Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 00000000000000000000000

On Applied Logic, Controlled Natural Language and
Large Language Models

Joost J. Joosten

Universitat de Barcelona

Lab42, Amsterdam Science Park
Dutch Formal Methods Day, Thursday, June 26

Time Manager P’ @)FNUDCJS”TRQLS_S T generallitat
GURETRUCK dll% de Catalunya

)
m \I @’ROV\ETHEUSSGmup

[Bosch i Gimpera ECE UNIVERSITAT»s = 3
[5 oviversimar o mancrrona Gl BARCELONA 2

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
©00000000000000000000000 00000000000000000000 00000000000 000000000000

The business model of our research lab

= UNIVERSITAT e
i "BARCELONA

. uu

Business focussed: from concrete to abstract

Work presented in collaboration with various co-authors: Moritz Miiller, Juli Ponce Solé, David Ferndndez-Duque, Bjgrn
Jespersen, Ana de Almeida Borges, Eduardo Hermo Reyes, Sofia Santiago Ferndndez, Petia Guintech, Mireia Gonzélez Bedmar,
Juan Conejero Rodriguez, Marina Lépez Chamoza, Eric Sancho Adamson, Aleix Solé Sanchez, Quim Casals Bufiuel, Marta Soria
Heredia, Guillermo Errezil Alberdi, Daniel Soussa E Ribeiro, etc.

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 00000000000 000000000000

Law and Code

® | aw essentially discretional
powers when applied

J.J. Joosten (UB) A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 00000000000 000000000000

Law and Code

® | aw essentially discretional
powers when applied

® Hence, open texture is needed

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 00000000000 000000000000

Law and Code

® | aw essentially discretional
powers when applied

® Hence, open texture is needed

® Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 00000000000 000000000000

Law and Code

® | aw essentially discretional
powers when applied

® Hence, open texture is needed

® Any automated process and in
particular, any automated

process in the legal sector need
unambiguity

® The programmer needs to
disambiguate?

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis

Formally verified software Lost in translation: language models, large and not so large
00®000000000000000000000 00000000000000000000 00000000000 000000000000

An Example from a recent paper

® What can possibly be wrong
with the following be wrong

with the following:

Computer Science > Computers and Society
[Submitted on 12 Mar 2025]

Specification | for comp ional laws
versus basic legal principles

Petia Guintchev, Joost J. Joosten, Sofia Santiago Fernéndez, Eric Sancho
Adamson, Aleix Solé Sanchez, Marta Soria Heredia
We speak of a \textit{computational law} when that law is intended to be
enforced by software through an automated decision-making process. As digital
technologies evolve to offer more solutions for public administrations, we see an
ever-increasing number of computational laws. Traditionally, law is written in
natural language. Computational laws, however, suffer various complications
when written in natural language, such as underspecification and ambiguity
wwhich lasd tn 3 divareins nf naceihla intarnratatin

e 10 ha mada hu tha radar

J.J. Joosten

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
00®000000000000000000000 00000000000000000000 00000000000 000000000000

An Example from a recent paper

® What can possibly be wrong
with the following be wrong
with the following:

AT iV > cs > anxiv:2503.09129 — ® Article 6.1.: The dally driVing

Computer Science > Computers and Society

S time shall not exceed nine
Specification | for comp ional laws .
versus basic legal principles hOU rs. HOWEVGF, the d al Iy
Petia Guintchev, Joost J. Joosten, Sofia Santiago Fernandez, Eric Sancho . . .
Adamson, Aleix Solé Sanchez, Marta Soria Heredia d rivin g time m ay be exten d ed to
We speak of a \textit{computational law} when that law is intended to be
emetotes vt o v stonon o st it v e at most 10 hours not more than

ever-increasing number of computational laws. Traditionally, law is written in

natural language. Computational laws, however, suffer various complications H d H h k

When witien m naturallanguage, such s underspeciicaton nd ambiaty twice during the week.

i laad 1 3 divarsing o anceihla inrarnratatinne 1n ha marla s tha rada

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
00®000000000000000000000 00000000000000000000 00000000000 000000000000

An Example from a recent paper

® What can possibly be wrong
with the following be wrong
with the following:

AT iV > cs > anxiv:2503.09129 —— ® Article 6.1.: The dally driVing

Computer Science > Computers and Society

e time shall not exceed nine

Specification | for comp ional laws .

versus basic legal principles hOU rs. HOWEVGF, the d al Iy

Petia Guintchev, Joost J. Joosten, Sofia Santiago Fernandez, Eric Sancho . . .

Adamson, Aleix Solé Sanchez, Marta Soria Heredia d rivin g time m ay be exten d ed to
We speak of a \textit{computational law} when that law is intended to be

enforced by software through an automated decision-making process. As digital

s o s o e immon v e on at most 10 hours not more than

ever-increasing number of computational laws. Traditionally, law is written in
natural language. Computational laws, however, suffer various complications

twice during the week.

T ® EU Regulation 561/2006 on
road transport

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000@00000000000000000000 00000000000000000000 00000000000 000000000000

Small leap in a year, giant step for a truck-driver

e Art. 4. (i) ‘a week’ means the period of time between
00.00 on Monday and 24.00 on Sunday;

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000@00000000000000000000 00000000000000000000 00000000000 000000000000

Small leap in a year, giant step for a truck-driver

e Art. 4. (i) ‘a week’ means the period of time between
00.00 on Monday and 24.00 on Sunday;

e Art. 4. (k): daily driving time’ means the total
accumulated driving time between the end of one daily
rest period and the beginning of the following daily
rest period or between a daily rest period and a weekly
rest period,.

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000@00000000000000000000 00000000000000000000 00000000000 000000000000

Small leap in a year, giant step for a truck-driver

e Art. 4. (i) ‘a week’ means the period of time between
00.00 on Monday and 24.00 on Sunday;

e Art. 4. (k): daily driving time’ means the total
accumulated driving time between the end of one daily
rest period and the beginning of the following daily
rest period or between a daily rest period and a weekly
rest period,.

