On tame semantics for interpretability logic

Vicent Navarro Arroyo
joint work with
Joost J. Joosten
31st Workshop on Logic, Language, Information and Computation
14 - 17 July 2025
Porto, Portugal

July 15

Department of Philosophy, University of Barcelona

Overview

Motivation

Semantics and intersections

Pencil frame

Dealing with confluence

A new semantics: Minimal Veltman Semantics

Completeness of Minimal Veltman Semantics

Confluence revisited

In Provability Logic, for a fixed theory T (PL) $\square A$ reads as "A" is provable in T.

Interpretability Logic (IL) extends PL adding $A \triangleright B$ which means

$$T + A$$
 interprets $T + B$

We say that S interprets $T - S \triangleright T$ – if there exists a mapping

$$j \colon \mathsf{Form}_{\mathcal{T}} \to \mathsf{Form}_{\mathcal{S}}$$

that preserves structure, for example, if \circ is a binary logical connective, then $(\varphi \circ \psi)^j = \varphi^j \circ \psi^j$ such that moreover

$$\forall \varphi \Big(\Box_T \varphi \to \Box_S \varphi^j \Big).$$

Example

Natural numbers can be interpreted as sets.

We can define the interpretability logic of a theory T.

$$\mathsf{IL}(T) := \{ A \mid \forall * T \vdash A^* \},\,$$

where A is a formula in the language $L_{\square, \triangleright}$

$$F := \bot \mid \mathsf{Prop} \mid F \to F \mid \Box F \mid F \triangleright F,$$

and \ast is a translation sending propositional variables to arithmetical sentences.

3

The axioms of the basic interpretability IL are

L1
$$\square(A \rightarrow B) \rightarrow (\square A \rightarrow \square B)$$
 J2 $(A \triangleright B) \land (B \triangleright C) \rightarrow A \triangleright C$

$$J2 (A \triangleright B) \land (B \triangleright C) \rightarrow A \triangleright C$$

L2
$$\square A \rightarrow \square \square A$$

$$J3 \ A \triangleright C \land B \triangleright C \rightarrow A \lor B \triangleright C$$

L3
$$\square(\square A \rightarrow A) \rightarrow \square A$$

J4
$$A \triangleright B \rightarrow (\diamondsuit A \rightarrow \diamondsuit B)$$

$$\mathbf{J1} \ \Box (A \to B) \to A \rhd B$$

$$\mathbf{J5} \quad \diamondsuit A \triangleright A$$

Remark

- J1 tells us that the identity translation yields an interpretation.
- J5 represents Henkin's completeness theorem formalised.

There are some interesting principles of interpretability. Namely,

$$\begin{aligned} \mathsf{M} &\coloneqq A \triangleright B \to A \land \square \ C \triangleright B \land \square \ C \end{aligned} \qquad \qquad \text{(Montagna)} \\ \mathsf{P} &\coloneqq A \triangleright B \to \square (A \triangleright B) \end{aligned} \qquad \qquad \text{(Persistence)}$$

It is known that

$$IL(PA) := ILM$$
 (Full induction)

and

$$\mathsf{IL}(\mathsf{I}\Sigma_1) \coloneqq \mathsf{ILP}$$
 (Finitely Axiomatized).

5

ILM and ILP motivate the characterisation of IL(AII).

$$\mathsf{IL}(\mathsf{AII}) := \{ A \mid \forall T \supseteq \mathsf{I}\Delta_0 + \mathsf{Exp} \ \forall * T \vdash A^* \},\$$

the interpretability logic of al "reasonable" arithmetical theories.

Remark

$$IL(AII) \subsetneq ILM \cap ILP$$

We present some advances on its modal characterization.

6

In interpretability logic, models are 4-tuples

$$\mathcal{M} := \langle W, R, \{S_x\}_{x \in W}, V \rangle$$

where

•
$$R \subseteq W \times W$$

•
$$S_x \subseteq x \upharpoonright \times x \upharpoonright$$

•
$$V : \mathsf{Prop} \to \mathcal{P}(W)$$

$$x \upharpoonright := \{ y \mid xRy \}.$$

R transitive and conversely well-founded;

 S_x is reflexive, transitive and contains R on x
vert.

