Principles of interpretability logic in the intersection of ILP and ILM

Vicent Navarro Arroyo joint work with Joost J. Joosten July 7th-11th Logic Colloquium 2025, Vienna, Austria

Department of Philosophy, University of Barcelona

In Provability Logic, for a fixed theory $T(PL) \square A$ reads as

"A" is provable in T.

Interpretability Logic (IL) extends PL adding $A \triangleright B$ which means

$$T + A$$
 interprets $T + B$

We say that S interprets $T - S \triangleright T$ – if there exists a mapping

$$j \colon \mathsf{Form}_T \to \mathsf{Form}_S$$

that preserves structure, for example, if \circ is a binary logical connective, then $(\varphi \circ \psi)^j = \varphi^j \circ \psi^j$ such that moreover

$$\forall \varphi \Big(\Box_T \varphi \to \Box_S \varphi^j \Big).$$

Example

Natural numbers can be interpreted as sets.

Gödel's Second Incompleteness Theorem is modally expressed as

$$\Diamond \top \rightarrow \neg \Box \Diamond \top$$
.

In interpretability logic it can be generalized to

$$\Diamond \top \to \neg (\top \triangleright \Diamond \top). \tag{Feferman}$$

2

We can define the interpretability logic of a theory *T*.

$$\mathsf{IL}(T) := \{ A \mid \forall * T \vdash A^* \},$$

where A is a formula in the language $L_{\square, \triangleright}$

$$F := \bot \mid \mathsf{Prop} \mid F \to F \mid \Box F \mid F \rhd F$$
,

and * is a translation sending propositional variables to arithmetical sentences.

3

The axioms of the basic interpretability IL are

L1
$$\square(A \to B) \to (\square A \to \square B)$$
 J2 $(A \triangleright B) \land (B \triangleright C) \to A \triangleright C$
L2 $\square A \to \square \square A$ J3 $A \triangleright C \land B \triangleright C \to A \lor B \triangleright C$
L3 $\square(\square A \to A) \to \square A$ J4 $A \triangleright B \to (\diamondsuit A \to \diamondsuit B)$
J1 $\square(A \to B) \to A \triangleright B$ J5 $\lozenge A \triangleright A$

Remark

- J1 tells us that the identity translation yields an interpretation.
- J5 represents Henkin's completeness theorem formalised.

There are some interesting principles of interpretability. Namely,

$$M := A \triangleright B \rightarrow A \land \Box C \triangleright B \land \Box C$$
 (Montagna)
$$P := A \triangleright B \rightarrow \Box (A \triangleright B)$$
 (Persistence)

It is known that

$$IL(PA) := ILM$$
 (Full induction)

and

$$IL(I\Sigma_1) := ILP$$
 (Finitely Axiomatized).

5

ILM and ILP motivate the characterisation of IL(All).

$$\mathsf{IL}(\mathsf{All}) := \{ A \mid \forall T \supseteq \mathsf{I}\Delta_0 + \mathsf{Exp} \ \forall *T \vdash A^* \},$$

the interpretability logic of al "reasonable" arithmetical theories.

Remark

$$IL(All) \subsetneq ILM \cap ILP$$

We present some advances on its modal characterization.

In interpretability logic, models are 4-tuples

$$\mathcal{M} \coloneqq \langle W, R, \{S_X\}_{X \in W}, V \rangle$$

where

•
$$W \neq \emptyset$$

•
$$R \subseteq W \times W$$

•
$$S_X \subseteq X \upharpoonright \times X \upharpoonright$$

• V: Prop
$$\rightarrow \mathcal{P}(W)$$

$$x \upharpoonright := \{ y \mid xRy \}.$$

R transitive and conversely well-founded;

 S_x is reflexive transitive and contains R on $x \mid$.

$$\mathcal{F} = \langle W, R, \{S_X\}_{X \in W} \rangle$$
 denotes a frame.

Sometimes we denote models as $\mathcal{M} = \langle \mathcal{F}, V \rangle$.

Propositions, implications and falsum (\bot) are forced as usual.

