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Motivation

In Provability Logic, for a fixed theory T (PL) ◻A reads as
“A” is provable in T.

Interpretability Logic (IL) extends PL adding A▷B which means

T+ A interprets T+ B

We say that S interprets T – S▷ T – if there exists a mapping

j : FormT → FormS

that preserves structure, for example, if ◦ is a binary logical
connective, then (φ ◦ ψ)j = φj ◦ ψj such that moreover

∀φ
(
□Tφ→ □Sφ

j
)
.

Example
Natural numbers can be interpreted as sets. 1



Motivation

Gödel’s Second Incompleteness Theorem is modally expressed
as

◇⊤ → ¬◻◇⊤.

In interpretability logic it can be generalized to

◇⊤ → ¬(⊤▷◇⊤). (Feferman)
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Motivation

We can define the interpretability logic of a theory T.

IL(T) := {A | ∀ ∗ T ⊢ A∗},

where A is a formula in the language L◻,▷

F := ⊥ | Prop | F→ F | ◻ F | F▷ F,

and ∗ is a translation sending propositional variables to
arithmetical sentences.
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Motivation

The axioms of the basic interpretability IL are

L1 ◻(A→ B) → (◻A→ ◻B)
L2 ◻A→ ◻◻A
L3 ◻(◻A→ A) → ◻A
J1 ◻(A→ B) → A▷B

J2 (A▷B) ∧ (B▷C) → A▷C
J3 A▷C ∧ B▷C→ A ∨ B▷C
J4 A▷B→ (◇A→ ◇B)
J5 ◇A▷A

Remark
• J1 tells us that the identity translation yields an
interpretation.

• J5 represents Henkin’s completeness theorem formalised.
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Motivation

There are some interesting principles of interpretability.
Namely,

M := A▷B→ A ∧◻C▷B ∧◻C (Montagna)
P := A▷B→ ◻(A▷B) (Persistence)

It is known that

IL(PA) := ILM (Full induction)

and
IL(IΣ1) := ILP (Finitely Axiomatized).
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Motivation

ILM and ILP motivate the characterisation of IL(All).

IL(All) := {A | ∀T ⊇ I∆0 + Exp ∀ ∗ T ⊢ A∗},

the interpretability logic of al “reasonable” arithmetical
theories.
Remark
IL(All) ⊊ ILM ∩ ILP

We present some advances on its modal characterization.
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Semantics and intersections

In interpretability logic, models are 4-tuples

M := ⟨W,R, {Sx}x∈W, V⟩

where

• W ̸= ∅

• R ⊆ W×W
• Sx ⊆ x↾× x↾
• V : Prop→ P(W)

x↾ := {y | xRy}.
R transitive and conversely well-founded;
Sx is reflexive transitive and contains R on x↾.

F = ⟨W,R, {Sx}x∈W⟩ denotes a frame.

Sometimes we denote models asM = ⟨F , V⟩.
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Semantics and intersections

Propositions, implications and falsum (⊥) are forced as usual.

The forcing of formulas ◻A is

M, x ⊩ ◻A : ⇐⇒ ∀y(xRy→ M, y ⊩ A).

The forcing of formulas A▷B is

M, x ⊩ A▷B : ⇐⇒ ∀y(xRy∧M, y ⊩ A→ ∃z : ySxz∧M, z ⊩ B).
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Semantics and intersections
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Figure 1: (a) ◻A is forced at x (b) A▷B is forced at x
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Semantics and intersection

Validity on models and frames is defined as follows.

Validity
• Validity of a formula on a model:

M ⊨ φ iffM,w ⊩ φ, for all w ∈ W.

• Validity of a formula on a frame:

F ⊨ φ iff ∀V⟨F , V⟩ ⊨ φ.

• Validity of a scheme: A model or a frame validates a
scheme X (M ⊨ X and F ⊨ X, respectively) iff it validates
all X’s instances.
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Semantics and intersections

The frame condition of a scheme X is a first (or higher) order
predicate formula C such that

∀F(F ⊨ C ⇐⇒ F ⊨ X).

Example

F ⊨ ◻A→ ◻◻A ⇐⇒ F ⊨ ∀x, y, z
(
xRy ∧ yRz→ xRz

)

Frame conditions of ILM and ILP.