® Daily in daily drivingtime is not a subsective modifier,
rather daily drivingtime is a privative phrase

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000@00000000000000000000 00000000000000000000 00000000000 000000000000

Small leap in a year, giant step for a truck-driver

e Art. 4. (i) ‘a week’ means the period of time between
00.00 on Monday and 24.00 on Sunday;

e Art. 4. (k): daily driving time’ means the total
accumulated driving time between the end of one daily
rest period and the beginning of the following daily
rest period or between a daily rest period and a weekly
rest period,.

® Daily in daily drivingtime is not a subsective modifier,
rather daily drivingtime is a privative phrase

® Weekly in weekly rest is a subsective modifier, but of
the informal notion rather than of the formal/technical
one

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis

Formally verified software Lost in translation: language models, large and not so large

000@00000000000000000000 0000000000000 0000000 000000000000 00000000000

Small leap in a year, giant step for a truck-driver

J.J. Joosten (UB)

Art. 4. (i) ‘a week’ means the period of time between
00.00 on Monday and 24.00 on Sunday;

Art. 4. (k): ‘daily driving time’ means the total
accumulated driving time between the end of one daily
rest period and the beginning of the following daily
rest period or between a daily rest period and a weekly
rest period,.

Daily in daily drivingtime is not a subsective modifier,
rather daily drivingtime is a privative phrase

Weekly in weekly rest is a subsective modifier, but of
the informal notion rather than of the formal/technical
one

UTC and 27 leap seconds

Logic, CNL & LLMs A’'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

000080000 000000000000000 0000000000000 0000000 000000000000 00000000000

Small leap in a year, giant step for a truck-driver

® Underspecifaction

Daily driving

=

| | |
f Week 1 f Week 2 !
Sunday (2400h) Sunday (24001) Stunday (24:00h)

J.J. Joosten (UB) A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000080000000000000000000 00000000000000000000 00000000000 000000000000

Small leap in a year, giant step for a truck-driver

® Underspecifaction

® Are we free to optimise?
Some software does.
| | With or without leap
seconds?

T
Sunday (20:00h) Sunday (20:00h) Sunday (24:00h)

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000080000000000000000000 00000000000000000000 00000000000 000000000000

Small leap in a year, giant step for a truck-driver

® Underspecifaction

® Are we free to optimise?
Some software does.
‘ | | With or without leap
seconds?

T
Sunday (20:00h) Sunday (20:00h) Sunday (24:00h)

® Non-locality!

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000008000000000000000000 00000000000000000000 00000000000 000000000000

Non-locality in weekly rest periods

Regulation (EC) No 561/2006
§8.6. In any two consecutive weeks, a driver shall take at least:

® two regular weekly rest periods [of at least 45 hours]|, or

® one regular weekly rest period and one reduced weekly rest period of
at least 24 hours. However, the reduction shall be compensated by an
equivalent period of rest taken en bloc before the end of the third
week following the week in question.

A weekly rest period shall start no later than at the end of six 24-hour
periods from the end of the previous weekly rest period.

§8.9. A weekly rest period that falls in two weeks may be counted in either
week, but not in both.

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000800000000000000000 00000000000000000000 00000000000 000000000000

Let's break it down...

® Regular weekly rest: > 45 hours

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000800000000000000000 00000000000000000000 00000000000 000000000000

Let's break it down...

® Regular weekly rest: > 45 hours

® Reduced weekly rest: > 24 hours

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000800000000000000000 00000000000000000000 00000000000 000000000000

Let's break it down...

® Regular weekly rest: > 45 hours
® Reduced weekly rest: > 24 hours

® Each rest period is assigned to only one week it intersects

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000800000000000000000 00000000000000000000 00000000000 000000000000

Let's break it down...

Regular weekly rest: > 45 hours

Reduced weekly rest: > 24 hours

Each rest period is assigned to only one week it intersects

Every week must have a regular or reduced weekly rest

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000800000000000000000 00000000000000000000 00000000000 000000000000

Let's break it down...

Regular weekly rest: > 45 hours

Reduced weekly rest: > 24 hours

Each rest period is assigned to only one week it intersects
Every week must have a regular or reduced weekly rest

Every other week must have a full weekly rest

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000800000000000000000 00000000000000000000 00000000000 000000000000

Let's break it down...

Regular weekly rest: > 45 hours

Reduced weekly rest: > 24 hours

Each rest period is assigned to only one week it intersects

Every week must have a regular or reduced weekly rest

Every other week must have a full weekly rest

Any reduced rest must be compensated by a continuous block in the
following three weeks

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000080000000000000000 00000000000000000000 00000000000 000000000000

Combinatorics of rest assignments

Can we assign a week to each rest period so that each week is assigned to
at least one rest period?

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000080000000000000000 00000000000000000000 00000000000 000000000000

Combinatorics of rest assignments

Can we assign a week to each rest period so that each week is assigned to
at least one rest period?

In principle this is an NP problem (assign 0 or 1 to each rest period

according to whether it should belong to the earlier week or the later
week).

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000008000000000000000 00000000000000000000 00000000000 000000000000

Non-locality of compensations

[llegal

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000008000000000000000 00000000000000000000 00000000000 000000000000

Non-locality of compensations

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

000000008 000000000000000 0000000000000 0000000 000000000000 00000000000

Non-locality of compensations

This can be iterated indefinitely: non-locality

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000800000000000000 00000000000000000000 00000000000 000000000000

Small leap in a year, giant step for a truck-driver

0 :
minute labelling | ! 1 I
no shift [| I I

second labelling

minute labelling H i i i
shift d T T T !

B Rest
B Driving

(51) Given a calendar minute, if DRIVING is registered as the activity of
both the immediately preceding and the immediately succeeding
minute, the whole minute shall be regarded as DRIVING.

(52) Given a calendar minute that is not regarded as DRIVING according
to requirement 051, the whole minute shall be regarded to be of the
same type of activity as the longest continuous activity within the

minute (or the latest of the equally long activities).
Regulation (EU) 2016/799

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000080000000000000 00000000000000000000 00000000000 000000000000

Candidate: monadic second order logic

Starting point

Borges, Conejero, Fernandez-Duque, Gonzélez, Joosten.

To drive or not to drive: A logical and computational analysis of European
transport regulations. Information and Computation 280, 2021.

e naturally formalizes Regulation 561.

e model-checking in time f(|¢]) - |w|, Parameterized Complexity
where f : N — N is some computable function.
e but f grows very fast:

Theorem (Frick, Grohe 04)
Assume P # NP. Then MC(X*,MSO) is not decidable in time

Flel) - lw|°®)

for elementary f : N — N.