 $\mathcal{F} = \langle W, R, \{S_x\}_{x \in W} \rangle$ denotes a frame.

Sometimes we denote models as $\mathcal{M} = \langle \mathcal{F}, V \rangle$.

Propositions, implications and falsum (\perp) are forced as usual.

The forcing of formulas $\square A$ is

$$\mathcal{M}, x \Vdash \Box A : \iff \forall y (xRy \rightarrow \mathcal{M}, y \Vdash A).$$

The forcing of formulas $A \triangleright B$ is

$$\mathcal{M}, x \Vdash A \triangleright B \colon \iff \forall y (xRy \land \mathcal{M}, y \Vdash A \rightarrow \exists z \colon yS_xz \land \mathcal{M}, z \Vdash B).$$

8

Figure 1: (a) $\square A$ is forced at x

(b) $A \triangleright B$ is forced at x

Validity on models and frames is defined as follows.

Validity

• Validity of a formula on a model:

$$\mathcal{M} \vDash \varphi$$
 iff $\mathcal{M}, w \Vdash \varphi$, for all $w \in W$.

• Validity of a formula on a frame:

$$\mathcal{F} \vDash \varphi \text{ iff } \forall V \langle \mathcal{F}, V \rangle \vDash \varphi.$$

Validity of a scheme: A model or a frame validates a
scheme X (M ⊨ X and F ⊨ X, respectively) iff it validates all
X's instances.

The **frame condition** of a scheme X is a first (or higher) order predicate formula $\mathcal C$ such that

$$\forall \mathcal{F}(\mathcal{F} \models \mathcal{C} \iff \mathcal{F} \models X).$$

Example

$$\mathcal{F} \vDash \Box A \rightarrow \Box \Box A \iff \mathcal{F} \vDash \forall x, y, z \ \left(xRy \land yRz \rightarrow xRz\right)$$

Frame conditions of ILM and ILP.

$$\mathcal{F} \vDash \mathsf{M} \iff \mathcal{F} \vDash xRyS_xzRu \to yRu.$$

$$\mathcal{F} \vDash P \iff \mathcal{F} \vDash xRyRzS_xu \rightarrow zS_yu.$$

Figure 2: Frame condition of M (a)

Frame condition of P (b)

Figure 3: Frame definition reflecting axioms $\Box(A \to B) \to A \rhd B$ (J1), $A \rhd B \land B \rhd C \to A \rhd C$ (J2), $A \rhd B \to (\diamondsuit A \to \diamondsuit B)$ (J4) and $\diamondsuit A \rhd A$ (J5)

Sometimes we need to close on the frame properties.

Closure

The closure of a (proto-) frame $\mathcal{F} \coloneqq \langle W, R, \{S_x\}_{x \in W} \rangle$ under some principle X is the smallest structure $\overline{\mathcal{F}}^X \coloneqq \langle W, \overline{R}^X, \{\overline{S}_x^X\}_{x \in W} \rangle$ satisfying X such that $R \subseteq \overline{R}^X$ and $S_x \subseteq \overline{S}_x^X$, for every $x \in W$.

Figure 4: Transitive closure

Frame operator

If $L = \{\phi_i\}_i$ is a set of atomic predicates (like xRy or yS_xz , etc.), we define the **IL-frame induced by** L, $\overline{\mathcal{F}(\bigwedge_i \phi_i)}^{\text{IL}}$, as the universal closure of the smallest proto-frame that satisfies all atomic predicates.

For brevity, we will write $\mathcal{F}(\bigwedge_i \phi_i)$.

Figure 5: Closure of $\{xRy, yRz\}$ under **IL** frame requirements.

Let \mathfrak{F} be a class of **IL**-frames. We define the interpretability logic corresponding to \mathfrak{F} .

$$\mathbf{IL}[\mathfrak{F}] := \{A \colon \mathsf{for all} \ \mathcal{F} \in \mathfrak{F}, \ \mathcal{F} \vDash A\}.$$

Let F_{xyz} denote any first or higher order formula where the only free variables are x, y, z.