The forcing of formulas $\square A$ is

$$\mathcal{M}, x \Vdash \Box A : \iff \forall y (xRy \to \mathcal{M}, y \Vdash A).$$

The forcing of formulas $A \triangleright B$ is

$$\mathcal{M}, x \Vdash A \triangleright B$$
: $\iff \forall y (xRy \land \mathcal{M}, y \Vdash A \rightarrow \exists z \colon yS_xz \land \mathcal{M}, z \Vdash B).$

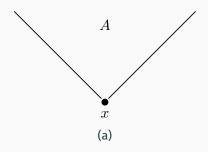
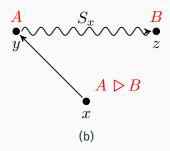


Figure 1: (a) $\square A$ is forced at x



(b) $A \triangleright B$ is forced at x

Validity on models and frames is defined as follows.

Validity

· Validity of a formula on a model:

$$\mathcal{M} \vDash \varphi \text{ iff } \mathcal{M}, w \Vdash \varphi, \text{ for all } w \in W.$$

· Validity of a formula on a frame:

$$\mathcal{F} \vDash \varphi \text{ iff } \forall V \langle \mathcal{F}, V \rangle \vDash \varphi.$$

 Validity of a scheme: A model or a frame validates a scheme X (M ⊨ X and F ⊨ X, respectively) iff it validates all X's instances.

The frame condition of a scheme X is a first (or higher) order predicate formula $\mathcal C$ such that

$$\forall \mathcal{F}(\mathcal{F} \vDash \mathcal{C} \iff \mathcal{F} \vDash X).$$

Example

$$\mathcal{F} \vDash \Box A \to \Box \Box A \iff \mathcal{F} \vDash \forall x, y, z \left(xRy \land yRz \to xRz \right)$$

Frame conditions of ILM and ILP.

$$\mathcal{F} \vDash M \iff \mathcal{F} \vDash xRyS_xzRu \to yRu.$$

$$\mathcal{F} \vDash P \iff \mathcal{F} \vDash xRyRzS_xu \rightarrow zS_yu.$$

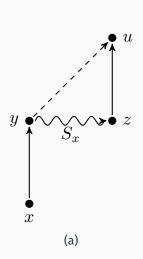
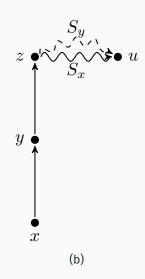


Figure 2: Frame condition of M (a)



Frame condition of P (b)

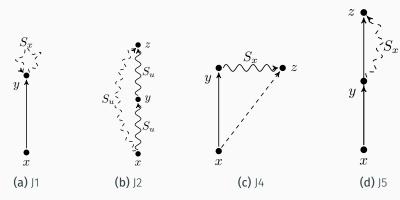


Figure 3: Frame definition reflecting axioms $\Box(A \rightarrow B) \rightarrow A \triangleright B$ (J1), $A \triangleright B \wedge B \triangleright C \rightarrow A \triangleright C$ (J2), $A \triangleright B \rightarrow (\diamondsuit A \rightarrow \diamondsuit B)$ (J4) and $\diamondsuit A \triangleright A$ (J5)

Sometimes we need to close on the frame properties.

Closure

The closure of a (proto-) frame $\mathcal{F} := \langle W, R, \{S_x\}_{x \in W} \rangle$ under some principle X is the smallest structure $\overline{\mathcal{F}}^X := \langle W, \overline{R}^X, \{\overline{S}_x^X\}_{x \in W} \rangle$ satisfying X such that $R \subseteq \overline{R}^X$ and $S_X \subseteq \overline{S}_X^X$, for every $X \in W$.

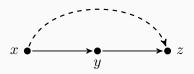


Figure 4: Transitive closure

Frame operator

If $L = \{\phi_i\}_i$ is a set of atomic predicates (like xRy or yS_xz, etc.), we define the **IL-frame induced by** L, $\overline{\mathcal{F}(\bigwedge_i \phi_i)}^{\text{IL}}$, as the universal closure of the smallest proto-frame that satisfies all atomic predicates.

For brevity, we will write $\mathcal{F}(\bigwedge_i \phi_i)$.

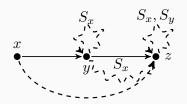


Figure 5: Closure of $\{xRy, yRz\}$ under **IL** frame requirements.