Hence MSO is not sufficiently tractable.

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000008000000000000 00000000000000000000 00000000000 000000000000

Candidate: linear time temporal logic

Model-checking in time O(|¢| - |w|), but not sufficiently expressive and not
sufficiently succinct

Example Article 6.2: The weekly driving time shall not
exceed 56 hours

Straightforwardly formalized over words of length 1w: disjunction of

/\dSD (/\rdgi<éd+1 Olﬁd A /\dei<l‘d O’d)

for all D < 1w and
alp:=0</t1<n<---<tlp<rp<{py1:=1lw with
> (1~ ;) < 56h
1<j<D
This has > (22%0) > 10278* many disjuncts.
Warning
Algorithmic laws could use large constants for time constraints.
Model-checking complexity should scale well with them.

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000800000000000 00000000000000000000 00000000000 000000000000

FrameTitle

Using bisimulation techniques one can prove:

There is no Lo o formula equivalent to 1g ¢ over the class of eventually
resting models.

All Loy formulas equivalent to g6 have U-depth at least 1140.

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000080000000000 00000000000000000000 00000000000 000000000000

The central computational problem of algorithmic law

Need to formalize activity sequences and laws

e formalize activity sequences are words w € ¥* over a finite alphabet
e.g, dddrrw formalizes 6 minutes of activities in X = {d, r, w}.

® formalize a law by a sentence in a suitable logic L.
Need algorithm that decides the computational problem
MC(X*, L)
Input: a word w € ¥* and a sentence ¢ € L
Problem: is w legal according to ¢, i.e. w =@ ?

MC(X*, L) is a formal model for algorithmic law (on activity sequences).
Question For which L is it good?

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000008000000000 00000000000000000000 00000000000 000000000000

Which MC(X*, L) are good models for algorithmic law?

Tractability
sufficiently fast model-checkers
fine-grained complexity analysis: parameterized complexity theory
important parameter: large time constants in law

Expressivity
test case: formalize Regulation 561
Naturality

readable sentences
sufficiently succinct

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000@00000000 00000000000000000000 00000000000 000000000000

Stopwatch automata : syntax

Stopwatch automaton A
Q finite set of states including start, accept
X finite set of stopwatches
Amapsqe Q toA(qg) € X
B maps x € X to bound f(x) € N
(is the set of (x,q) € X x Q such that x is active in q
A s the set of transitions (q, g, o, q')
where q,q' € Q, g is a guard, « is an action.

Assignment £ maps x € X to £(x) < 5(x)
Guard g is a set of assignments
Action @ maps assignments to assignments

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000080000000 00000000000000000000 00000000000 000000000000

Stopwatch automata . semantics

Transition system of A
configurations (q, &)
switch edges (q, &) o (d',¢")
whenever (q,8,0,q') € A, £ € g, & = a(§)

stay edges (¢,€) — (g, &)
where ' increases £(x) for x active in g to min{&(x)+t, B(x)}

. tyo_
Computation (qo, &) > (q1,1) > (q2.&2) 3 -+ = (qe, &)
reads w := A(qo)™ A(g1)® - A(qe—1)*?
accepts if gqo = start, & =0, qy = accept, q; # accept for i < L.

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000000008000000 00000000000000000000 00000000000 000000000000

Example: continuous driving

Article 7 (1st part): After a driving period of four and a
half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

(drive,00) > (drive,30) > (break,30) 3 (break,32) > (work,32) >
(break, 30)

reads dddrr

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000000008000000 00000000000000000000 00000000000 000000000000

Example: continuous driving

Article 7 (1st part): After a driving period of four and a
half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

(drive,00) > (drive,30) > (break,30) 2 (break,32) > (work,32) >
(break, 30)

reads dddrr

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000000008000000 00000000000000000000 00000000000 000000000000

Example: continuous driving

Article 7 (1st part): After a driving period of four and a
half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

(drive,00) > (drive,30) > (break,30) 2 (break,32) > (work,32) >
(break, 30)

reads dddrr

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000000008000000 00000000000000000000 00000000000 000000000000

Example: continuous driving

Article 7 (1st part): After a driving period of four and a
half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

(drive,00) = (drive,30) > (break,30) 3 (break,32) > (work,32) %
(break, 30)

reads dddrr

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000000008000000 00000000000000000000 00000000000 000000000000

Example: continuous driving

Article 7 (1st part): After a driving period of four and a
half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

(drive, 00) 3 (drive, 30) RN (break, 30) N (break, 32) RN (work, 32) RN
(break, 30)

reads dddrr

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000000008000000 00000000000000000000 00000000000 000000000000

Example: continuous driving

Article 7 (1st part): After a driving period of four and a
half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

(drive, 00) 3 (drive, 30) RN (break, 30) N (break, 32) RN (work, 32) RN
(break, 30)

reads dddrr

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000000008000000 00000000000000000000 00000000000 000000000000

Example: continuous driving

Article 7 (1st part): After a driving period of four and a
half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

(drive,00) > (drive,30) > (break,30) 3 (break,32) > (work,32) >
(break, 30)
reads dddrr

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software

Lost in translation: language models, large and not so large
000000000000000008000000 00000000000000000000 00000000000 000000000000

Example: continuous driving

Article 7 (1st part): After a driving period of four and a
half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

(drive,00) = (drive,30) > (break,30) = (break, 32) > (work,32) >
(break, 30)

reads dddrr

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis

Formally verified software

Lost in translation: language models, large and not so large

000000000000000000800000 0000000000000 0000000 000000000000 00000000000

Automaton that accepts exactly the legal words according
to Reg. 561

T

compensatel reg weekly reg daily
Zers Tdays Twr; Tday. Tdry Tday,

Tweek Tweek Tweek

—] —_—
compensate2 red weekly Tbreak) Tday, red daily
Tweek

Twrs Tday Tdry Tdays

Tweek Lweek

12 states

> 100 transitions

34 stopwatches

23 are nowhere active:
bits
counters
registers

J.J. Joosten (UB)

Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000080000 00000000000000000000 00000000000 000000000000

> 100 transitions

g: Teqg < 4.5h
Tday < 15h
9 < xqq < 10h
Cdd < 2

drive » reg. daily

a:)
ZTeqg =0
Zdaq =0

cqga +=1

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000008000 00000000000000000000 00000000000 000000000000

Expressivity and model-checking

Theorem
A set of words is accepted by an SWA iff it is definable in MSO.
Theorem
There is an algorithm that decides
Input: stopwatch automaton A and a word w over &
Problem: does A accepts w 7
in time
O(\A|2 StX |W])
where
t := largest stopwatch bound of A
x := number of stopwatches of A

.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000800 00000000000000000000 00000000000 000000000000

Consistency-checking

Theorem
There is an algorithm that decides

Input: SWAs A, B

Problem: is there a word accepted by both A and B 7
in time

O(JAP - B - ¢ s¥)

where
= largest stopwatch bound of A

t:

x := number of stopwatches of A

s := largest stopwatch bound of B
y = number of stopwatches of B

. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000080 00000000000000000000 00000000000 000000000000

Scheduling

Theorem
There is an algorithm that decides
Input: SWA A, letter a€ X, word w over X, n € N

Problem: compute length n word v over ¥ such that
A accepts wv

v maximizes #,(v)
in time
O(|A[>- - (lw] + n))
where

t := largest stopwatch bound of A
x := number of stopwatches of A

. Joosten (UB) Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

000000000000000000000008 0O000000000000000000 000000000000 00000000000

Lower bound

Know: MC(X*, SWA) decidable in time O(|A? - t* - |w])
Doubt: Is t* tolerable? Can it be improved?

Interesting instances have large t and small x.
Question: replace t* by 100100 . +100 7

Theorem
Assume FPT # W([1]. Let f : N — N be a computable function.
Then MC(X*, SWA) cannot be decided in time

(JA] - F(x) -t - [w]) OD.

Question: Can we hardwire large constants in the data structure using
Hybrid Modal Logic?

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 @0000000000000000000 00000000000000000000000

What is certification?

® |s it just a matter of trust?
(combined with some sanity
checks and experience)

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 @0000000000000000000 00000000000000000000000

What is certification?

® |s it just a matter of trust?
(combined with some sanity
checks and experience)

® Certificate = something is
certain

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 @0000000000000000000 00000000000000000000000

What is certification?

® |s it just a matter of trust?
(combined with some sanity
checks and experience)

® Certificate = something is
certain

® Verify = something is
veridical

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 0800000000000 0000000 0000000000000 0000000000

The impossibility of unrestricted certification

® A mathematical theorem:

Alan Turing

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

0000000000000 00000000000 0e000000000000000000 0000000000000 0000000000

The impossibility of unrestricted certification

® A mathematical theorem:

® Unrestricted certification is
impossible.

Alan Turing

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 0OeO00000000000000000 0000000000000 0000000000

Restricted certification is possible

We call a program P a universal certifier (wrt its language) when P takes
two inputs

@ another program Q in a language compatible with P and,

@® a specification S in a language compatible with P that describes the
behaviour of the program Q;

and, given two inputs @ and S, the program P outputs:
o “YES” if the program Q does what is said by S and, it will ouput

e “NQ” if the program @ does something different as that what is
claimed by S.

There does not exist a universal certifier.
This holds for any reasonable class of languages.

J.J. Joosten (UB) Logic, CNL & LLMs

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 000e0000000000000000 00000000000000000000000

Formally verified software

Components of formally verified /certified software

> A Specification: a non-ambiguous mathematical description
of the input-output behaviour of the software

[T Implementation: the code, the software, implementing the
algorithm that does the work.

A Proof: a mathematical proof that the program [l functions
as claimed by -

The specification X is written in a formal language (in our case, the
language of dependent types of the Coq proof assistant).

This begs the question: How to make the specification more
accessible to the general/judicial public?

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 0000e000000000000000 00000000000000000000000

What is verification?

Formal verification

Mathematical
proof,
computer-
checked

Implementation

Formal specification (code)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:

abstract, conceptual,
expressed for experts

Slides FV: Gonzélez Bedmar

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000e00000000000000 00000000000000000000000

What is verification?

Formal verification

Coq
(proof assistant)

Mathematical
proof,
computer-
checked

Implementation

Formal specification tenidé)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:

abstract, conceptual,
expressed for experts

J.J. Joosten (UB) A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

0000000000000 00000000000 000000800000 00000000 0000000000000 0000000000

What is verification?

Formal verification

Coq
(proof assistant)

Mathematical Extraction

proof, mechanism,
computer- soon formally
checked verified

Implementation

Formal specification d
(code) Extracted code

(formal language)

Machine-like: OCamloralike
operations, efficiency, Ready to run
expressed for
computers

Math-like:
abstract, conceptual,
expressed for experts

J.J. Joosten (UB) i A'dam, June 26

Law analysis

Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 0000000e000000000000 00000000000000000000000

What is verification?

Problem Cog

(proof assistant) Mathematical

proof,
computer-
checked

Designers of specs
(legislators)

Formal specification Implementation
(code)
(formal language)

. Machine-like:
Math-like: " iy
operations, efficiency,
abstract, conceptual, 3 -
expressed for
expressed for experts
computers

Users
(enforcement
agencies, citizens)

“What can be understood
cannot be proven.
What can be proven
cannot be understood.”

Even experts go through intermediate
steps to understand a formal spec

Joosten (UB)

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 0000000080000 0000000 00000000000000000000000

What is verification?

