
Is software that is formally verified fair
necessarily also genuinely fair?

A case study on NASA’s Formal Requirement Elicitation Tool

Joost J. Joosten 1 Marina López Chamosa 2 Sofía Santiago Fernández 1,2

1Universitat de Barcelona 2Formal Vindications S.L.
Funded by ICREA Acadèmia, Section Humanities, ICREA; Industrial doctorate program, 2022 DI 051, Generalitat de Catalunya, Departament d’Empresa i Coneixement; PID2023-149556NB-I00, Dynamics of Gödel

Incompleteness (DoGI), Spanish Ministry of Science and Innovation; PID2023-151396OB-I00, Enhancing Administrative Decisions through the Use of AI, Experimentation, and Sandboxes: Special Focus on Urban and Housing
Context (ADMAIES), Spanish Ministry of Science and Innovation; Grup de Lògica, Generalitat de Catalunya, Suport a grups de recerca consolidats (SGR), 2021 SGR 00348

Error-Free Software and the Role of Structured Natural Language

Formal methods can provably eliminate software bugs and errors, a prerequisite for fair software, and

error-free software is only as reliable as its formal specification.

To ensure broader accessibility and structural clarity to the formal specification, Structured Natural

Language (SNL) is often introduced for two key reasons:

(1) Improved understandability of the specification

(2) Clear high-level structure that guides formalization

StructuredNatural Languages (SNLs) combine formal precisionwith natural readability by strictly cons-

training their grammar and vocabulary, which allows a one-to-one correspondencewith formal logics.

A key concern when designing SNLs is ensuring clarity and correctness in translation to formal logic.

In particular, it is important to recognize that:

• Applying sound programming and formalization principles can greatly simplify translation algorithms

from SNLs to formal languages;

• Evenminor design decisions during the creation of an SNL can introduce counter-intuitive behaviors

that complicate interpretation and verification.

Small design choices can give way to a situation where we have mathematical proof of fairness pro-

perties of the software while the behaviour of the software does not really comply with our informal

understanding of fairness.

A case study: Formal Requirement Elicitation Tool (FRET)

FRET is a NASA-developed tool that helps engineers write formal requirements in a structured yet

readable natural language format. It bridges the gap between human-friendly specifications and the

formal logic required for automated analysis like model checking and runtime monitoring.

FRET relies on a domain-specific language called FRETISH, designed to express temporal requirements

in a structured, precise, and human-readable way. FRETISH requirements follow the format:

Scope Conditions Component* Shall* Timing Responses*

Mandatory Fields Optional Fields

Component system involved Timing when response should occur

Shall obligation keyword Conditions applicability context: void (unconditional),

trigger (activates on event), continual (holds

while true)

Response expected boolean behavior Scope temporal intervals of enforcement built

from a mode (boolean) and an operator

ftp t1´1 t1 t2 t2`1 t3´1 t3 t4 t4´1 n

MODE MODE

IN IN

BEFORE
AFTER

NOTIN NOTIN NOTIN

ONLYIN ONLYIN ONLYIN

ONLYBEFORE

ONLYAFTER

Figure 1. Semantic behavior of Scope kinds

From FRETISH to Logic

FRETISH can be translated to Metric Temporal Logic (MTL), which extends classical temporal logic

by allowing quantitative timing constraints. The key temporal operators of past-time and future-time

MTL are

Past-Time Operators Future-Time Operators

Y Yesterday (true in the previous timepoint) X Next (true in the following timepoint)

O Once (sometime in the past) F Finally (eventually)

H Historically (always in the past) G Globally (always in the future)

S Since (true since past event) U Until (true until event)

FRET provides three formal translations: two into Future-time MTL (for finite and infinite models)

and one into Past-time MTL. To handle finite models, it introduces a special proposition called LAST.

Translations are output in SMV or Lustre, easing integration into model-checking pipelines.

What we found

While FRET automates the translation of FRETISH requirements into formal temporal logic, the un-

derlying process has long been opaque and sometimes complex.

• FRET translations tend to be unexpectedly lengthy and exhibit substantial logical depth.

FRETISH: In Scope upon Condition Component shall before StopCondition satisfy Response

FRET’s MTL: ((G ((! ((! Scope) & (X Scope))) | (X (((Scope & (X (! Scope))) V (((! Condition) & ((X Condition) & (! (Scope & (X (! Scope)))))) -> ((X

(! (((! ((! StopCondition) & (Response | (Scope & (X (! Scope)))))) & (! (Scope & (X (! Scope))))) U StopCondition))) & (! (Scope & (X (! Scope)))))))

& (Condition -> (! (((! ((! StopCondition) & (Response | (Scope & (X (! Scope)))))) & (! (Scope & (X (! Scope))))) U StopCondition))))))) & (Scope ->

(((Scope & (X (! Scope))) V (((! Condition) & ((X Condition) & (! (Scope & (X (! Scope)))))) -> ((X (! (((! ((! StopCondition) & (Response | (Scope & (X

(! Scope)))))) & (! (Scope & (X (! Scope))))) U StopCondition))) & (! (Scope & (X (! Scope))))))) & (Condition -> (! (((! ((! StopCondition) & (Response

| (Scope & (X (! Scope)))))) & (! (Scope & (X (! Scope))))) U StopCondition))))))

Figure 2. A FRET translation.

