Transfinite Turing Jumps through Provability

Computability in Europe 2024

Amsterdam

Joost J. Joosten

University of Barcelona

Monday 08-07-2024

Provability and logics Münchhausen Turing Jumps Turing jumps through syntax Syntax parametrized provability Provability parametrized provability

From finite to transfinite

Turing jumps through provability

Joost J. Joosten

University of Barcelona

Thursday 02-07-2015 Computability in Europe, Bucharest
 Provability and logics
 Turing jumps through syntax

 Münchhausen
 Syntax parametrized provability

 Turing Jumps
 Provability parametrized provability

Post's Theorem

Let A ⊆ N; Post's Theorem says that the following are equivalent:

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;
 - A is definable on the standard model by a Σ_{n+1} formula.

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;
 - A is definable on the standard model by a Σ_{n+1} formula.
- This can be seen as

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;
 - A is definable on the standard model by a Σ_{n+1} formula.
- This can be seen as

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;
 - A is definable on the standard model by a Σ_{n+1} formula.
- This can be seen as

Turing jumps through syntax

How to generalize to transfinite Turing jumps?

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;
 - A is definable on the standard model by a Σ_{n+1} formula.
- This can be seen as

- How to generalize to transfinite Turing jumps?
- Ingredients to our solution:

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;
 - A is definable on the standard model by a Σ_{n+1} formula.
- This can be seen as

- How to generalize to transfinite Turing jumps?
- Ingredients to our solution:
 - Provability;

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;
 - A is definable on the standard model by a Σ_{n+1} formula.
- This can be seen as

- How to generalize to transfinite Turing jumps?
- Ingredients to our solution:
 - Provability;
 - Friedman-Goldfarb-Harrington Theorem and generalizations;

- Let A ⊆ N; Post's Theorem says that the following are equivalent:
 - A is c.e. in $\emptyset^{(n)}$ iff;
 - A is many-one reducible to $\emptyset^{(n+1)}$ iff;
 - A is definable on the standard model by a Σ_{n+1} formula.
- This can be seen as

- How to generalize to transfinite Turing jumps?
- Ingredients to our solution:
 - Provability;
 - Friedman-Goldfarb-Harrington Theorem and generalizations;
 - Recursively apply the FGH theorem to eliminate auxiliary syntactical notions.

Provability and logics Münchhausen Turing Jumps

Turing jumps through syntax Syntax parametrized provability Provability parametrized provability

Friedman-Goldfarb-Harrington

Theorem (FGH theorem)

Let T be any computably enumerable theory extending EA. For each $\sigma \in \Sigma_1$ we have that there is some $\rho \in \Sigma_1$ so that

$$\mathbf{EA} \vdash \Diamond_T \top \rightarrow \ (\sigma \leftrightarrow \Box_T \rho).$$

 Provability and logics
 Turing jumps through syntax

 Münchhausen
 Syntax parametrized provability

 Turing Jumps
 Provability parametrized provability

Generalizing FGH

Generalizations of the FGH theorem:

Generalizing FGH

- Generalizations of the FGH theorem:
- Let $[n]_T^{\Pi} \rho$ denote a natural formalization of " ρ is provable in T together with all true Π_n^0 sentences".

Generalizing FGH

- Generalizations of the FGH theorem:
- Let $[n]_T^{\Pi} \rho$ denote a natural formalization of " ρ is provable in T together with all true Π_n^0 sentences".
- ► For each $\sigma \in \Sigma_{n+1}$ we have that there is some $\rho \in \Sigma_{n+1}$ so that

$$\mathrm{I}\Sigma_{n} \vdash \langle n \rangle_{T}^{\Pi} \top \rightarrow (\sigma \leftrightarrow [n]_{T}^{\Pi} \rho).$$

Generalizing FGH

- Generalizations of the FGH theorem:
- Let $[n]_T^{\Pi} \rho$ denote a natural formalization of " ρ is provable in T together with all true Π_n^0 sentences".
- ► For each $\sigma \in \Sigma_{n+1}$ we have that there is some $\rho \in \Sigma_{n+1}$ so that

$$\mathrm{I}\Sigma_{n} \vdash \langle n \rangle_{T}^{\Pi} \top \rightarrow \ \left(\sigma \leftrightarrow [n]_{T}^{\Pi} \rho \right).$$