Mathematical

Checked by

human proof,
experts computer-
P checked

Implementation

Formal specification (code)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:

abstract, conceptual,
expressed for experts

Public Certification Formal Verification ﬁ

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
00000000000 OOO0000000O0O 0000000000000 000000 O0OOOOOOOOOOOO0000000000

Ten years of research in Barcelona

« tocreeanc @ ¢

Research

@ groups of the
News o

‘ B . PROMETHEUSS GRUP
'Software Fallo 0, a UB project to create PROMETHEUSS Group
an error-free software system o Software unreliability and the legal system
12-02-2019 Software malfunction can appear in one o several layers of the
software development cycle, including: natural language
Al software contains bugs; even the software that fications, technical tions, coding,
controls the aeronautical or military industry has bugs 'WHO WE ARE compilation, installation, and execution. The consequences of
in its final version. This situation s particularly Member software malfunction in legal and administrative settings arguably
y mbers. imply the violation of legal principles, loss of valuable resources,
software of key processes such as computer voting thematiallogie, team racial and degradation of legal systems. Also, in the
medical and leader) future as well as in the present, it may aggravate the societal loss of
that decide whether or not a person complies with the (R0 GETETTED ;‘onhdem‘e l≤hno‘;ogy :nd in govemnment 7th Legally binding
logic - tecisions taken based on data produced by software, or even
law. A team from the University of Barcelona e o et decisions which are automated outright, very rarely acknowledge the
participates in a four-year project that promotes a new i Cotaties acmar existence of several crucial potential problems inherent to the nature
———— paradigm for the software industry: the development,

Covenant between the University of Barcelona (FBG), Formal Vindications
S.L. & Guretruck S.L.

J.J. Joosten

A'dam, June 26

Law analysis

0000000000000 00000000000 0000000000 e000000000

Formally verified software

Closing conference

{

Formal

Lost in translation:
00000000000000000000000

APRIL 28-29, 2022
UNIVERSITAT DE BARCELONA

Financial Algorithms with Imandra
Grant Olney Passmore
Imandra, USA

design i
Bart Verhei

Beroull Institut of Mathematis, Computer Scence
and Artical Intlligence - Universiy of Groningen

ost. oo 5

u"wm o acon, S

Logical ethods for Agorthmic o

David Femdndez Duqus

Gent et Slgn

Public Certification of Software and its necessity in
Ly)

Netherlands.
Marlies van et =
Hasgiensir & ot and Rdboud vt T
Newerianas

Verfedsracion o OCami from Co, nCo
Vannich

Mirela Gonzélez Bedmar
FormalVidcations L. Spoin

1 congthe Lo egl? A Frenchand Earopn
pproc

Coe ottner
Uniorsié Par 1 Pantn Sorbonne, France

Veriying well-behaved execution of Legislative

Crafing eistacion redy for

Julus Ly jensen, hrsineHolmareen Mefing &
Mette Eigoard Rasmussen

Agsncy fo iitalzaton, Wity ofFnanc,Danmork

public

Den erigoux
e rjectTeam Prosecc, France

Drafting EU Legisiation in the Eraof Al and
Digitsation

and the case of Regulation S61
Moritz Miller
Unlrsat de rceona, Spin

magine Lassgersar nt e eniss: Legol

05 Poject European Commissian
Monica Palmirani
Uniersit & Bologne, taly

Susana de la Serra
Unlursidodde CasilLa Mancha,Spin

QDT P o

language models, large and not so large

J.J. Joosten

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 0000000000080 0000000 0000000000000 0000000000

Time library

Time measurement

leap seconds

2016-12-3123:59:60 UTC exists

‘ require UTC

- R

27 leap seconds added since 1972

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

000000000000 000000000000 00000000000 0e0000000 000000000000 00000000000

Time formats and managers

date-time

i f timestamp
<+—> & Time Manager > <+— |45 35505559
’
[| .
| b
'ﬁl & '

2 NotinuTc

Most important feature: formally verified!

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 0000000000000 8000000 00000000000000000000000

What is certification?

Mathematical

Checked by

human proof,
experts computer-
P checked

Implementation

Formal specification (code)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:

abstract, conceptual,
expressed for experts

Public Certification Formal Verification ﬁ

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

000000000000 000000000000 0000000000000 0e00000 000000000000 00000000000

Example in FV Time

Formal specification (in Coq): utc_timestamp_plain Implementation

#|[pred t' | (epoch <= t' < t)%0]| (code)

Jv2

Intuitive specification

Given a time ¢, returns the number of
seconds elapsed since the Unix epoch
(1970-1-100:00:00).

Around one-thousand times more expensive!

J.J. Joosten (UB) i A'dam, June 26

Law analysis

Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000080000 00000000000000000000000

A central problem

Problem Cog

(proof assistant) Mathematical

proof,
computer-
checked

Designers of specs
(legislators)

Formal specification Implementation
(code)
(formal language)

. Machine-like:
Math-like: " iy
operations, efficiency,
abstract, conceptual, 3 -
expressed for
expressed for experts
computers

Users
(enforcement
agencies, citizens)

“What can be understood
cannot be proven.
What can be proven
cannot be understood.”

Even experts go through intermediate
steps to understand a formal spec

Joosten (UB)

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 0000000000000 0008000 00000000000000000000000

Public certification versus formal verification

Mathematical

Checked by proof.
::ne]:; computer-
P checked

Implementation

Formal specification (code)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:
abstract, conceptual,
expressed for experts

[Public Certification] I Formal Verification ﬁ

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so larg

000000000000000000000000 00000000000000000800 0000000000000 0000000000

Catala: A Shortcut For Legal Expert System Certification

The Usual Way to Produce Verified Software

Using Mireia Gonzales Bedmar's conceptual framework from yesterday’s presentation:

A
Manual Manual A
o review Z proof I Extraction | £y table code
Interpretation (¢ > Specification (¢ > Implementation > P
law.docx law.v law.v
Catala’s approach:
©+3+11 (A=9) A
Literate formal Compilation Executable code
executable specification "l 1aw.{m1,py,js, ...}
law.catala

Slides Catala: Merigoux

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so

g

000000000000 000000000000 000000000000000000e0 000000000000 00000000000

@ Catala: A Language Reviewable by lawyers

US Tax Code, Section 132, (c)(1) Qualified employee discount

The term “qualified employee discount” means any employee discount with respect to
qualified property or services to the extent such discount does not exceed—

(A) in the case of property, the gross profit percentage of the price at which the property
is being offered by the employer to customers

scope QualifiedEmployeeDiscount :
definition qualified_employee_discount
under condition is_property consequence equals
if employee_discount >$ customer_price *$ gross_profit_percentage then
customer_price *$ gross_profit_percentage
else employee_discount

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis

Formally verified software

Lost in translatio

0000000000000 00000000000 000000000000 0000000® 0000000000000 0000000000

Can code be the law?

