗ s-majτ x

∗r)

≡ x∗ s-majρ→τ x
∗

and we are done.

Proof of 3. By induction on the type:

0 Direct from Lemma 3.1.6 and the transitivity of equality.

ρ→ τ

Our hypothesis are:

x s-majρ→τ y ≡ ∀ r, r∗ (r∗ s-majρ r → xr∗ s-majτ yr ∧ xr∗ s-majτ xr) (3.4)

y s-majρ→τ z ≡ ∀ r, r∗ (r∗ s-majρ r → yr∗ s-majτ zr ∧ yr∗ s-majτ yr) (3.5)

And we want to show:

x s-majρ→τ z ≡ ∀ s, s∗ (s∗ s-majρ s→ xs∗ s-majτ zs ∧ xs∗ s-majτ xs)

Taking arbitrary s, s∗ such that s∗ s-majρ s, we need:

xs∗ s-majτ zs (3.6)

xs∗ s-majτ xs (3.7)

Noticing that from s∗ s-majρ s and 2, s∗ s-majρ s
∗:

• xs∗ s-majτ ys
∗, from (3.4), instantiating r := s∗ and r∗ := s∗;

• ys∗ s-majτ zs, from (3.5), instantiating r := s and r∗ := s∗;

(3.6) follows by induction hypothesis in type τ .
As for (3.7), it is a consequence of (3.4), instantiating r := s and r∗ := s∗.

Proof of 4. By induction on the type:

0 Direct from Lemma 3.1.6 and the transitivity of equality.

22

ρ→ τ

Our hypothesis are:

x∗ s-majρ→τ x ≡ ∀ r, r∗ (r∗ s-majρ r → x∗r∗ s-majτ xr ∧ x∗r∗ s-majτ x
∗r) (3.8)

x ≥ρ→τ y ≡ ∀ rρ xr ≥τ yr (3.9)

And we want to show:

x∗ s-majρ→τ y ≡ ∀ r, r∗ (r∗ s-majρ r → x∗r∗ s-majτ yr ∧ x∗r∗ s-majτ x
∗r)

Taking arbitrary r, r∗ such that r∗ s-majρ r, we need:

x∗r∗ s-majτ yr (3.10)

x∗r∗ s-majτ x
∗r (3.11)

Noting that:

• x∗r∗ s-majτ xr, from (3.8);

• xr ≥τ yr, from (3.9);

(3.10) follows by induction hypothesis in type τ .

As for (3.11), it is a consequence of (3.8).

Proof of 5. By induction on k:

k = 1 This reduces to the definition of x∗ s-majρ x.

k + 1

Let ρ := ρ1 → · · · → ρk+1 → τ and σ := ρ2 → · · · → ρk+1 → τ , r = r2, . . . , rk+1 and
r∗ = r∗2 , . . . , r

∗
k+1.

In order to simplify the reading of the following expressions, we will use{
A

B
:≡ A ∧B

Notice that:

x∗ s-majρ x ≡ ∀ r1, r∗1 (r∗1 s-majρ r1 → x∗r∗1 s-majσ xr1 ∧ x∗r∗1 s-majσ x
∗r1) (3.12)

↔ ∀ r1, r∗1

r∗1 s-majρ r1 →

∀ r, r∗

(∧k+1
i=2 r

∗
i s-majρi ri →

{
x∗r∗1r

∗ s-majτ xr1r

x∗r∗1r
∗ s-majτ x

∗r∗1r

)

∀ r, r∗
(∧k+1

i=2 r
∗
i s-majρi ri →

{
x∗r∗1r

∗ s-majτ x
∗r1r

x∗r∗1r
∗ s-majτ x

∗r∗1r

)

(3.13)

↔ ∀ r1, r∗1 , r, r∗

r∗1 s-majρ r1 →
k+1∧
i=2

r∗i s-majρi ri →

x∗r∗1r

∗ s-majτ xr1r

x∗r∗1r
∗ s-majτ x

∗r1r

x∗r∗1r
∗ s-majτ x

∗r∗1r

 (3.14)

↔ ∀ r1, r∗1 , r, r∗

k+1∧
i=1

r∗i s-majρi ri →

x∗r∗1r

∗ s-majτ xr1r

x∗r∗1r
∗ s-majτ x

∗r1r

x∗r∗1r
∗ s-majτ x

∗r∗1r

 (3.15)

↔ ∀ r1, r∗1 , r, r∗
(
k+1∧
i=1

r∗i s-majρi ri →

{
x∗r∗1r

∗ s-majτ xr1r

x∗r∗1r
∗ s-majτ x

∗r1r

)
(3.16)

23

where (3.12) ↔ (3.13) comes from the induction hypothesis, (3.13) ↔ (3.14) is easily provable
intuitionistically, (3.14)↔ (3.15) is a direct application of the importation and exportation rules
(several times), and (3.15) → (3.16) is a simple weakening.

