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Motivation

In Provability Logic, for a fixed theory T (PL) ◻A reads as

“A” is provable in T .

Interpretability Logic (IL) extends PL adding A▷B which means

T + A interprets T + B

We say that S interprets T – S ▷ T – if there exists a mapping

j : FormT → FormS

that preserves structure, for example, if ◦ is a binary logical

connective, then (φ ◦ ψ)j = φj ◦ ψj such that moreover

∀φ
(
□Tφ→ □Sφ

j
)
.

Example

Natural numbers can be interpreted as sets. 2



Motivation

We can define the interpretability logic of a theory T .

IL(T ) := {A | ∀ ∗ T ⊢ A∗},

where A is a formula in the language L◻,▷

F := ⊥ | Prop | F → F | ◻F | F ▷F ,

and ∗ is a translation sending propositional variables to

arithmetical sentences.

3



Motivation

The axioms of the basic interpretability IL are

L1 ◻(A → B) → (◻A → ◻B)

L2 ◻A → ◻◻A

L3 ◻(◻A → A) → ◻A

J1 ◻(A → B) → A▷B

J2 (A▷B) ∧ (B▷C ) → A▷C

J3 A▷C ∧ B▷C → A ∨ B▷C

J4 A▷B → (◇A → ◇B)

J5 ◇A▷A

Remark

• J1 tells us that the identity translation yields an interpretation.

• J5 represents Henkin’s completeness theorem formalised.
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Motivation

There are some interesting principles of interpretability. Namely,

M := A▷B → A ∧◻C▷B ∧◻C (Montagna)

P := A▷B → ◻(A▷B) (Persistence)

It is known that

IL(PA) := ILM (Full induction)

and

IL(IΣ1) := ILP (Finitely Axiomatized).
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Motivation

ILM and ILP motivate the characterisation of IL(All).

IL(All) := {A | ∀T ⊇ I∆0 + Exp ∀ ∗ T ⊢ A∗},

the interpretability logic of al “reasonable” arithmetical theories.

Remark

IL(All) ⊊ ILM ∩ ILP

We present some advances on its modal characterization.
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Semantics and intersections

In interpretability logic, models are 4-tuples

M := ⟨W ,R, {Sx}x∈W ,V ⟩

where

• W ̸= ∅

• R ⊆ W ×W

• Sx ⊆ x↾× x↾

• V : Prop → P(W )

x↾ := {y | xRy}.

R transitive and conversely well-founded;

Sx is reflexive, transitive and contains R on x↾.

F = ⟨W ,R, {Sx}x∈W ⟩ denotes a frame.

Sometimes we denote models as M = ⟨F ,V ⟩.
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Semantics and intersections

Propositions, implications and falsum (⊥) are forced as usual.

The forcing of formulas ◻A is

M, x ⊩ ◻A : ⇐⇒ ∀y(xRy → M, y ⊩ A).

The forcing of formulas A▷B is

M, x ⊩ A▷B : ⇐⇒ ∀y(xRy ∧M, y ⊩ A → ∃z : ySxz ∧M, z ⊩ B).
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Semantics and intersections

x

A

(a)

x

A▷B

y

A

z

BSx

(b)

Figure 1: (a) ◻A is forced at x (b) A▷B is forced at x
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Semantics and intersection

Validity on models and frames is defined as follows.

Validity

• Validity of a formula on a model:

M ⊨ φ iff M,w ⊩ φ, for all w ∈ W .

• Validity of a formula on a frame:

F ⊨ φ iff ∀V ⟨F ,V ⟩ ⊨ φ.

• Validity of a scheme: A model or a frame validates a

scheme X (M ⊨ X and F ⊨ X, respectively) iff it validates all

X’s instances.
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Semantics and intersections

The frame condition of a scheme X is a first (or higher) order

predicate formula C such that

∀F(F ⊨ C ⇐⇒ F ⊨ X).

Example

F ⊨ ◻A → ◻◻A ⇐⇒ F ⊨ ∀x , y , z
(
xRy ∧ yRz → xRz

)

Frame conditions of ILM and ILP.