TENSION TABLE:

Computable laws:

Language, software paradigm and legal principles

Specification ~ Programming Legal Principles
Language paradigm
- N p “ o)
Legal Certainty Accountability Contestability
C S) C)
Decisions will probably not be Automated decision won't be
consistent with the established ~ reliable and explainability will Right to contest tums almost
Not legal framework. The text will ~ be difficult: the software is not impossible since authorities
Natural (i i o
ormally e accessible anc comprehensible to the public, can't explain software
La:gu:ge Formall b ble and hensible to the publ| t expl i
Verified”| comprehensible to the public challenging the principle of decisions, which will be
and authorities. transparency. unreliable.
D Il likel t b Automated decision will be
ecisions will likely not be barsly reliable and =
ight to contest tums almost
ot aoal Not \ |Cenistent with ihe established explainabilty will be diffcult: impossibie since authorities
Language Formally é’ 0 heitie the software is not cantt explain software
Verified plicssicomprenons bl comprehensible to decisions, which will be
public and authorities. the public, challenging the mostly unreliable.
principle of transparency.
Automated decision will be Right t test " ¢
ight to contest tums almos
Decisions will probably be quite reliable and
Not _|consistent with the established explainability will be dificult; Impossible since authorities
Formal Language ¢ Formaly legal framework. The text will the software is not can't explain software
Verified,”| only be accessible to experts comprehensible to) iyl
the public, challenging the Probably be working according
principle of transparency. fo the law
Automated decision will be
reliable and Right to contest will be difficuit
Formal Language | 7, . | Decisions wi be consistent explainabilty will be difficult, since authorites cant expiain
Foqnely leg: but it will be guaranteed that software decisions, yet those
rified - ramework. The text willonly be " the software s the exact are working according o the
accessible to expets reproduction of its specification oW,

J.J. Joosten

A'dam, June 26

language models, large and not so large

Law analysis

Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 @0000000000000000000000

FRET: Formal Requirement Elicitation Tool

An attempt at bridging formal and natural language

in roll_hold mode shall satisfy autopilot_engaged & no_other_lateral_mode

J.J. Joosten (UB)

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 OeO000000000000000000000

FRET under the logic loupe: TIMING

ol
) N

TIMING is optional and specifies when response is expected
® immediately
® never
e eventually (the default reading when Timing is omitted)
® always
® within n time units
e for n time units
® after n time units

10 timing options

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 OOe00000000000000000000

FRET under the logic loupe: SHALL

: e ' :“ .

SHALL is mandatory

J.J. Joosten (UB) A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O00e0000000000000000000

FRET under the logic loupe: COMPONENT

(sHALLs (TN RESP
COMPONENT is mandatory

For example: The_Car

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

0000000000000 00000000000 0000000000000 0000000 0000e000000000000000000

FRET under the logic loupe: CONDITION

CONDITION is an optional feature: a Boolean expression
For example: When Traffic_Light_Is_Red & No_Police_Car_Nearby

Three options: void condition, trigger condition, continual

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 0000080000000 0000000000

FRET under the logic loupe: SCOPE

1\
SCOPE (sHALL: | MIN) RESPONSES*
p. -

SCOPE is an optional feature: a finite collection of disjoint time intervals
where the requirement is imposed
Built from a Boolean Mode M with an operator applied to it: O(M)
® hefore M
® after M
in M
not in M
only before M

only after M
only in M

global (default scope when omitted)
8 operators in total

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O000O000e0000000000000000

FRET under the logic loupe: SCOPE

_ ONLYAFTER 3
~ ONLYBEFORE |
ONLYIN ONLYIN ONLYIN
[NOTIN| [NOTIN| NOTIN
; ‘ AFTER \

BEFORE

N | N |
[MODE | [MODE |

ftp th—1t; tyta+1 ts—1t3 tits—1 n

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O0000000e000000000000000

FRET under the logic loupe: summary

Mandatory Fields Optional Fields

Component system involved Timing when response should occur

Shall obligation keyword Conditions applicability context: void (unconditional),
trigger (activates on event), continual (holds
while true)

Response expected boolean behavior Scope temporal intervals of enforcement built

from a mode (boolean) and an operator

J.J. Joosten (UB) CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O00000000e00000000000000

FRET under the logic loupe: Semantic templates

7 G
N -

8 scope operators
Condition or no condition
7 Timing options
give rise to
8 x 3 x10=240

so-called semantic templates.
Each of the form

G(@(M) AC = T(R))
This is a simplified representation of the fragment of LTL covered by this
version of FRET*

* (there are some small letters)

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O000000000e0000000000000

FRET interface: various language levels

Update Requirement Semantics

R D » ENFORCED: in every interval where roll_hold holds. TRIGGER: first

. . point in the interval. REQUIRES: for every trigger, RES must hoid at all
AP-002A t Requirement LM_requirements ~ time points between (and including) the trigger and the end of the.
interval

Rationale and Comments

Roll hold mode shall only be active, when the autopilot is engaged. Simultaneous engagement of

several lateral modes shall not be possible.
M = roll_hold, Response = (autopilot_engaged &
no_other_lateral_mode).

nent

Diagram Semantics v

Requirement Description Formalizations

A requirement follows the sentence structure displayed beloy here fields are optional unless indicats information

on a field format, click on its corresponding bubble
Future Time LTL A

¢ Ve V (roll_nold -> (antopilot engaged &
[) ® Bo_other lateral mo
Target: RollAutopifot component
in roll_hold mode shall always satisfy autopilot_engaged & no_other_lateral_mode

Past Time LTL

roll_hold -> (autopilot_engaged &
no_other_lateral mode)

Target: RollAutopifot component

A'dam, June 26

J.J. Joosten

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 000000000080 00000000000

FRET: interactive sample testing

T

LASTV (roll_hold — (autopilot_engaged A no_other_lateral_mode)))

Users can test the behaviour of their FRET phrases

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Lost in translation: language models, large and not so large

Law analysis Formally verified software
0000000000000 00000000000 0000000000000 0000000 0000000000080 0000000000

Serendipity has it...