F ⊨ M ⇐⇒ F ⊨ xRySxzRu→ yRu.

F ⊨ P ⇐⇒ F ⊨ xRyRzSxu→ zSyu.
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Semantics and intersections
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Figure 2: Frame condition of M (a) Frame condition of P (b) 12



Semantics and intersections
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Figure 3: Frame definition reflecting axioms ◻(A→ B) → A▷B (J1),
A▷B ∧ B▷C→ A▷C (J2), A▷B→ (◇A→ ◇B) (J4) and ◇A▷A
(J5)
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Semantics and intersections

Sometimes we need to close on the frame properties.
Closure
The closure of a (proto-) frame F := ⟨W,R, {Sx}x∈W⟩ under
some principle X is the smallest structure
FX

:= ⟨W,RX, {SXx}x∈W⟩ satisfying X such that R ⊆ RX and
Sx ⊆ SXx , for every x ∈ W.

x
y

z

Figure 4: Transitive closure
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Semantics and intersection

Frame operator
If L = {ϕi}i is a set of atomic predicates (like xRy or ySxz, etc.),
we define the IL-frame induced by L, F(

∧
i ϕi)

IL, as the
universal closure of the smallest proto-frame that satisfies
all atomic predicates.

For brevity, we will write F(
∧
i ϕi).

x

y
z

Sx

Sx, SySx

Figure 5: Closure of {xRy, yRz} under IL frame requirements.
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Semantics and intersection

Let F be a class of IL-frames. We define the interpretability
logic corresponding to F.

IL[F] := {A : for all F ∈ F, F ⊨ A}.

Let F(x, y, z) denote any first or higher order formula where the
only free variables are x, y, z. We now define the following class
of conditions.

CILP ∩S ILM :=

{F(x, y, z) → xSyz : ILP ⊨ F(x, y, z) → xSyz ∧ ILM ⊨ F(x, y, z) → xSyz}.

Also, we define the class

All := {F ⊨ ILW : ∀C ∈ CILP ∩S ILM,F ⊨ C}.
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Semantics and intersection

The principle W is

W := A▷B→ A▷(B ∧◻¬A)

and its frame condition is that there are no Sx;R infinite chains.

Conjecture 1 (Goris, Joosten 2020)

IL(All) = IL[All].

Recall

IL(All) := {A | ∀T ⊇ I∆0 + Exp ∀ ∗ T ⊢ A∗}.
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Semantics and intersection

M ∩ P-closure
Given a proto-frame F = ⟨W,R, S⟩, its M ∩ P-closure is
FM∩P

:= FM ∩ FP
= ⟨W,RM ∩ RP, SM ∩ SP⟩.

As an example, consider the principle M0

M0 := A▷B→ ◇A ∧◻C▷B ∧◻C,

whose frame condition is

∀x, y, z,u, v
(
xRyRzSxuRv→ yRv

)
.
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Semantics and intersection
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Figure 7: (a) M closure and (b) P closure
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Semantics and intersection

M
∩

F P-clause set
We define the M ∩F P-clause set as∧

i
ϕi → φ :∈ M ∩F P iff F(

∧
i
ϕi)

M∩P
⊨ φ

whenever {ϕi}i ∪ {φ} is a set of atomic predicates so that
F(

∧
i ϕi) defines a proto-frame.

Remark∧
i ϕi → φ is a Horn clause.

Non-empty since the M0 frame condition belongs to it.

It is known that the Broad series and the Slim hierarchy belong
to it.
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Semantics and intersection
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Semantics and intersection
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Semantics and intersection

M ∩F P defines a fragment of IL[All].

Let us define the lower-case class of IL-frames

all := {F ⊨ ILW : ∀C ∈ M ∩F P, F ⊨ C}.

Theorem

IL[all] ⊆ IL[All].

Remark
• It is unknown if IL[all] ⊂ IL[All].
• IL[all] entails the frame conditions of Broad and Slim.
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Semantics and intersection

It is natural to conjecture that

Conjecture 2

IL[all] = IL(All).

This new conjecture strengthens the old conjecture.

Conjecture 1 (Goris, Joosten 2020)

IL(All) = IL[All].
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Semantics and intersection

How can we get a grip on M
∩

F P?