Let ${\mathfrak F}$ be a class of **IL**-frames. We define the interpretability logic corresponding to ${\mathfrak F}$.

$$\mathsf{IL}[\mathfrak{F}] := \{ \mathsf{A} \colon \mathsf{for} \; \mathsf{all} \; \mathcal{F} \in \mathfrak{F}, \; \mathcal{F} \vDash \mathsf{A} \}.$$

Let F(x,y,z) denote any first or higher order formula where the only free variables are x,y,z. We now define the following class of conditions.

$$\mathcal{C}_{\mathsf{ILP}\,\,\cap_{\mathsf{S}}\,\,\mathsf{ILM}} := \\ \{ F(x,y,z) \to x S_y z \colon \mathsf{ILP} \vDash F(x,y,z) \to x S_y z \,\wedge\,\, \mathsf{ILM} \vDash F(x,y,z) \to x S_y z \}.$$

Also, we define the class

$$\mathfrak{A}\mathfrak{U}\mathfrak{U}:=\{\mathcal{F}\vDash\mathsf{ILW}\colon\forall C\in\mathcal{C}_{\mathsf{ILP}\;\cap_{\mathsf{S}}\;\mathsf{ILM}},\mathcal{F}\vDash C\}.$$

The principle W is

$$W := A \triangleright B \rightarrow A \triangleright (B \wedge \square \neg A)$$

and its frame condition is that there are no S_x ; R infinite chains.

Conjecture 1 (Goris, Joosten 2020)

$$IL(All) = IL[\mathfrak{M}\mathfrak{l}].$$

Recall

$$\mathsf{IL}(\mathsf{All}) \coloneqq \{A \mid \forall T \supseteq \mathsf{I}\Delta_0 + \mathsf{Exp} \ \forall * T \vdash A^*\}.$$

$M \cap P$ -closure

Given a proto-frame
$$\mathcal{F} = \langle W, R, S \rangle$$
, its $M \cap P$ -closure is $\overline{\mathcal{F}}^{M \cap P} := \overline{\mathcal{F}}^M \cap \overline{\mathcal{F}}^P = \langle W, \overline{R}^M \cap \overline{R}^P, \overline{S}^M \cap \overline{S}^P \rangle$.

As an example, consider the principle M₀

$$M_0 := A \triangleright B \rightarrow \Diamond A \wedge \Box C \triangleright B \wedge \Box C$$

whose frame condition is

$$\forall x, y, z, u, v \Big(xRyRzS_xuRv \rightarrow yRv \Big).$$

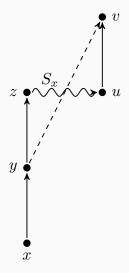


Figure 6: M₀

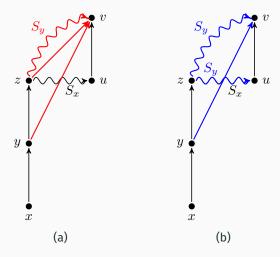


Figure 7: (a) M closure and

(b) P closure

$M \cap_{\mathcal{F}} P$ -clause set

We define the $M \cap_{\mathcal{F}} P$ -clause set as

$$\bigwedge_{i} \phi_{i} \to \varphi :\in \mathsf{M} \cap_{\mathcal{F}} \mathsf{P} \text{ iff } \overline{\mathcal{F}(\bigwedge_{i} \phi_{i})}^{\mathsf{M} \cap \mathsf{P}} \vDash \varphi$$

whenever $\{\phi_i\}_i \cup \{\varphi\}$ is a set of atomic predicates so that $\mathcal{F}(\bigwedge_i \phi_i)$ defines a proto-frame.

Remark

 $\bigwedge_i \phi_i \to \varphi$ is a Horn clause.

Non-empty since the M_0 frame condition belongs to it.

It is known that the *Broad* series and the *Slim* hierarchy belong to it.

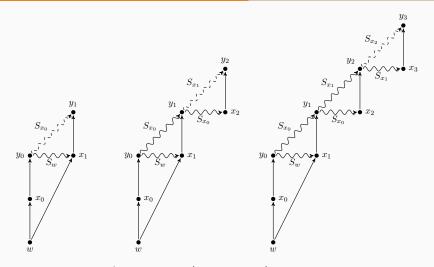


Figure 8: Slim (or Staircase) hierarchy

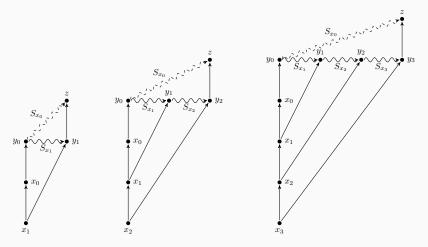


Figure 9: Broad series

 $M \cap_{\mathcal{F}} P$ defines a fragment of $IL[\mathfrak{M}\mathfrak{l}]$.