FORMALIZER

{ ithms 162 H SALT
%’
M
FORMALIZATION
VERIFIER

® |t seems that they wanted to tap into the RTGIL tool (Rreal Time Graphical

Interval Logic)

miXmy

SPECIFICATION ppprian

cache.

tempiate key requirement felds

— INSTANTIATOR
equirement

formaliz iirement
(explanation + diagtam + formulas)

Logic, CNL A'dam, June 26

J.J. Joosten (UB)

Lost in translation: language models, large and not so large

Law analysis Formally verified software
0000000000000 00000000000 0000000000000 0000000 0000000000080 0000000000

Serendipity has it...

FORMALIZER

{ ithms 162 H SALT
%’
M
FORMALIZATION
VERIFIER

® |t seems that they wanted to tap into the RTGIL tool (Rreal Time Graphical

Interval Logic)

° Wthh I thlnk Communicates We” W|th SALT (Structured Assertion Language for

Temporal Logics)

miXmy

SPECIFICATION gggmsn

cache.

tempiate key requirement felds

— INSTANTIATOR
equirement

formaliz iirement
(explanation + diagtam + formulas)

Logic, CNL A'dam, June 26

J.J. Joosten (UB)

Formally verified software Lost in translation: language models, large and not so large

Law analysis
000000000000000000000000 00000000000000000000 0000000000080 0000000000

Serendipity has it...

%’
M
® |t seems that they wanted to tap into the RTGIL tool (Rreal Time Graphical

Interval Logic)

° Wthh I thlnk Communicates We” W|th SALT (Structured Assertion Language for

Temporal Logics)

miXmy

SPECIFICATION gggmsn

cache.

tempiate key requirement felds

— INSTANTIATOR
equirement

formaliz iirement
(explanation + diagtam + formulas)

® and nuXmv

Logic, CNL A'dam, June 26

J.J. Joosten (UB)

Law analysis Formally verified software Lost in translation: language models, large and not so large

0000000000000 00000000000 0000000000000 0000000 0000000000080 0000000000

Serendipity has it...

FORMALIZER

ithms 152 H SALT ﬁ
%’ SPECIFICATION prprisy
:

te key

INSTANTIATOR

tirement;
wgtam + formuilas)

explanation

FORMALIZATION

fo
VERIFIER (exp

It seems that they wanted to tap into the RTGIL tool (Real Time Graphical

Interval Logic)

° Wthh I thlnk Communicates We” W|th SALT (Structured Assertion Language for

Temporal Logics)
® and nuXmv

® which is why they have curious ways of dealing with scopes (in my
opinion)

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 0000000000080 0000000000

Serendipity has it...

FORMALIZER

miXmy
182 SALT

SPECIFICATION ppprian

ta oy

INSTANTIATOR

ulas)

explanation

FORMALIZATION

VERIFIER

It seems that they wanted to tap into the RTGIL tool (Real Time Graphical

Interval Logic)

Wthh I thlnk Communicates We” W|th SALT (Structured Assertion Language for

Temporal Logics)
and nuXmyv

which is why they have curious ways of dealing with scopes (in my
opinion)

which make their way through the LTL translation it seems

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

0000000000000 00000000000 0000000000000 0000000 000000000000 e0000000000

A first translation algorithm

Table 1. (left) Scope endpoints. (right) pmLTL formulas associated with each end-
point. LAST+1 is not provided because our formulas do not use it.

Scope [terr mEr Symbol | Formula

null FTP |tast+l FFiM | FiM and previous (historically (aot M))
before FTP | FFiM_ FLM | LiM and provious (historically (ot LiM))
after FLM | tast+l FiM | M and (FTP or (previous not M))

in FiM | LiM LiM | not M and previous M

notin, onlyin | FNiM LNiM FNiM

not M and (FTP or previous M)
FFiM | tast+1 LNiM | M and provious (not M)
FTP | FLIM FTP not previous true

only before

only after

generalform = (g-a) and (g-b)
g-a = historically (RIGHT implies previous BASEFORM.TO_LEFT)
gb = ((not RrHT) since inclusive required LEFT)

implies BASEFORM.TOLEFT

BASEFORM_TO_LEFT = (BASEFORM [since inclusive required LeFT]")

Table 2. BASEFORMS without and with conditions. sinc.ir/stnce.ex denote since
required,

Timing BASEFORM BASEFORM with conditions

immediately | LEFT implies RES TRIGGER implies RES

always [RES since ir LEFT]* NOCONDITION or (RES since.ir TRIGGER)
never [always(aot RES)]* always(coND, (ot REs))
eventually | [not ((not RES) [NOCONDITION or

since ir LEFT)|* not ((not RES) since ir TRIGGER)]*
forn (once tined[<n] LEFT) | Fy and F

implies RES

Fi = (((not LEFT) since_er TRIGGER) and
(once timed[<n| TRIGGER)) implies RES
F = (COND and LEFT) implies RES
withinn | ((not RES) since.ir LEFT) | (previous timed|=n]
inplies (TRIGGER and not RES))
(once tined[<n] LEFT) | implies (once timed[<n] (LEFT or RES))
after n for(n, not (RES)) for(COND, n, not (RES)) and
and within(n+1, RES) within(COND, n+1, RES)

G(O(M)AC = T(R)

J.J. Joosten (UB) Logic, CNL & LLMs

A'dam, June 26

Law analysis

Formally verified software

Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 0000000000000 8000000000

Second: slightly more promising

Table 2. Core formula definition for null condition or cond € B.