Finally, to prove the non-trivial assertion in (3.16) → (3.15), assume (3.16) and take any

s1, s
∗
1, s, s

∗ such that
∧k+1
i=1 s

∗
i s-majρi si. Now instantiate the quantified variables in (3.16) in the

following way: r1 := s∗1, r
∗
1 := s∗1, r := s, r∗ := s∗, which is possible because by Lemma 3.3.2,

s∗1 s-majρ1 s
∗
1. This allows us to conclude x∗s∗1s

∗ s-majτ x
∗s∗1s, as desired.

Lemma 3.4. WE-HAω proves the following:

1. maxρ s-majρ maxρ;

2. x s-majρ x ∧ y s-majρ y → maxρ xy s-majρ x;

3. x s-majρ x ∧ y s-majρ y → maxρ xy s-majρ y.

Proof of 1. By induction on the type:

0

We want to show:

∀x, x∗, y, y∗ (x∗ ≥0 x ∧ y∗ ≥0 y → max0x
∗y∗ ≥0 max0xy)

Notice that by Lemma 3.1.7 and Lemma 3.1.8, max0x
∗y∗ ≥0 x

∗ and max0x
∗y∗ ≥0 y

∗. As, by
hypothesis, x∗ ≥0 x and y∗ ≥0 y, the transitivity of ≥0 gives us:

max0x
∗y∗ ≥0 x ∧max0x

∗y∗ ≥0 y

and by Lemma 3.1.9, it follows that max0x
∗y∗ ≥0 max0xy.

ρ→ τ

By Lemma 3.3.5, it suffices to prove that for arbitrary x, x∗, y, y∗, z, z∗ such that x∗ s-majρ→τ x,
y∗ s-majρ→τ y and z∗ s-majρ z:

maxρ→τx
∗y∗z∗ s-majτ maxρ→τxyz

Now, by definition of maxρ→τ , we have maxρ→τx
∗y∗z∗ =τ maxτ (x∗z∗)(y∗z∗) and maxρ→τxyz =τ

maxτ (xz)(yz), which taking into consideration:

• x∗z∗ s-maj xz because x∗ s-maj x and z∗ s-maj z

• y∗z∗ s-maj yz because y∗ s-maj y and z∗ s-maj z

• The induction hypothesis: maxτ s-maj maxτ

• Lemma 3.3.1

yields the claim.

Proof of 2 and 3. We prove only 2, as the proof of 3 is very similar. By induction on the type:

0 Direct from Lemma 3.1.7.

ρ→ τ

Chose arbitrary xρ→τ , yρ→τ , rρ, (r∗)ρ and assume:

(i) x s-majρ→τ x;

(ii) y s-majρ→τ y;

(iii) r∗ s-majρ r

By Lemma 3.3.2 and (iii) we also know:

(iv) r∗ s-majρ r
∗

24

We need to show:

maxρ→τxyr
∗ s-majτ xr (3.17)

maxρ→τxyr
∗ s-majτ maxρ→τxyr (3.18)

It is clear that (3.18) follows from 1, taking into consideration (i), (ii), (iii) and Lemma 3.3.5.

As for (3.17), start by noticing that, by definition of maxρ→τ :

maxρ→τxyr
∗ =τ maxτ (xr∗)(yr∗)

and:

(v) xr∗ s-majρ xr
∗ by (i) and (iv)

(vi) yr∗ s-majρ yr
∗ by (ii) and (iv)

It now follows by induction hypothesis that maxτ (xr∗)(yr∗) s-majτ xr
∗, using (v) and (vi).

Furthermore, by (i) and (iii), we know that xr∗ s-majτ xr. So, finally, by transitivity of s-maj
(Lemma 3.3.3), we are able to conclude (3.17).