Let us define the lower-case class of IL-frames

$$\mathfrak{all} := \{ \mathcal{F} \vDash \mathsf{ILW} \colon \forall C \in \mathsf{M} \cap_{\mathcal{F}} \mathsf{P}, \ \mathcal{F} \vDash C \}.$$

Theorem

$$\mathsf{IL}[\mathfrak{all}] \subseteq \mathsf{IL}[\mathfrak{All}].$$

Remark

- It is unknown if $IL[\mathfrak{all}] \subset IL[\mathfrak{All}]$.
- IL[all] entails the frame conditions of *Broad* and *Slim*.

It is natural to conjecture that

Conjecture 2

$$\mathsf{IL}[\mathfrak{all}] = \mathsf{IL}(\mathsf{All}).$$

This new conjecture strengthens the old conjecture.

Conjecture 1 (Goris, Joosten 2020)

$$IL(All) = IL[\mathfrak{All}].$$

How can we get a grip on $M \cap_{\mathcal{F}} P$?

One may try to focus on the clauses that imply an *R*-pair and conjecture that

Conjecture 3

Consider an IL-frame $\mathcal{F} = \langle W, R, S \rangle$. Then, for any $x, y \in W$, we have that $x\overline{R}^M y \wedge x\overline{R}^P y \wedge \neg (xRy) \rightarrow x\overline{R}^{M_0} y$.

Nonetheless, this is disproven by the...

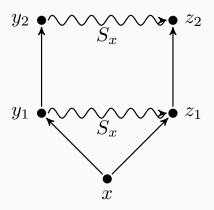


Figure 10: Pencil frame.

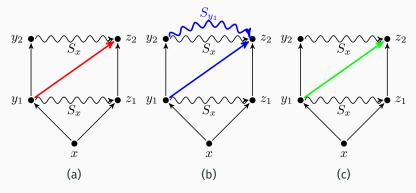


Figure 11: (a) M-closure (b) P-closure (c) Intersection.

Remark

Observe the green arrow is not in the M_0 -closure.

We observe the Pencil frame is **not** modally definable.

Frame definability

Given a first or higher order predicate formula \mathcal{C} . The class of frames that make true \mathcal{C} is **modally definable** if

$$\exists A \in L_{\square, \triangleright} \, \forall \mathcal{F} \, \big(\mathcal{F} \vDash \mathcal{C} \iff \mathcal{F} \vDash A \big).$$

Example

The class of transitive frames is defined by $\square A \rightarrow \square \square A$.

Remark

Consider the formula $C_P := xRy_1S_xz_1Rz_2 \wedge y_1Ry_2S_xz_2 \rightarrow y_1Rz_2$. Notice that y_1Rz_2 is precisely the green arrow.

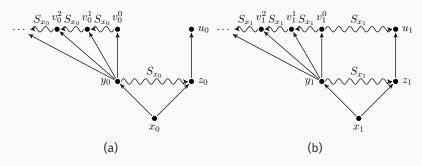


Figure 12: (a) \mathcal{F}_0 satisfies \mathcal{C}_P

(b) \mathcal{F}_1 does not satisfy \mathcal{C}_P

Theorem: Pencil frame is not modally definable

· By Reductio ad Absurdum, assume it is, that is,

$$\exists A \in L_{\square, \triangleright} \, \forall \mathcal{F} \, (\mathcal{F} \vDash \mathcal{C}_{P} \iff \mathcal{F} \vDash A).$$