F ⊨ M ⇐⇒ F ⊨ xRySxzRu → yRu.

F ⊨ P ⇐⇒ F ⊨ xRyRzSxu → zSyu.
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Semantics and intersections

x
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Sx

(a)
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z u
Sx

Sy

(b)

Figure 2: Frame condition of M (a) Frame condition of P (b)
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Semantics and intersections

x

y

Sx

(a) J1

x

y

z

Su

Su

Su

(b) J2

x

y
z

Sx

(c) J4

x

y

z

Sx

(d) J5

Figure 3: Frame definition reflecting axioms ◻(A → B) → A▷B (J1),

A▷B ∧ B▷C → A▷C (J2), A▷B → (◇A → ◇B) (J4) and◇A▷A (J5)
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Semantics and intersections

Sometimes we need to close on the frame properties.

Closure

The closure of a (proto-) frame F := ⟨W ,R, {Sx}x∈W ⟩ under
some principle X is the smallest structure

FX
:= ⟨W ,R

X
, {SX

x }x∈W ⟩ satisfying X such that R ⊆ R
X
and

Sx ⊆ S
X
x , for every x ∈ W .

x
y

z

Figure 4: Transitive closure
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Semantics and intersection

Frame operator

If L = {ϕi}i is a set of atomic predicates (like xRy or ySxz , etc.),

we define the IL-frame induced by L, F(
∧

i ϕi )
IL
, as the

universal closure of the smallest proto-frame that satisfies all

atomic predicates.

For brevity, we will write F(
∧

i ϕi ).

x

y
z

Sx

Sx, SySx

Figure 5: Closure of {xRy , yRz} under IL frame requirements.
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Semantics and intersection

Let F be a class of IL-frames. We define the interpretability logic

corresponding to F.

IL[F] := {A : for all F ∈ F, F ⊨ A}.

Let Fxyz denote any first or higher order formula where the only

free variables are x , y , z .

We now define the following class of conditions.

CILP ∩S ILM :=

{Fxyz → xSyz : ILP ⊨ Fxyz → xSyz ∧ ILM ⊨ Fxyz → xSyz}.

Also, we define the class

All := {F ⊨ ILW: ∀C ∈ CILP ∩S ILM,F ⊨ C}.
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Semantics and intersection

The principle W is

W := A▷B → A▷(B ∧◻¬A)

and its frame condition is that there are no Sx ;R infinite chains.

Conjecture 1 (Goris, Joosten 2020)

IL(All) = IL[All].

Recall

IL(All) := {A | ∀T ⊇ I∆0 + Exp ∀ ∗ T ⊢ A∗}.
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Semantics and intersection

M ∩ P-closure

Given a proto-frame F = ⟨W ,R, S⟩, its M ∩ P-closure is

FM∩P
:= FM ∩ FP

= ⟨W ,R
M ∩ R

P
,S

M ∩ S
P⟩.

As an example, consider the principle M0

M0 := A▷B → ◇A ∧◻C▷B ∧◻C ,

whose frame condition is

∀x , y , z , u, v
(
xRyRzSxuRv → yRv

)
.
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Semantics and intersection
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Figure 6: M0
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Semantics and intersection
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(b)

Figure 7: (a) M closure and (b) P closure
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Semantics and intersection

M
⋂

F P-clause set

We define the M ∩F P-clause set as∧
i

ϕi → φ :∈ M ∩F P iff F(
∧
i

ϕi )
M∩P

⊨ φ

whenever {ϕi}i ∪ {φ} is a set of atomic predicates so that

F(
∧

i ϕi ) defines a proto-frame.

Remark∧
i ϕi → φ is a Horn clause.

Non-empty since the M0 frame condition belongs to it.

It is known the Broad series and the Slim hierarchy belong to it.

21



Semantics and intersection
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Figure 8: Slim (or Staircase) hierarchy
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Semantics and intersection
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Figure 9: Broad series
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Semantics and intersection

M ∩F P defines a fragment of IL[All].

Let us define the lower-case class of IL-frames

all := {F ⊨ ILW: ∀C ∈ M ∩F P, F ⊨ C}.