The notion of strong majorizability is due to Marc Bezem. There is also an earlier notion of weak
majoirizability due to William Howard that doesn’t require the condition x∗y∗s-majτx

∗y. The following
theorems are also true when using weak majorizability, but the weaker version is not transitive (i.e.,
we cannot prove an analogous statement to Lemma 3.3.3), and so we stick to strong majorizability
for now. For similar statements to those mentioned in this section using weak majorizability, see
[Kohlenbach, 2008].

Definition 3.5 (fM). For a term f of type 0→ ρ, we define fM of type 0→ ρ by type ρ induction,
such that

fM0 =ρ f0

fM (Sn) =ρ maxρ(f
Mn)(f(Sn))

Remark 3.6. It is possible to define fM using only type 0 induction. For details, see [Kohlenbach, 2008].

Lemma 3.7. If ∀n0 xn s-majρ yn, then for all m0:

1. xMm s-majρ x
Mm

2. xMm s-majρ ym

3. xM (Sm) s-majρ x
Mm

Proof. We start by stating our hypothesis:

∀n0 xn s-maj yn (3.19)

Notice that by Lemma 3.3.2 and (3.19), we can add another hypothesis:

∀n0 xn s-maj xn (3.20)

Now we prove each statement in turn:

1. xMm s-majρ x
Mm

By induction on m0:

0 Taking into consideration that xM0 = x0, this follows by (3.20), instantiating n := 0.

m→ Sm

Notice that, by the definition of xM and Lemma 3.3.1:

xM (Sm) s-maj xM (Sm) iff max (xMm)(x(Sm)) s-maj max (xMm)(x(Sm))

and this follows by Lemma 3.4.1 and Lemma 3.3.5, noticing that:

25

• xMm s-maj xMm by induction hypothesis;

• x(Sm) s-maj x(Sm) by (3.20), instantiating n := Sm.

2. xMm s-majρ ym

By analyzing the cases m =0 0 and m =0 Sm
′:

0 Taking into consideration that xM0 = x0, this follows by (3.19), instantiating n := 0.

Sm

Again by the definition of xM and Lemma 3.3.1:

xM (Sm) s-maj y(Sm) iff max(xMm)(x(Sm)) s-maj y(Sm)

and by the transitivity of s-maj (Lemma 3.3.3), it suffices to prove:

max(xMm)(x(Sm)) s-maj x(Sm) (3.21)

x(Sm) s-maj y(Sm) (3.22)

Noticing that:

• xMm s-maj xMm by 1;

• x(Sm) s-maj x(Sm) by (3.20), instantiating n := Sm.

it is the case that (3.21) follows by Lemma 3.4.3.

As for (3.22), it is a direct consequence of (3.19), instantiating n := Sm;

3. xM (Sm) s-majρ x
Mm

Yet again by the definition of xM and Lemma 3.3.1:

xM (Sm) s-maj xMm iff max(xMm)(x(Sm)) s-maj xMm

and this is a direct consequence of Lemma 3.4.2, noticing simply that:

• xMm s-maj xMm by 1;

• x(Sm) s-maj x(Sm) by (3.20), instantiating n := Sm;

as had already been seen.

Lemma 3.8. WE-HAω ` ∀x0→ρ, y0→ρ (∀n0 (xn s-majρ yn)→ xM s-maj0→ρ y).

Proof. Choose arbitrary x, y of type 0→ ρ, such that

∀n0 (xn s-majρ yn) (3.23)

We want to show:

∀m,m∗ (m∗ ≥0 m→ xMm∗ s-majρ ym ∧ xMm∗ s-majρ x
Mm)

and we will do it by induction on (m∗)0:

m∗ = 0

In this case, as m ≤ m∗ = 0, we necessarily conclude m = 0. Furthermore, xM0 = x0. Then the
result follows from (3.23), instantiating n := 0 and from Lemma 3.7.1.

m∗ → Sm∗

Taking into consideration that m ≤ Sm∗ ↔ m < Sm∗ ∨m = Sm∗ ↔ m ≤ m∗ ∨m = Sm∗, we
consider both cases separately:

26

m ≤ m∗ We want to show:

∀m (m∗ ≥ m→ xM (Sm∗) s-maj ym ∧ xM (Sm∗) s-maj xMm)

By transitivity of s-maj (Lemma 3.3.3), it suffices to prove:

xM (Sm∗) s-maj xMm∗ (3.24)

∀m (m∗ ≥ m→ xMm∗ s-maj ym) (3.25)

∀m (m∗ ≥ m→ xMm∗ s-maj xMm) (3.26)

Now (3.24) is a direct consequence of Lemma 3.7.3 and both (3.25) and (3.26) follow by
induction hypothesis.

m = Sm∗ We need to show xM (Sm∗) s-maj y(Sm∗), which is a direct consequence of Lemma
3.7.2, and xM (Sm∗) s-maj xM (Sm∗), which is a direct consequence of Lemma 3.7.1.