One may try to focus on the clauses that imply an R-pair and
conjecture that

Conjecture 3
Consider an IL-frame F = ⟨W,R, S⟩. Then, for any x, y ∈ W, we
have that xRMy ∧ xRPy ∧ ¬(xRy) → xRM0y.

Nonetheless, this is disproven by the...
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Pencil frame
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Figure 10: Pencil frame.
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Pencil frame
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Figure 11: (a) M-closure (b) P-closure (c) Intersection.

Remark
Observe the green arrow is not in the M0-closure.
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Pencil frame

We observe the Pencil frame is not modally definable.
Frame definability
Given a first or higher order predicate formula C. The class of
frames that make true C is modally definable if

∃A ∈ L◻,▷ ∀F (F ⊨ C ⇐⇒ F ⊨ A).

Example
The class of transitive frames is defined by ◻A→ ◻◻A.
Remark
Consider the formula CP := xRy1Sxz1Rz2 ∧ y1Ry2Sxz2 → y1Rz2.
Notice that y1Rz2 is precisely the green arrow.
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Pencil frame
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Figure 12: (a) F0 satisfies CP (b) F1 does not satisfy CP
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Pencil frame

Theorem: Pencil frame is not modally definable
• By Reductio ad Absurdum, assume it is, that is,

∃A ∈ L◻,▷ ∀F (F ⊨ CP ⇐⇒ F ⊨ A).

• Consider F0 and F1. Notice F0 ⊨ CP whereas F1 ⊭ CP.
• Then, by hypothesis, F0 ⊨ A and F1 ⊭ A.
• Claim: ∀V1∃V0 : ⟨F1, V1⟩ ∼bisimilar ⟨F0, V0⟩.
• Bisimilar image-finite models prove the same modal
formulas (Hennessy–Milner).

• Thus, ∃V0⟨F0, V0⟩ ⊭ A. Contradiction! (F0 ⊨ A)
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New series

Given that the Pencil frame is not modally definable and its
frame condition is in M

∩
F P and not induced by neither Broad

nor Slim, a natural question arises:

Is there a class of modally definable frames whose frame
condition is in M

∩
F P but it is not induced by Slim nor Broad?

We found out that the answer is positive
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New series

We will inductively define a series of schemes.

Firstly, we inductively define the following series of formulas.

φ0 := ◇
(
(D▷D0) ∧◇¬(A▷¬C)

)
,

φn := ◇
(
(Dn−2▷Dn−1) ∧ φn−1

)
. (n ≥ 1)

Then, we inductively define V as the series of all the principles
Vn, for any n ∈ N, where
V0 := A▷B→

(
(D0▷◇D1) ∧ φ0

)
▷B ∧◻C ∧ (D▷D1),

Vn+1 := Vn[φn/φn+1;
Dn▷◇Dn+1/Dn+1▷◇Dn+2;
D▷Dn+1/D▷Dn+2]
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New series

For example,
V0 :=

A▷B→
(
(D0▷◇D1) ∧◇

(
(D▷D0) ∧◇¬(A▷¬C)

))
▷B ∧ C ∧ (D▷D1),

V1 :=

A▷B→
(
(D1▷◇D2) ∧◇

(
(D0▷D1) ∧◇

(
(D▷D0) ∧◇¬(A▷¬C)

)))
▷B ∧ C ∧ (D▷D2).

Their frame conditions are, respectively, . . .
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New series
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New series
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New series

Remark
The V series is not a hierarchy.

Wrapping up:

• The classes of frames that satisfy the frame conditions of
the V series are modally definable.

• The frame conditions of the V series belong to M
∩

F P.
• It can be shown that neither the Broad series nor the Slim
hierarchy induce the V series.

Also, these principles of the V series are arithmetically valid
through arithmetical definable cuts.
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Summary (Summer-e)

1. We strengthen the old conjecture by focusing on Horn
clauses;

2. We show that all known principles fall in this class;
3. We show that some frame properties are modally
undefinable;

4. We found a new series of principles;
5. We have proven the new principles to be arithmetically
sound;

6. Thus the conjecture still stands;
7. Preprint and paper coming out ‘soon’.
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Farewell

Thank you! Danke!
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