We now define the following class of conditions.

$$\mathcal{C}_{\mathsf{ILP} \ \cap_{\mathcal{S}} \ \mathsf{ILM}} := \\ \{ F_{xyz} \to x S_y z \colon \mathsf{ILP} \vDash F_{xyz} \to x S_y z \ \land \ \mathsf{ILM} \vDash F_{xyz} \to x S_y z \}.$$

Also, we define the class

$$\mathfrak{All} := \{ \mathcal{F} \vDash \mathbf{ILW} \colon \forall C \in \mathcal{C}_{\mathbf{ILP}} \cap_{S} \mathbf{ILM}, \mathcal{F} \vDash C \}.$$

The principle W is

$$\mathsf{W} := \mathsf{A} \rhd \mathsf{B} \to \mathsf{A} \rhd (\mathsf{B} \land \Box \neg \mathsf{A})$$

and its frame condition is that there are no S_x ; R infinite chains.

Conjecture 1 (Goris, Joosten 2020)

$$\mathbf{IL}(\mathsf{AII}) = \mathbf{IL}[\mathfrak{MI}].$$

Recall

$$\mathsf{IL}(\mathsf{AII}) \coloneqq \{A \mid \forall T \supseteq \mathsf{I}\Delta_0 + \mathsf{Exp} \ \forall * T \vdash A^*\}.$$

$M \cap P$ -closure

Given a proto-frame
$$\mathcal{F} = \langle W, R, S \rangle$$
, its $M \cap P$ -closure is $\overline{\mathcal{F}}^{M \cap P} := \overline{\mathcal{F}}^M \cap \overline{\mathcal{F}}^P = \langle W, \overline{R}^M \cap \overline{R}^P, \overline{S}^M \cap \overline{S}^P \rangle$.

As an example, consider the principle M_0

$$M_0 := A \triangleright B \rightarrow \Diamond A \wedge \Box C \triangleright B \wedge \Box C$$
,

whose frame condition is

$$\forall x, y, z, u, v \Big(xRyRzS_x uRv \rightarrow yRv \Big).$$

Figure 6: M₀

Figure 7: (a) M closure and

(b) P closure

$M \bigcap_{\mathcal{F}} P$ -clause set

We define the $M \cap_{\mathcal{F}} P$ -clause set as

$$\bigwedge_{i} \phi_{i} \to \varphi :\in \mathsf{M} \cap_{\mathcal{F}} \mathsf{P} \text{ iff } \overline{\mathcal{F}(\bigwedge_{i} \phi_{i})}^{\mathsf{M} \cap \mathsf{P}} \vDash \varphi$$

whenever $\{\phi_i\}_i \cup \{\varphi\}$ is a set of atomic predicates so that $\mathcal{F}(\bigwedge_i \phi_i)$ defines a proto-frame.

Remark

 $\bigwedge_i \phi_i \to \varphi$ is a Horn clause.

Non-empty since the M_0 frame condition belongs to it.

It is known the Broad series and the Slim hierarchy belong to it.

Figure 8: Slim (or Staircase) hierarchy

Figure 9: Broad series

 $M\cap_{\mathcal{F}} P \text{ defines a fragment of } \textbf{IL}[\mathfrak{All}].$

Let us define the lower-case class of IL-frames

$$\mathfrak{all} := \{ \mathcal{F} \vDash \mathbf{ILW} \colon \forall C \in \mathsf{M} \cap_{\mathcal{F}} \mathsf{P}, \, \mathcal{F} \vDash C \}.$$

Theorem

$$\mathsf{IL}[\mathfrak{all}] \subseteq \mathsf{IL}[\mathfrak{All}].$$

Remark

- It is unknown if $IL[\mathfrak{all}] \subset IL[\mathfrak{All}]$.
- **IL**[all] entails the frame conditions of *Broad* and *Slim*.

It is natural to conjecture that

Conjecture 2

$$IL[\mathfrak{all}] = IL(AII).$$

This new conjecture strengthens the old conjecture.