Theorem 3.9 (after Howard). For every closed term tρ of WE-HAω it is possible to construct a closed
term t∗ with type ρ of WE-HAω such that:

WE-HAω ` t∗ s-majρ t

Proof. Induction on the structure of t.

0

Notice that:

0 s-maj0 0 ≡ 0 ≥0 0

≡ 0 >0 0 ∨ 0 =0 0

← 0 =0 0

and so, by 0 =0 0, we conclude 0 s-maj0 0.

S

Notice that:

S s-maj0→0 S ≡ ∀ r0, (r∗)0 (r∗ ≥0 r → Sr∗ ≥0 Sr ∧ Sr∗ ≥0 Sr)

↔ ∀ r0, (r∗)0 (r∗ ≥0 r → Sr∗ ≥0 Sr)

which is a direct consequence of Lemma 3.1.5 and of the quantifier-free extensionality rule.

Πρ,τ

Notice that:

Π s-majρ→τ→ρ Π↔
↔ ∀ rρ1 , (r∗1)ρ, rτ2 , (r

∗
2)τ (r∗1 s-majρ r1 ∧ r∗2 s-majτ r2 → Πr∗1r

∗
2 s-majρ Πr1r2 ∧Πr∗1r

∗
2 s-majρ Πr1r2)

↔ ∀ rρ1 , (r∗1)ρ, rτ2 , (r
∗
2)τ (r∗1 s-majρ r1 ∧ r∗2 s-majτ r2 → r∗1 s-majρ r1)

where the first equivalence comes from Lemma 3.3.5 and the last equivalence uses the equalities
Πr∗1r

∗
2 =ρ r

∗
1 and Πr1r2 =ρ r1, and Lemma 3.3.1.

Σδ,ρ,τ

Notice that:

Σ s-maj(δ→ρ→τ)→(δ→ρ)→δ→τ Σ↔
↔ ∀ r1, r∗1 , r2, r∗2 , r3, r∗3 (r∗1 s-majδ→ρ→τ r1 ∧ r∗2 s-majδ→ρ r2 ∧ r∗3 s-majδ r3 →

→ Σr∗1r
∗
2r
∗
3 s-majτ Σr1r2r3 ∧ Σr∗1r

∗
2r
∗
3 s-majτ Σr1r2r3)

↔ ∀ r1, r∗1 , r2, r∗2 , r3, r∗3 (r∗1 s-majδ→ρ→τ r1 ∧ r∗2 s-majδ→ρ r2 ∧ r∗3 s-majδ r3 →
→ r∗1r

∗
3(r∗2r

∗
3) s-majτ r1r3(r2r3))

27

where we have used again Lemma 3.3.5 and .1 for analogous purposes as in the proof of Πs-majΠ.

Let r1, r
∗
1 , r2, r

∗
2 , r3, r

∗
3 be any terms of the appropriate types, and assume r∗i s-maj ri for each

i ∈ {1, 2, 3}. By the definition of r∗2 s-majδ→ρ r2 and the assumption r∗3 s-majδ r3 we conclude

r∗2r
∗
3 s-majρ r2r3 (3.27)

By Lemma 3.3.5, using r∗1 s-majδ→ρ→τ r1, r∗3 s-majδ r3 and (3.27) we conclude

r∗1r
∗
3(r∗2r

∗
3) s-majτ r1r3(r2r3)

which allows us to finally conclude Σ s-maj Σ.