Theorem

IL[all] ⊆ IL[All].

Remark

• It is unknown if IL[all] ⊂ IL[All].

• IL[all] entails the frame conditions of Broad and Slim.
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Semantics and intersection

It is natural to conjecture that

Conjecture 2

IL[all] = IL(All).

This new conjecture strengthens the old conjecture.

Conjecture 1 (Goris, Joosten 2020)

IL(All) = IL[All].
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Semantics and intersection

How can we get a grip on M
⋂

F P?

One may try to focus on the clauses that imply an R-pair and

conjecture that

Conjecture 3

Consider an IL-frame F = ⟨W ,R,S⟩. Then, for any x , y ∈ W ,

we have that xR
M
y ∧ xR

P
y ∧ ¬(xRy) → xR

M0y .

Nonetheless, this is disproven by the...
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Pencil frame



Pencil frame

x

y1 z1

y2 z2

Sx

Sx

Figure 10: Pencil frame.
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Pencil frame

x

y1 z1

y2 z2

Sx

Sx

(a)

x

y1 z1

y2 z2

Sx

Sy1

Sx

(b)

x

y1 z1

y2 z2

Sx

Sx

(c)

Figure 11: (a) M-closure (b) P-closure (c) Intersection.

Remark

Observe the green arrow is not in the M0-closure.
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On confluence

The unnecessary confluence of Pencil frames hint at their modal

undefinability.

Confluence is inherent in interpretability logics (e.g., xRySxz

implies xRz), but we can unravel IL-models into bisimilar tree-like

models w.r.t. R relations.

Tree-like IL-model

An IL-model M = ⟨W ,R,S ,V ⟩ is tree-like if

• (TL1) there exists a unique root regarding R and,

• (TL2) for every world except for the root, there is a

immediate unique predecessor regarding R0

xR0y iff xRy and ¬∃z : xRzRy
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On confluence
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Figure 12: (a) Frame not satisfying TL2 (b) Frame satisfying TL2. 30



On confluence

IL-bisimulation

Two IL-models M = ⟨W ,R,S ,V ⟩ and M′ = ⟨W ′,R ′, S ′,V ′⟩
are bisimilar, M↔M′, if there is some ∅ ̸= Z ⊆ W ×W ′ s.t.:

1. In: If wZw ′, then w ∈ V (p) iff w ′ ∈ V ′(p), ∀p ∈ Prop.

2. Back: If wZw ′ and there is u ∈ W such that wRu, then there

is u′ ∈ W ′ such that w ′R ′u′ and uZu′. Also, if u′S ′
w ′v ′, for

some v ′ ∈ W ′, then there is v ∈ W such that uSwv and vZv ′.

3. Forth: If wZw ′ and there is u′ ∈ W ′ such that w ′R ′u′, then

there is u ∈ W such that wRu and uZu′. Also, if uSwv , for

some v ∈ W , then there is v ′ ∈ W ′ such that u′S ′
w ′v ′ and

vZv ′.

Use M, x ↔M′, x ′ to indicate that there is a bisimulation

connecting x and x ′.
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On confluence

x
p

y
¬p z

p

u¬p

Sx

x
p

y
¬p

z
p

u0¬p
u1¬p

Sx

Figure 13: IL-bisimulation between two IL-models represented in dashed

blue arrows.

Key idea

These models mimic each other.
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On confluence

In fact, bisimilar IL-models prove the same modal formulas.

Invariant for bisimulation

A modal formula φ is invariant under bisimulation if whenever

x ↔ x ′, then x ⊨ φ iff x ′ ⊨ φ.

Of course, we have the following theorem.

Theorem 1

Modal formulas are invariant under bisimulation for IL-models.
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On confluence

For restricted IL-models we can find bisimilar tree-like IL-models.