Conjecture 1 (Goris, Joosten 2020)

$$IL(AII) = IL[\mathfrak{A}\mathfrak{U}].$$

How can we get a grip on $M \cap_{\mathcal{F}} P$?

One may try to focus on the clauses that imply an R-pair and conjecture that

Conjecture 3

Consider an **IL**-frame $\mathcal{F}=\langle W,R,S\rangle$. Then, for any $x,y\in W$, we have that $x\overline{R}^{\mathsf{M}}y\wedge x\overline{R}^{\mathsf{P}}y\wedge \neg(xRy)\to x\overline{R}^{\mathsf{M}_0}y$.

Nonetheless, this is disproven by the...

Pencil frame

Pencil frame

Figure 10: Pencil frame.

Pencil frame

Figure 11: (a) M-closure (b) P-closure (c) Intersection.

Remark

Observe the green arrow is not in the M_0 -closure.

Dealing with confluence

On confluence

The unnecessary confluence of Pencil frames hint at their modal undefinability.

Confluence is inherent in interpretability logics (e.g., $xRyS_xz$ implies xRz), but we can unravel **IL**-models into bisimilar *tree-like* models w.r.t. R relations.

Tree-like IL-model

An **IL**-model $\mathcal{M} = \langle W, R, S, V \rangle$ is **tree-like** if

- (TL1) there exists a unique root regarding R and,
- (TL2) for every world except for the root, there is a immediate unique predecessor regarding R₀

$$xR_0y$$
 iff xRy and $\neg \exists z : xRzRy$

On confluence

Figure 12: (a) Frame not satisfying TL2

(b) Frame satisfying TL2.

On confluence

IL-bisimulation

Two **IL**-models $\mathcal{M} = \langle W, R, S, V \rangle$ and $\mathcal{M}' = \langle W', R', S', V' \rangle$ are **bisimilar**, $\mathcal{M} \xrightarrow{\hookrightarrow} \mathcal{M}'$, if there is some $\varnothing \neq Z \subseteq W \times W'$ s.t.:

- 1. In: If wZw', then $w \in V(p)$ iff $w' \in V'(p)$, $\forall p \in Prop$.
- 2. **Back:** If wZw' and there is $u \in W$ such that wRu, then there is $u' \in W'$ such that w'R'u' and uZu'. Also, if $u'S'_{w'}v'$, for some $v' \in W'$, then there is $v \in W$ such that uS_wv and vZv'.
- 3. **Forth:** If wZw' and there is $u' \in W'$ such that w'R'u', then there is $u \in W$ such that wRu and uZu'. Also, if uS_wv , for some $v \in W$, then there is $v' \in W'$ such that $u'S'_{w'}v'$ and vZv'.

Use $\mathcal{M}, x \leftrightarrow \mathcal{M}', x'$ to indicate that there is a bisimulation connecting x and x'.

Figure 13: IL-bisimulation between two **IL**-models represented in dashed blue arrows.

Key idea

These models *mimic* each other.

In fact, bisimilar IL-models prove the same modal formulas.

Invariant for bisimulation

A modal formula φ is **invariant under bisimulation** if whenever $x \leftrightarrow x'$, then $x \models \varphi$ iff $x' \models \varphi$.

Of course, we have the following theorem.

Theorem 1

Modal formulas are invariant under bisimulation for IL-models.

For restricted IL-models we can find bisimilar tree-like IL-models.

Restriction of an IL-model

If $\mathcal{M}=\langle W,R,S,V\rangle$ is an **IL**-model, then its **restriction** to $w\in W$ is a model $\mathcal{M}\!\!\upharpoonright\!\! w=\langle W_{|w},R_{|w},S_{|w},V_{|w}\rangle$ where $W_{|w}=w\!\!\upharpoonright\!\cup\{w\},\ R_{|w}=\{uRv\colon u,v\in W_{|w}\},\ S_{|w}=\{S_u\}_{u\in W_{|w}}$ and $V_{|w}\colon \operatorname{Prop}\to \mathcal{P}(W_{|w}).$

Figure 14: Inclosed in blue: a restricted IL-model.