Rρ

Suppose that ρ = ρ1, . . . , ρk, and let y∗,y, z∗, z be of the types that ensure that the terms
Rρx

0yz and Rρx
0y∗z∗ are terms of WE-HAω. Assume further that y∗ s-maj y and z∗ s-maj z,

where

y∗ s-maj y :≡
k∧
i=1

y∗i s-maj yi

We show by induction on x0 that:

∀x0 (Rρxy
∗z∗ s-maj Rρxyz) (3.28)

x =0 0

In this case, by the definition of Rρ, Rρ0y∗z∗ =ρ y
∗ and Rρ0yz =ρ y. So the thesis

follows by Lemma 3.3.1 and the hypothesis y∗ s-maj y.

x→ Sx

By the definition of Rρ:

Rρ(Sx)y∗z∗ =ρ z
∗(Rρxy

∗z∗)x

Rρ(Sx)yz =ρ z(Rρxyz)x

Now clearly x ≥0 x and by induction hypothesisRρxy
∗z∗s-majρRρxyz. The result follows

by Lemmas 3.3.5 and 3.3.1.

From (3.28) and Lemma 3.3.5, we conclude

∀x0 (Rρx s-majρ Rρx)

and Lemma 3.8 gives us the final result:

(Ri)
M
ρ s-majρi (Ri)ρ i ∈ {1, . . . , k}

The result now follows from the fact that if t∗ s-maj t and u∗ s-maj u, then t∗u∗ s-maj tu.

Corollary 3.10. Projection terms of WE-HAω, i.e., terms of the form

λx1, . . . , xk . xi

strongly majorize themselves.

Proof. This is direct from the proof of Theorem 3.9, remembering that projection terms are nothing
more than a combination of several Π and Σ (cf. Definition 1.15).

28

3.2 Monotone Functional Interpretation

For many applications of Gödel’s interpretation, the exact witness terms T are not important. What
really matters is to know that such terms exist, and some bound over them. In other words, for each
formula A(a) it would suffice to know closed terms T ∗ such that:

∃x (T ∗ s-maj x ∧ ∀a,yAD(xa,y,a))

If that in this case, we say that T ∗ satisfies the monotone functional interpretation of A.

We now define a set of closed formulas that will have a trivial monotone interpretation (similar to
the set P in the case of the ‘dialectica’ interpretation). Let ∆ be a set of formulas of the form:

∀aδ ∃ bσ (b ≤σ ra ∧ ∀ cγ A0(a, b, c))

where A0 is a quantifier-free formula with no free variables except the ones in a, b, c and r is a tuple
of closed terms of suitable types of WE-HAω. We also used for the first time the notation:

t ≤ρ u :≡
k∧
i=1

(ti ≤ρi ui)

Furthermore, given a set ∆, we define the corresponding set of Skolem normal forms:

∆̃ := {ϕ̃ :≡ ∃B (B ≤ r ∧ ∀a, cA0(a,Ba, c)) : ϕ :≡ ∀aδ ∃ bσ (b ≤σ ra ∧ ∀ cγ A0(a, b, c)) ∈ ∆}

Lemma 3.11. WE-HAω + ACω ` ϕ→ ϕ̃.

Proof. One first shows that:

b-ACδ,ρ : ∀Zδ→ρ (∀xδ ∃ yρ (y ≤ρ Zx ∧A(x, y, Z))→ ∃Y δ→ρ (Y ≤δ→ρ Z ∧ ∀xA(x, Y x, Z)))

is a consequence of ACω for all types δ, ρ, and then the result follows easily.

Theorem 3.12 (Soundness for the monotone functional interpretation). Let ∆ be as defined above,
and A(a) ∈ L(WE-HAω) containing only a free. Then:

WE-HAω + ACω + IPω∀ + Mω + ∆ ` A(a)

implies

WE-HAω + ∆̃ ` ∃x (T ∗ s-maj x ∧ ∀a,yAD(xa,y,a))

where T ∗ is a tuple of closed terms of WE-HAω which can be extracted from a given proof of A(a).

Proof. The proof is by induction on the length of the proof of A(a). For the axioms (excluding ∆),
the result follows from the soundness of the ‘dialectica’ interpretation (Theorem 2.7) and Howard’s
theorem (Theorem 3.9). However, the construction of T ∗ is often simpler than the construction of T ,
which is the case for the axiom A → A ∧ A, for example. We do not give every step of the proof in
detail, but mention only some cases:

A→ A ∧A
Recall Gödel’s translation of this axiom:

[A→ A ∧A]D ≡ ∃U ,Q,Y ∀x,v, r (AD(x,Y xvr,a)→ AD(Ux,v,a) ∧AD(Qx, r,a))

and the terms found during the proof of Theorem 2.7:

TU := λa,x .x

TQ := λa,x .x

TY := λa,x,v, r .