- Consider \mathcal{F}_0 and \mathcal{F}_1 . Notice $\mathcal{F}_0 \vDash \mathcal{C}_P$ whereas $\mathcal{F}_1 \nvDash \mathcal{C}_P$.
- Then, by hypothesis, $\mathcal{F}_0 \vDash A$ and $\mathcal{F}_1 \nvDash A$.
- Claim: $\forall V_1 \exists V_0 : \langle \mathcal{F}_1, V_1 \rangle \sim_{bisimilar} \langle \mathcal{F}_0, V_0 \rangle$.
- Bisimilar image-finite models prove the same modal formulas (Hennessy–Milner).
- Thus, $\exists V_0 \langle F_0, V_0 \rangle \nvDash A$. Contradiction! ($\mathcal{F}_0 \vDash A$)

Given that the Pencil frame is not modally definable and its frame condition is in $M \cap_{\mathcal{F}} P$ and not induced by neither *Broad* nor *Slim*, a natural question arises:

Is there a class of modally definable frames whose frame condition is in $M \cap_{\mathcal{F}} P$ but it is not induced by Slim nor Broad?

We found out that the answer is positive

We will inductively define a series of schemes.

Firstly, we inductively define the following series of formulas.

$$\varphi^{0} := \diamondsuit ((D \triangleright D_{0}) \land \diamondsuit \neg (A \triangleright \neg C)),$$

$$\varphi^{n} := \diamondsuit ((D_{n-2} \triangleright D_{n-1}) \land \varphi^{n-1}). \qquad (n \ge 1)$$

Then, we inductively define V as the series of all the principles V^n , for any $n \in \mathbb{N}$, where

$$V^{0} := A \triangleright B \rightarrow \left((D_{0} \triangleright \Diamond D_{1}) \wedge \varphi^{0} \right) \triangleright B \wedge \square C \wedge (D \triangleright D_{1}),$$

$$V^{n+1} := V^{n} [\varphi^{n} / \varphi^{n+1};$$

$$D_{n} \triangleright \Diamond D_{n+1} / D_{n+1} \triangleright \Diamond D_{n+2};$$

$$D \triangleright D_{n+1} / D \triangleright D_{n+2}]$$

For example,

```
\begin{array}{ll} \mathsf{V}^0 & := \\ & A \rhd B \to \big( (D_0 \rhd \diamondsuit D_1) \land \diamondsuit \big( (D \rhd D_0) \land \diamondsuit \neg (A \rhd \neg C) \big) \big) \rhd B \land C \land (D \rhd D_1), \\ \\ \mathsf{V}^1 & := \\ & A \rhd B \to \Big( (D_1 \rhd \diamondsuit D_2) \land \diamondsuit \big( (D_0 \rhd D_1) \land \diamondsuit \big( (D \rhd D_0) \land \diamondsuit \neg (A \rhd \neg C) \big) \big) \Big) \rhd B \land C \land (D \rhd D_2). \end{array}
```

Their frame conditions are, respectively, ...

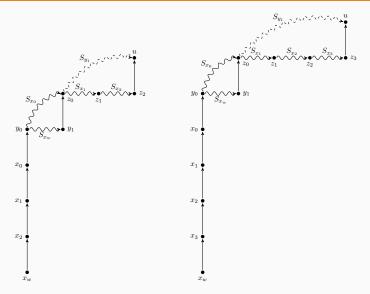


Figure 13: (Left) Frame condition of V_0 . (Right) Frame condition of V_1

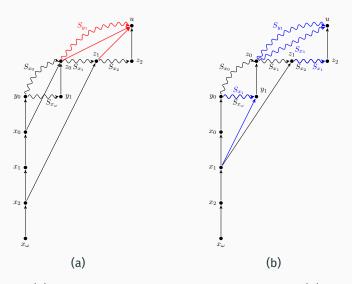


Figure 14: (a) M-closure

Remark

The V series is **not** a hierarchy.

Wrapping up:

- The classes of frames that satisfy the frame conditions of the V series are modally definable.
- The frame conditions of the V series belong to $M \cap_{\mathcal{F}} P$.
- It can be shown that neither the *Broad* series nor the *Slim* hierarchy induce the V series.

Also, these principles of the V series are arithmetically valid through arithmetical definable cuts.

Summary (Summer-e)

- We strengthen the old conjecture by focusing on Horn clauses;
- 2. We show that all known principles fall in this class;
- 3. We show that some frame properties are modally undefinable;
- 4. We found a new series of principles;
- 5. We have proven the new principles to be arithmetically sound;
- 6. Thus the conjecture still stands;
- 7. Preprint and paper coming out 'soon'.

Thank you! Danke!