For each $\sigma(x) \in \Sigma_{n+1}$ we have that there is some $\rho(x) \in \Sigma_{n+1}$ so that

$$\mathrm{I}\Sigma_n \vdash \langle n \rangle_T^{\mathsf{\Pi}} \top \to \ \left(\sigma(x) \leftrightarrow [n]_T^{\mathsf{\Pi}} \rho(\dot{x}) \right).$$

Turing jumps through syntax Syntax parametrized provability Provability parametrized provability

FGH and finite Turing jumps

Corollary

Let T be any sound c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

• A is c.e. in
$$\emptyset^{(n)}$$
;

Turing Jumps Provability paramet

FGH and finite Turing jumps

Corollary

Let T be any sound c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

• A is c.e. in
$$\emptyset^{(n)}$$
;

• A is many-one reducible to $\emptyset^{(n+1)}$;

FGH and finite Turing jumps

Corollary

Let T be any sound c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

- A is c.e. in $\emptyset^{(n)}$;
- A is many-one reducible to $\emptyset^{(n+1)}$;

• A is definable on the standard model by a Σ_{n+1} formula;

FGH and finite Turing jumps

Corollary

Let T be any sound c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

- A is c.e. in $\emptyset^{(n)}$;
- A is many-one reducible to $\emptyset^{(n+1)}$;
- A is definable on the standard model by a Σ_{n+1} formula;
- A is definable on the standard model by a formula of the form $[n]_T^{\Pi} \rho(\dot{x});$

 Provability and logics
 Turing jumps through syntax

 Münchhausen
 Syntax parametrized provability

 Turing Jumps
 Provability parametrized provability

Provability recursions

$$[0]_{T}^{\Box}\phi := \Box_{T}\phi, \text{ and}$$
$$[n+1]_{T}^{\Box}\phi := \Box_{T}\phi \lor \exists \psi \bigvee_{0 \le m \le n} \Big(\langle m \rangle_{T}^{\Box}\psi \land \Box(\langle m \rangle_{T}^{\Box}\psi \to \phi)\Big).$$
(1)

Provability and finite Turing jumps

Corollary

Let T be any sound c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

- A is c.e. in $\emptyset^{(n)}$;
- A is many-one reducible to $\emptyset^{(n+1)}$;
- A is definable on the standard model by a Σ_{n+1} formula;
- A is definable on the standard model by a formula of the form $[n+1]_T^{\Box}\rho(\dot{x});$

By the hairs from the Swamp The Baron's logic

Provability recursions

$$[0]_{T}^{\Box}\phi := \Box_{T}\phi, \text{ and}$$
$$[n+1]_{T}^{\Box}\phi := \Box_{T}\phi \lor \exists \psi \bigvee_{0 \le m \le n} \Big(\langle m \rangle_{T}^{\Box}\psi \land \Box(\langle m \rangle_{T}^{\Box}\psi \to \phi)\Big).$$
$$(2)$$

Main idea:

$$[\xi]^{\Box}_{T}\varphi :\leftrightarrow \Box_{T}\varphi \lor \exists \zeta < \xi \exists \psi (\langle \zeta \rangle^{\Box}_{T}\psi \land \Box_{T}(\langle \zeta \rangle^{\Box}_{T}\psi \to \varphi))$$

A schematic approach

Definition (Münchhausen theory and predicate)

Let T be a theory and let Λ denote an ordinal equipped with a representation in the language of T with corresponding represented ordering \prec . For this representation, it is required that

$$\begin{split} T &\vdash ``\prec \text{ is transitive, right-discrete and has a minimal element''}, \\ T &\vdash (\xi \prec \zeta) \rightarrow [\zeta]_T^{\Lambda}(\xi \prec \zeta), \\ T &\vdash \neg(\xi \prec \zeta) \rightarrow [\zeta]_T^{\Lambda} \neg(\xi \prec \zeta), \\ \xi &< \zeta < \Lambda \text{ implies } T \vdash \xi \prec \zeta. \end{split}$$

We call T a Λ -One-Münchhausen Theory whenever there is a binary predicate $[\xi]^{\Lambda}_{T}\varphi$ with free variables ξ and φ so that

$$T \vdash \forall \phi \; \forall \zeta \prec \Lambda \Big(\left[\zeta \right]_T^{\Lambda} \phi \; \leftrightarrow \; \Box_T \phi \lor \exists \psi \; \exists \xi \prec \zeta \left(\langle \xi \rangle_T^{\Lambda} \psi \land \Box_T \left(\langle \xi \rangle_T^{\Lambda} \psi \to \phi \right) \right)$$