{
v if ¬AD(x,v,a)

r if AD(x,v,a)

By Corollary 3.10, TU and TQ strongly majorize themselves.

Consider now T ∗Y := λa,x,v, r . maxv r. It is the case that T ∗Y s-maj TY .

29

Induction schema

We use again the equivalent induction rule:

A(0,a′), A(z,a′)→ A(Sz,a′)

A(z,a′)

Notice that:

[A(0,a′)]D ≡ ∃x ∀yAD(x,y, 0,a′)

[A(z,a′)→ A(Sz,a′)]D ≡ ∃U ,Y ∀x,v (AD(x,Y xv, z,a′)→ AD(Ux,v, Sz,a′))

[A(z,a′)]D ≡ ∃x ∀yAD(x,y, z,a′)

By induction hypothesis, there are closed terms T ∗1 ,T
∗
2 and T ∗3 such that:

∃X (T ∗1 s-maj X ∧ ∀a′,yAD(Xa′,y, 0,a′))

∃U ,Y (T ∗2 s-maj U ∧ T ∗3 s-maj Y ∧ ∀ z,a′,x,v (AD(x,Yza′xv, z,a′)→ AD(Uza′x,v, Sz,a′)))

Define T4 by recursion such that:{
T40a′ = T ∗1 a

′

T4(Sz)a′ = T ∗2 za
′(T4za

′)

and T ∗4 := TM4 .

Now it is easy to verify that T ∗4 s-maj w, where w is defined by induction as:{
w0a′ = Xa′

w(Sz)a′ = Uza′(wza′)

and, in the same way as it did in the soundness proof of the ‘dialectica’ interpretation (Theorem
2.7), w is such that:

∀yAD(wya′,y, z,a′)

∆

Take an axiom in ∆:
ϕ ≡ ∀aδ ∃ bσ (b ≤σ ra ∧ ∀ cγ A0(a, b, c))

Noting that, because both b ≤σ ra ≡ ∀v (bv ≤0 rav) and ∀ cA0(a, b, c) are purely universal
formulas, their ‘dialectica’ interpretation doesn’t change them by Remark 2.2.3, we have:

ϕD ≡ ∃B ∀a,v, c (Bav ≤0 rav ∧A0(a,Ba, c))

↔ ∃B (B ≤ r ∧ ∀a, cA0(a,Ba, c))

where the equivalence comes from three simple remarks:

• ∀ commutes with ∧;

• if x 6∈ fv(t), ∀x t↔ t;

• B ≤ r ↔ ∀a,v (Bav ≤0 rav).

We want to find a tuple of closed terms T ∗ such that:

(i) T ∗ s-maj B;

(ii) B ≤ r ∧ ∀a, cA0(a,Ba, c).

Choose T ∗ as a tuple of terms that strongly majorize r (which exists by Theorem 3.9). Then by

T ∗ s-maj r, r ≥ B and Lemma 3.3.4 we obtain (i). As for, (ii), it follows from ∆̃.

30

References

[Kohlenbach, 1996] Kohlenbach, U. (1996). Logic: From Foundations to Applications, chapter
Analysing Proofs in Analysis, pages 225 – 260. Oxford University Press, Oxford.

[Kohlenbach, 2008] Kohlenbach, U. (2008). Applied Proof Theory: Proof Interpretations and their Use
in Mathematics. Springer.

[Sernadas and Sernadas, 2012] Sernadas, A. and Sernadas, C. (2012). Foundations of Logic and Theory
of Computation, volume 10 of Texts in Computing. College Publications, second edition.

[Sørensen and Urzyczyn, 2006] Sørensen, M. H. B. and Urzyczyn, P. (2006). Lectures on the Curry-
Howard Isomorphism. Elsevier.

[Troelstra, 1973] Troelstra, A. S. (1973). Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, volume 344 of Lecture Notes in Mathematics. Springer, Berlin.

31

	Introduction
	Preliminaries
	Intuitionistic and classical logic
	Heyting and Peano Arithmetic
	Weakly extensional Heyting and Peano arithmetic in all finite types

	Gödel's Functional (`dialectica') Interpretation
	Majorizability and the Monotone Functional Interpretation
	Majorizability
	Monotone Functional Interpretation

	References