Restriction of an IL-model

If M = ⟨W ,R,S ,V ⟩ is an IL-model, then its restriction to

w ∈ W is a model M↾w = ⟨W|w ,R|w , S|w ,V|w ⟩ where
W|w = w↾ ∪ {w}, R|w = {uRv : u, v ∈ W|w}, S|w = {Su}u∈W|w

and V|w : Prop → P(W|w ).
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On confluence

x

¬p

y
p

z
p

u
p

v

¬p

t
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Figure 14: Inclosed in blue: a restricted IL-model.
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On confluence

Indeed,

Theorem 2

For each IL-model M = ⟨W ,R,S ,V ⟩ and world w0 ∈ W , M↾w0

is bisimilar to a tree-like IL-model M′ = ⟨W ′,R ′, S ′,V ′⟩ that is
R-wise, in other words, according to the relation R.

Key idea

Use paths.
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On confluence

x
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(xz)
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(xzu)
¬p

S(x)

Figure 15: Example of a bisimulation using paths.
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Semantics



Minimal Veltman Semantics

Let us focus on frames and propose an alternative semantics that

avoids certain confluences.

Key idea

To remove many S relations for easier control, with the missing

relations compensated by the truth definition of ▷.

We propose the following frames.

Minimal Veltman frames

Consider a non-empty countable set of worlds W , R ⊆ W ×W

and, for each x ∈ W , Sx ⊆ ↾x × ↾x with R transitive and

Noetherian; for every x ∈ W , Sx is irreflexive and antitransitive;

for every x , y , z ∈ W , ySxz → ¬yRz . Then,
F = ⟨W ,R, {Sx}x∈W ⟩ is a Minimal Veltman frame or

MV-frame and CMVF is the class of MV-frames.
38



Minimal Veltman Semantics

Minimal Veltman models

A Minimal Veltman model (MV-model) is a tuple

⟨W ,R, {Sx}x∈W ,V ⟩, where ⟨W ,R, {Sx}x∈W ⟩ is an MV-frame,

and V : Prop → P(W ) is a valuation. The forcing relation ⊩MV

follows the standard definition for IL-models, except for the

▷-modality: 1

M, x ⊩MV A▷B ⇐⇒ ∀y(xRy ⊩MV A → ∃z y(R ∪ Sx)
∗z ⊩MV B).

M, x ⊩ A▷ B ⇐⇒ ∀y(xRy ⊩ A → ∃z ySxz ⊩MV B).

1Given a binary relation Z , we denote Z∗ as the composition of 0 or more

copies of Z . We set Z+ as the composition of 1 or more copies of Z . In fact,

Z+ = Z ;Z∗.
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Minimal Veltman Semantics

x
A▷B

y
A,B

(a)

x
A▷B

y
A

z

u
v
B

Sx

Sx

(b)

Figure 16: (a) 0 copies of R ∪ Sx (b) 3 copies of R ∪ Sx
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Minimal Veltman Semantics

Remark

• We denote the class of MV-models as CMVM.

• Validity for formulas and schemes in MV-models and

MV-frames is defined as usual, using ⊩MV and ⊨MV for

forcing and consequence, respectively.

IL is sound wrt the Minimal Veltman Semantics (MVS).

Theorem 3

IL ⊢ φ⇒ ∀F ∈ CMVFF ⊨MV φ.
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Completeness of Minimal Veltman

Semantics



MVS completeness

We can define bisimulations between IL-models and MV-models.

Bisimulation between IL-models and MV-models

An IL-model M = ⟨W ,R,S ,V ⟩ and an MV-model

M′ = ⟨W ′,R ′,S ′,V ′⟩ are bisimilar, M↔M′, if there is some

∅ ̸= Z ⊆ W ×W ′ such that:

1. In: If wZw ′, then w ∈ V (p) iff w ′ ∈ V ′(p), ∀p ∈ Prop.

2. Back: If wZw ′ and there is u ∈ W such that wRu, then there

is u′ ∈ W ′ with w ′R ′u′ and uZu′. Also, if u′(R ′ ∪ S ′
w ′)∗v ′, for

some v ′ ∈ W , then there is v ∈ W such that uSwv and vZv ′.