Polymodal provability logic, transfinite

Definition

For Λ an ordinal or the class of all ordinals, the logic GLP_Λ is given by the following axioms:

- 1. all propositional tautologies,
- 2. Distributivity: $[\xi](\varphi \to \psi) \to ([\xi]\varphi \to [\xi]\psi)$ for all $\xi < \Lambda$,
- 3. Transitivity: $[\xi]\varphi \rightarrow [\xi][\xi]\varphi$ for all $\xi < \Lambda$,
- 4. Löb: $[\xi]([\xi]\varphi \to \varphi) \to [\xi]\varphi$ for all $\xi < \Lambda$,
- 5. Monotonicity: $[\xi]\varphi \rightarrow [\zeta]\varphi$ for $\xi < \zeta < \Lambda$,
- 6. Negative introspection: $\langle \xi \rangle \varphi \rightarrow [\zeta] \langle \xi \rangle \varphi$ for $\xi < \zeta < \Lambda$.

The rules are Modus Ponens and Necessitation for each modality: $\frac{\varphi}{[\xi]\varphi}$.

Soundness for GLP

Theorem (GLP Soundness for Munchhausen) Let T be a Λ -One-Münchhausen theory and let $[\alpha]_T^{\Lambda}$ be a corresponding provability predicate.

If T proves transfinite $\Pi_1^0([\alpha]_T^{\Lambda})$ induction along Λ we have that T proves that all the rules and axioms of GLP_{Λ} are sound wr.t. T by interpreting $[\alpha]$ as $[\alpha]_T^{\Lambda}$.

Weakening the base theory

$$[\alpha]_T^{\boxtimes} \varphi \leftrightarrow \Box_T \varphi \lor \exists \sigma \exists \tau \left(|\sigma| = |\tau| \land \forall i < |\tau| \tau_i \prec \alpha \land \forall i < |\sigma| \langle \tau_i \rangle_T^{\boxtimes} \sigma(i) \right) \\ \land \Box_T \left(\forall i < |\sigma| \langle \tau_i \rangle_T^{\boxtimes} \sigma(i) \to \varphi \right) .$$
 (3)

Theorem

Let T be a Λ -Münchhausen theory and let $[\alpha]_T^{\boxtimes}$ be a corresponding Münchhausen provability predicate. Then, GLP_{Λ} is sound for T when the $[\alpha]$ -modalities $(\alpha \prec \Lambda)$ are interpreted as $[\alpha]_T^{\boxtimes}$.

Provability and logics Münchhausen Turing Jumps Minchhausen The limit step

Complete for Turing jumps

 Transfinite Turing jumps can be related to Münchausen provability

Theorem

Given a well-behaved primitive recursive ordinal notation system for some limit ordinal $\langle \Lambda, \prec \rangle$, let T be a sound theory proving (3). For each $\alpha \prec \Lambda$ there is a formula $\psi_{\alpha}(x)$ so that

$$x \in \varnothing^{(1+\alpha)} \iff \mathbb{N} \models [\alpha]_T^{\boxtimes} \psi_{\alpha}(\overline{x}).$$

Moreover, ψ_{α} can be obtained by primitive recursion from α .

Provability and logics Münchhausen Turing Jumps Minchhausen Turing Jumps

Proof ingredients

Lemma

Let T be a Münchhausen theory with corresponding provability predicate $[\xi]\theta$ and let $U \supseteq T$ so that $U \vdash B\Sigma_1([\alpha]\varphi)$. We then have

$$U \vdash \forall \beta \, \forall \varphi \, \exists \rho \, \Big(\langle \beta + 1 \rangle \top \to \, \Big[\exists x \langle \beta \rangle \varphi(\dot{x}) \, \longleftrightarrow \, [\beta + 1] \rho \Big] \Big),$$

More proof ingredients

Lemma

There is a computable function g so that for $\alpha, \lambda \prec \Lambda$ and λ a limit ordinal we have

1.

$$x \in \varnothing^{(1+\alpha+1)} \iff \exists s g(s,x) \notin \varnothing^{(1+\alpha)};$$