Indeed,

Theorem 2

For each **IL**-model $\mathcal{M}=\langle W,R,S,V\rangle$ and world $w_0\in W$, $\mathcal{M}\upharpoonright w_0$ is bisimilar to a tree-like **IL**-model $\mathcal{M}'=\langle W',R',S',V'\rangle$ that is R-wise, in other words, according to the relation R.

Key idea

Use paths.

Figure 15: Example of a bisimulation using paths.

A new semantics: Minimal Veltman

Semantics

Let us focus on frames and propose an alternative semantics that avoids certain confluences.

Key idea

To remove many S relations for easier control, with the missing relations compensated by the truth definition of \triangleright .

We propose the following frames.

Minimal Veltman frames

Consider a non-empty countable set of worlds W, $R \subseteq W \times W$ and, for each $x \in W$, $S_x \subseteq \lceil x \times \lceil x \rceil$ with R transitive and Noetherian; for every $x \in W$, S_x is irreflexive and antitransitive; for every $x, y, z \in W$, $yS_xz \to \neg yRz$. Then, $\mathcal{F} = \langle W, R, \{S_x\}_{x \in W} \rangle$ is a **Minimal Veltman frame** or MV-frame and $\mathcal{C}^{\mathsf{MVF}}$ is the **class of** MV-**frames**.

Minimal Veltman models

A **Minimal Veltman model** (MV-model) is a tuple $\langle W, R, \{S_x\}_{x\in W}, V\rangle$, where $\langle W, R, \{S_x\}_{x\in W}\rangle$ is an MV-frame, and $V: \mathsf{Prop} \to \mathcal{P}(W)$ is a valuation. The forcing relation \Vdash_{MV} follows the standard definition for **IL**-models, except for the \triangleright -modality: 1

$$\mathcal{M}, x \Vdash_{\mathsf{MV}} A \triangleright B \iff \forall y (xRy \Vdash_{\mathsf{MV}} A \to \exists z \, y (R \cup S_x)^* z \Vdash_{\mathsf{MV}} B).$$

$$\mathcal{M}, x \Vdash A \rhd B \iff \forall y (xRy \Vdash A \to \exists z \ y S_x z \Vdash_{\mathsf{MV}} B).$$

¹Given a binary relation Z, we denote Z^* as the composition of 0 or more copies of Z. We set Z^+ as the composition of 1 or more copies of Z. In fact, $Z^+ = Z$; Z^* .

Remark

- We denote the **class of** MV-**models** as C^{MVM} .
- Validity for formulas and schemes in MV-models and MV-frames is defined as usual, using ⊩_{MV} and ⊨_{MV} for forcing and consequence, respectively.

IL is sound wrt the Minimal Veltman Semantics (MVS).

Theorem 3

$$\mathsf{IL} \vdash \varphi \Rightarrow \forall \mathcal{F} \in \mathcal{C}^{\mathsf{MVF}} \mathcal{F} \vDash_{\mathsf{MV}} \varphi.$$

Completeness of Minimal Veltman

Semantics

We can define bisimulations between IL-models and MV-models.

Bisimulation between IL-models and MV-models

An **IL**-model $\mathcal{M} = \langle W, R, S, V \rangle$ and an MV-model $\mathcal{M}' = \langle W', R', S', V' \rangle$ are **bisimilar**, $\mathcal{M} & \hookrightarrow \mathcal{M}'$, if there is some $\varnothing \neq Z \subseteq W \times W'$ such that:

- 1. In: If wZw', then $w \in V(p)$ iff $w' \in V'(p)$, $\forall p \in Prop$.
- 2. **Back:** If wZw' and there is $u \in W$ such that wRu, then there is $u' \in W'$ with w'R'u' and uZu'. Also, if $u'(R' \cup S'_{w'})^*v'$, for some $v' \in W$, then there is $v \in W$ such that uS_wv and vZv'.
- 3. **Forth:** If wZw' and there is $u' \in W'$ such that w'R'u', then there is $u \in W$ such that wRu and uZu'. Also, if uS_wv , for some $v \in W$, then there is $v' \in W'$ such that $u'(R' \cup S'_{w'})^*v'$ and vZv'.