• Counter-intuitive constructswhose informal interpretation diverges from their actual formal seman-

tics, often leading to misunderstandings:

- TheParcel shall within 1 day satisfyBeDeliveredœ TheParcel shall eventually satisfyBeDelivered

- ’Only In’ Scopes defy logic: Their semantics aren’t logically grounded, but come from engineering

intuition.

- TheDriver shall after 3 hours of driving satisfy Rest forces that the rest cannot occur before 3

hours of driving.

Why this matters: Temporal phrases may not mean what users expect. The logic proves correctness

only for an unfair interpretation.

Our approach towards fairness

We propose a fair and systematic translation of FRETISH requirements into MTL, based on general

formula patterns applied to the translation of each requirement element. The translation formulas

account for key factors such as condition kinds (trigger vs. continual) and temporal contexts (finite

vs. infinite traces).

Ex: MTL Formulas Translating FRETISH for Future Time on Infinite Traces

G
´

JModeK^ Cond Ñ T8pResp, JModeKq
¯

if Cond is continual

G

˜

ChangeTo
`

JModeK^ Cond
˘

Ñ T8pResp, JModeKq
¸

if Cond is trigger

ChangeTo p¨q Activates when expression changes from false to true to capture the

trigger dynamics

JModeK MTL translation of the Scope

T8 MTL translation of the Timing constraint

As a distinguishing feature, we combine both past-time and future-time operators in the MTL trans-

lations. This approach yields a more natural semantic interpretation and reduces the logical com-

plexity of the resulting formulas.

Methodology and enumeration of semantical templates

Each FRETISH requirement is characterized by a triple of optional fields xScope, Cond, Timingy, known
as a semantic template, which captures structural variations in the requirement. Therefore, FRETISH

requirements can be abstracted into 240* such triples. * parametrized by duration d (see Table 3).

Lexical ID Semantic Template FRETISH Requirement

x1, 1, 1y xIn, Continual, Immediatelyy In Mode Whenever Cond Component shall

Immediately satisfy Resp

Figure 3. A semantic template

The semantic templates are systematically arranged in lexicographic order, enabling the individual han-

dling of each element before integrating them into the general translation formula for the requirement.

For each semantic template component, lookup tables provide its corresponding MTL translation.

Ordinal Scope operator LTL definition

0 Global Mode J

1 In Mode Mode
2 Not In Mode Mode
3 Only In Mode Mode
4 Before Mode H Mode
5 Only Before Mode O Mode
6 After Mode O p Mode^ Y Modeq
7 Only After Mode H pY Mode Ñ Modeq
(a) Look-up table for FRETISH Scope

ID Condition kind

0 void

1 continual

2 trigger

(b) Look-up table for FRETISH Condition

ID FRETISH Timing MTL formula

0 eventually JModeK U
´

Resp^ JModeK
¯

1 immediately Resp
2 next X Resp_ X ChangeTo JModeK
3 always pX ChangeTo JModeKq R Resp
4 never pX ChangeTo JModeKq R Resp
5 within (d) ♦r0,dsResp_

´

JModeK U r0,ds JModeK
¯

6 for (d) lr0,dsResp_
´

`

Resp^ JModeK
˘

U r0,ds JModeK
¯

7 after(d)

˜

lr0,ds Resp^ ♦rd`1,d`1sResp
¸

_

´

p Resp^ JModeKq U r0,d`1s JModeK
¯

8 until (stopCond) lResp_
˜

Resp U
´

stopCond_ StrictChangeTo
`

 JModeK
˘

¯

¸

9 before (stopCond)
´

Resp R stopCond
¯

_

˜

´

JModeK^ X JModeK
¯

R stopCond
¸

(c) Look-up table for FRETISH Timing for infinite trace when the Scope does not include ”only”.

Verification through model-checking

We validate the translation of each semantic template through equivalence checking in nuXmv, de-

monstrating the correctness and reliability of our approach.

Results comparison and forward-looking conclusions

• We propose a novel translation from FRETISH to MTL that is clearer, more intuitive, and simpler

than previous methods, benefiting from the combined use of past-time and future-time operators.

Quantitative Comparison Summary

Metric Simplified / FRET

Max Operators 28 / 148

Average operators 14 / 32

43.33% of FRET formulas exceed the maximum operator

count observed in our simplified translations.

The resulting MTL formulas exhibit significantly reduced complexity, as it is the case for the example

shown in Figure 2.

FRETISH: In Scope upon Condition Component shall before StopCondition satisfy Response

Simplified translation: G (ChangeTo (Scope & Condition) -> ((Response V ! StopCondition) | ((Scope & X ! Scope) V ! StopCondition)))

• Our methodology is robust, effective, and practical for real applications. Its compositional nature

supports straightforward adaptation to modifications on the requirements.

• The simplicity of the results and the transparency of the methodology minimize the risk of errors.

We enhance fairness by providing a translation that is closer to the user’s natural expectations.

• Our approach is well-suited for formalization in proof assistants.

References

[1] Esther Conrad, Laura Titolo, Dimitra Giannakopoulou, Thomas Pressburger, and Aaron Dutle. “A compositional proof framework for

FRETish requirements”. In: Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs. 2022, pp. 68–81.

[2] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann. “Automated formalization of structured natural

language requirements”. In: Information and Software Technology 137 (2021), p. 106590.

EWAF’25, Fourth European Workshop on Algorithmic Fairness, Eindhoven, The Netherlands

	References