2. Something for limits.

Provability and logics Münchhausen Turing Jumps Münchhausen The limit step

Combining: the successor case

$$\begin{array}{rcl} x \in \varnothing^{1+\alpha+1} & \Leftrightarrow & \exists s \, g(s,x) \notin \varnothing^{(1+\alpha)} \\ & \Leftrightarrow & \exists s \neg (g(s,x) \in \varnothing^{(1+\alpha)}) \\ & \Leftrightarrow & \exists s \neg [\alpha] \psi_{\alpha} (g(\dot{s},\dot{x})) & \text{(by the IH)} \\ & \Leftrightarrow & \exists s \, \langle \alpha \rangle \neg \psi_{\alpha} (g(\dot{s},\dot{x})) \\ & \Leftrightarrow & [\alpha+1] \rho(\dot{x}) \end{array}$$

Provability and logics Münchhausen Turing Jumps Mäin Theorem The successor step The limit step

Fundamental sequences

Lemma

Let λ be a limit ordinal with fixed fundamental sequence $\{\lambda [\![x]\!]\}_{x \in \omega}$. Moreover, let T be a Münchhausen theory with corresponding provability predicate $[\xi]\theta$ and let $U \supseteq T$ so that $U \vdash B\Sigma_1([\alpha]\varphi)$. We then have

$$U \vdash \forall \varphi \exists \rho \ \Big(\langle \lambda \rangle \top \rightarrow \ \Big[\exists x \langle \lambda \llbracket x \rrbracket \rangle \varphi(\dot{x}) \ \longleftrightarrow \ [\lambda] \rho(\dot{x}) \Big] \Big).$$

Moreover, ρ can be obtained from λ and φ in a primitive recursive way.

More proof ingredients

Lemma

There are a computable functions g, h so that for $\alpha, \lambda \prec \Lambda$ and λ a limit ordinal we have

1. There is a computable function g so that

$$x \in \varnothing^{(1+lpha+1)} \iff \exists s g(s,x) \notin \varnothing^{(1+lpha)};$$

2.

$$x \in arnothing^{(\lambda)} \iff \exists s h(s,x) \notin arnothing^{(1+\lambda \llbracket s
rbracket)}.$$

Provability and logics Münchhausen Turing Jumps Main Theorem The successor ster The limit step

Combining: the successor case

$$\begin{array}{rcl} x \in \varnothing^{\lambda} & \Leftrightarrow & \exists s \ h(s, x) \notin \varnothing^{(1+\lambda \llbracket s \rrbracket)} \\ & \Leftrightarrow & \exists s \neg (h(s, x) \in \varnothing^{(1+\lambda \llbracket s \rrbracket)}) \\ & \Leftrightarrow & \exists s \neg [\lambda \llbracket s \rrbracket] \psi_{\lambda \llbracket s \rrbracket} (h(\dot{s}, \dot{x})) & \text{(by the IH)} \\ & \Leftrightarrow & \exists s \ \langle \lambda \llbracket s \rrbracket \rangle \neg \psi_{\lambda \llbracket s \rrbracket} (h(\dot{s}, \dot{x})) \\ & \Leftrightarrow & [\lambda] \rho(\dot{x}) \end{array}$$

Wrapping up

Theorem

. . .

$$x \in arnothing^{(1+lpha)} \iff \mathbb{N} \models [lpha]^{oxtimes}_T \psi_lpha(\overline{x}).$$

using our earlier results and

Lemma (Computable Recursion Theorem)

Let $\langle \Lambda, \prec \rangle$ be a primitive recursive ordinal notation system. For every combination of primitive recursions b, g and h of the right arities there is a unique primitive recursion f that satisfies the following equations:

$$f(0,x) = b(x);$$

$$f(\alpha + 1, x) = g(\alpha, x, f(\alpha, x));$$

$$f(\lambda, x) = h(\{f(\alpha, x) \mid \alpha \prec \lambda\}, x) \text{ for limit } \lambda$$

Provability and logics Münchhausen Turing Jumps Main Theorem The successor step The limit step

- Joosten, J.J.: Turing jumps through provability. In: Evolving Computability - 11th Conference on Computability in Europe, CiE 2015, Bucharest, Romania, June 29 - July 3, 2015. Proceedings. pp. 216–225 (2015).
- Joosten, J.J.: Münchhausen provability. Journal of Symbolic Logic **86**(3), 1006–1034 (2021).