Figure 17: The model on the right is an MV-model. The dashed arrows are the missing arrows.

As always,

Theorem 5

Modal formulas are invariant under bisimulation between ${
m IL}\mbox{-}$ and ${
m MV-models}.$

and we can prove that

Theorem 6

Each IL-model is bisimilar to a MV-model.

Key idea

Remove S-relations incompatible with the MV-frame definition.

Completeness

 $\forall \mathcal{F} \in \mathcal{C}^{\mathsf{MVM}} \mathcal{F} \vDash_{\mathsf{MV}} \varphi \Rightarrow \mathsf{IL} \vdash \varphi.$

Overview of the proof.

- Assume IL $\nvdash \varphi$.
- By IL-completeness, there is an IL-model such that M, w ⊮ φ.
- $\mathcal{M} \xrightarrow{\longleftrightarrow} \mathcal{M}'$ for some MV-model \mathcal{M}' . (Thm. 6)
- \mathcal{M} and \mathcal{M}' prove the same modal formulas. (**Thm. 5**)
- Thus, $\mathcal{M}' \nvDash_{\mathsf{MV}} \varphi$.

Avoiding confluence in frames is desirable. We present the (non-trivial) *Unique Path Condition*.

$$(uR^*aS_xbR^*v \wedge uR^*cS_xdR^*v) \to \langle a,b\rangle = \langle c,d\rangle. \tag{UPath}$$

Figure 18: (a,b) Examples of frames that do not satisfy UPath

That motivates the definition of a new type of models that avoids confluences.

Tree-some (not threesome) models

A rooted MV-model is **tree-some** if it satisfies (UPath).

Also, we can define bisimulations between MV-models.

MV-bisimulation

Two MV-models $\mathcal{M} = \langle W, R, S, V \rangle$ and $\mathcal{M}' = \langle W', R', S', V' \rangle$ are MV-bisimilar $(\mathcal{M} \xrightarrow{}_{MV} \mathcal{M}')$ if there is a $\emptyset \neq Z \subseteq W \times W'$:

- 1. In: If wZw', then $w \in V(p)$ iff $w' \in V'(p)$, $\forall p \in Prop$.
- 2. **Back:** If wZw' and there exists $u \in W$ such that wRu, then there exists $u' \in W'$ such that w'R'u' and uZu'. Also, if $u'(R' \cup S'_{w'})^*v'$, for some $v' \in W$, then there exists $v \in W$ such that $u(R' \cup S_w)^*v$ and vZv'.
- 3. **Forth:** If wZw' and there exists $u' \in W'$ such that w'R'u', then there exists $u \in W$ such that wRu and uZu'. Also, if $u(R' \cup S_w)^*v$, for some $v \in W$, then there exists $v' \in W'$ such that $u'(R' \cup S'_{w'})^*v'$ and vZv'.

Of course, modal formulas are invariant under MV-bisimulation.

Theorem 7

Modal formulas are invariant under MV-bisimulation.

Theorem 8

For each MV-model $\mathcal{M}=\langle W,R,S,V\rangle$ and each world $w_0\in W$ we have that $\mathcal{M}\upharpoonright w_0$ is bisimilar to a tree-some MV-model $\mathcal{M}'=\langle W',R',S',V'\rangle$.

Key idea

Use (more complicated) labeled paths.

This fact allows us to avoid the Pencil model, but Slim and Broad series work with tree-some frames.

Figure 19: Full unraveling. Bisimilarity indicated by colours.

Summary (Summer-e) and Further work

All in all,

- We strengthen the old conjecture by focusing on Horn clauses;
- We show that all known principles fall in this class;
- We addressed unnecessary confluence via unraveling techniques over tree-like structures;
- We define a new semantics to mitigate confluences and proved its soundness and completeness using bisimulation.

There is still some work to do.

 Explore if every (restricted) ILM- or ILP-model admits a bisimilar (tree-some) MV-model satisfying the corresponding M- or P-frame condition.

Thank you! Obrigado!