3. Forth: If wZw ′ and there is u′ ∈ W ′ such that w ′R ′u′, then

there is u ∈ W such that wRu and uZu′. Also, if uSwv , for

some v ∈ W , then there is v ′ ∈ W ′ such that u′(R ′ ∪ S ′
w ′)∗v ′

and vZv ′.
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MVS completeness
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Sx Sx

Sx, Sy Sx, Sz
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Figure 17: The model on the right is an MV-model. The dashed arrows

are the missing arrows.
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MVS completeness

As always,

Theorem 5

Modal formulas are invariant under bisimulation between IL- and

MV-models.

and we can prove that

Theorem 6

Each IL-model is bisimilar to a MV-model.

Key idea

Remove S-relations incompatible with the MV-frame definition.
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MVS completeness

Completeness

∀F ∈ CMVMF ⊨MV φ⇒ IL ⊢ φ.

Overview of the proof.

• Assume IL ⊬ φ.

• By IL-completeness, there is an IL-model such that

M,w ⊮ φ.

• M↔M′ for some MV-model M′. (Thm. 6)

• M and M′ prove the same modal formulas. (Thm. 5)

• Thus, M′ ⊭MV φ.
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Confluence revisited

Avoiding confluence in frames is desirable. We present the

(non-trivial) Unique Path Condition.

(uR∗aSxbR
∗v ∧ uR∗cSxdR

∗v) → ⟨a, b⟩ = ⟨c , d⟩. (UPath)

u

a b

c d

v

Sx

Sx

(a)

x

y1 z1

y2 z2

Sx

Sx

(b)

Figure 18: (a,b) Examples of frames that do not satisfy UPath 46



Confluence revisited

That motivates the definition of a new type of models that avoids

confluences.

Tree-some (not threesome) models

A rooted MV-model is tree-some if it satisfies (UPath).
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Confluence revisited

Also, we can define bisimulations between MV-models.

MV-bisimulation

Two MV-models M = ⟨W ,R,S ,V ⟩ and M′ = ⟨W ′,R ′,S ′,V ′⟩
are MV-bisimilar (M↔MVM′) if there is a ∅ ̸= Z ⊆ W ×W ′:

1. In: If wZw ′, then w ∈ V (p) iff w ′ ∈ V ′(p), ∀p ∈ Prop.

2. Back: If wZw ′ and there exists u ∈ W such that wRu, then

there exists u′ ∈ W ′ such that w ′R ′u′ and uZu′. Also, if

u′(R ′ ∪ S ′
w ′)∗v ′, for some v ′ ∈ W , then there exists v ∈ W

such that u(R ′ ∪ Sw )
∗v and vZv ′.

3. Forth: If wZw ′ and there exists u′ ∈ W ′ such that w ′R ′u′,

then there exists u ∈ W such that wRu and uZu′. Also, if

u(R ′ ∪ Sw )
∗v , for some v ∈ W , then there exists v ′ ∈ W ′

such that u′(R ′ ∪ S ′
w ′)∗v ′ and vZv ′.
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Confluence revisited

Of course, modal formulas are invariant under MV-bisimulation.

Theorem 7

Modal formulas are invariant under MV-bisimulation.

Theorem 8

For each MV-model M = ⟨W ,R,S ,V ⟩ and each world w0 ∈ W

we have that M↾w0 is bisimilar to a tree-some MV-model

M′ = ⟨W ′,R ′,S ′,V ′⟩.

Key idea

Use (more complicated) labeled paths.

This fact allows us to avoid the Pencil model, but Slim and Broad

series work with tree-some frames.
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Confluence revisited
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Figure 19: Full unraveling. Bisimilarity indicated by colours.
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Summary (Summer-e) and Further work

All in all,

• We strengthen the old conjecture by focusing on Horn clauses;

• We show that all known principles fall in this class;

• We addressed unnecessary confluence via unraveling

techniques over tree-like structures;

• We define a new semantics to mitigate confluences and

proved its soundness and completeness using bisimulation.

There is still some work to do.

• Explore if every (restricted) ILM- or ILP-model admits a

bisimilar (tree-some) MV-model satisfying the corresponding

M- or P-frame condition.
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Farewell

Thank you! Obrigado!
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