‘ timing

Pogre (timing, null, res, fren)

Dgre(timing, cond, res, ien)

immediately

¢,,ﬂ — res

Prrigger — TES

next

v ¢hf,) — res

(Y Prrigger) — (res V rep)

always

res

Brotriggers V' (Fes ST Grnigger)

eventually

~(ores St i)

ve
Buotriggers V (1€ Spne Puigger)

until(stop)

(=stopSyd pup) — res

ine

DroTriggers V ((0510p Sind Gurigger) — res)

before(stop)

stop = ((~puepi
AnY (mresSind b))

stop = (PnoTriggers V (" Plefi A ~Parigger
A=Y (resSind Gurigger)))

Jor(m)

(Olo.m] Prer) — res

(Opom) Prrigger) — (bnotriggers V res)

within(m)

(=resS}od ren) = (Ofom-1) Brept)

_ym(¢trzgger A —res)
= (Ofom-1) (rept V res))

J.J. Joosten (UB)

G(O(M) AC = T(R))

Logic, CNL

A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 0000000000000 0800000000

Simplified architecture

Ex: MTL Formulas Translating FRETISH for Future Time on Infinite Traces

g ([[Mode]] A Cond — Too(Resp, [[Mode]])) if Cond is continual

g (ChangeTo ([Mode] A Cond) — Too(Resp, [[Mode]])) if Cond is trigger

ChangeTo (-) Activates when expression changes from false to true to capture the
trigger dynamics

[Mode] MTL translation of the Scope

Teo MTL translation of the Timing constraint

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O00000000000000080000000

Simplified architecture: lookup tables

Ordinal| Scope operator LTL definition
0 Global Mode T
1 In Mode Mode
2 Not In Mode — Mode
3 Only In Mode — Mode
4 Before Mode H — Mode 1D | Condition kind
5 Only Before Mode O Mode 0 void
6 After Mode O (—Mode A Y Mode) 1| continual
7 Only After Mode | # (¥ Mode — Mode) 2 trigger
(a) Look-up table for FRETISH Scope (b) Look-up table for FRETISH Condition
[ID[FRETISH Timing [MTL formula
0O |eventually [Mode] (Resp A |[Mode]])
1 |immediately Resp
2 |next X Resp v X ChangeTo —[Mode]
3 |always (X ChangeTo —[Mode]) R Resp
4 [never (X ChangeTo —[Mode]) R —Resp
5 |within (d) Ofo,g)Resp v ([[Mode]] u [o,d]“ﬂMOde]l)
6 |for (d) Ojo,qResp v ((Resp A [Mode]) U [Uyd]—ﬂMode]])
7 |after(d) Oo,a)~Resp A O[ay1,441]Resp | v ((—‘Rap A [Mode])) U [[)7d+l]—|[Mode]])
8 |until (stopCond) |[IResp v (RespM (slopCond v StrictChangeTo (—[[Mode]l)))
9 |before (stopCond) (Resp R ﬁstopCond) v ((ﬂMode]] AX ﬁﬂMode]]) R ﬁstopCond)

(c) Look-up table for FRETISH Timing for infinite trace when the Scope does not include "only".

J.J. Joosten (UB) i A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O00000000000000008000000

Comparison and Occam

FRETISH: In Scope shall before StopCondition satisfy Response

FRET’s MTL: (G ((! (' Scope) & (X Scope))) | (X (((Scope & (X (! Scope))) V (! Condition) & ((X Condition) & (! (Scope & (X (! Scope)))) -> ((X
(! (¢ ((StopCondition) & (Response | (Scope & (X (I Scope))))) & (! (Scope & (X (! Scope))))) U StopCondition))) & (! (Scope & (X (! Scope)))
& (Condition -> (! (((! (! StopCondition) & (Response | (Scope & (X (! Scope))))) & (! (Scope & (X (! Scope)))) U StopCondition))))))) & (Scope ->
(((Scope & (X (! Scope)) V (! Condition) & ((X Condition) & (! (Scope & (X (! Scope)))) -> (X (! (! (! StopCondition) & (Response | (Scope & (X
(! Scope)))) & (! (Scope & (X (! Scope)))) U StopCondition))) & (! (Scope & (X (! Scope)))))) & (Condition -> (! (! (! StopCondition) & (Response
| (Scope & (X (! Scope)))) & (! (Scope & (X (! Scope))))) U StopCondition))))))

FRET translation

FRETISH: In Scope shall before StopCondition satisfy Response
Simplified translation: G (ChangeTo (Scope & Condition) -> ((Response V ! StopCondition) | ((Scope & X ! Scope) V ! StopCondition)))

Our simplified translation (preparing Rocq implementation)

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O00000000000000000800000

Spurious findings

« Counter-intuitive constructs whose informal interpretation diverges from their actual formal seman-
tics, often leading to misunderstandings:

- shall within 1 day satisfy BeDelivered == shall eventually satisfy BeDelivered

- 'Only In’ Scopes defy logic: Their semantics aren't logically grounded, but come from engineering
intuition.

- shall after 3 hours of driving satisfy Rest forces that the rest cannot occur before 3
hours of driving.

J.J. Joosten (UB) Logic, CNL A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O00O000000000000000e0000

Non-sharing incentives

Theorem Proving and Machine Learning in the age of LLMs:
SoA and Future Perspectives

16th century protagonists: Gerolamo Cardano, Niccold Fontana (Tartaglia
(stammerer)), Scipione del Ferro, Ludovico Ferrari, etc.

21st century protagonist: ChatGTP, DeepSeek, Mistral, Claude, ...

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 O0000000000000000000e000

Belief revision appreciation revision

Succes from information theory: Self-attention with triple (queries, keys,
values) in encoders and decoders
Controlled Natural Languages are promising to bridge reasoning and LLMs.

FRET simplification apology: The simpler they are, the better, the closer
the formalisation to the CNL the better

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large

0000000000000 00000000000 0000000000000 0000000 0000000000000 0000000e00

Applied Logic in Law

ALICE'S ADVENTURES IN WONDERLAND

she kept on puzaling sbout i while the Mouse wasspeaking,
50 that her idea ofthetale was something ike this

It keeps the logician off the street

J.J. Joosten (UB) i A'dam, June 26

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 0000000000000 00000000e0

Fury said to the mouse: Civio vs Bosco

Ana Valdivia

Dr Ana Valdivia is a Postdoctoral Researcher at

| King’s College London (ERC Security Flows). She
examines how algorithms impact on people’s life
from a technical, political, and legal perspective.

‘This article belongs to the debate » The Rule of Law versus the Rule of the Algorithm

02 April 2022

The Paradox of Efficiency: Frictions
Between Law and Algorithms

Javier de la Cueva
On the 13th of January 2022, a Spanish Administrative court ruled in favour of Javier de la Cueva is a lawyer, lecturer and
algorithmic opacity. Fundacién Civio, an independent foundation that monitors and researcher in topics related to open knowledge,
accounts public authorities, reported that an algorithm used by the government was ethics and the digital world.

committing errors.!) BOSCO, the name of the application which contained the algorithm,
was implemented by the Spanish public administration to more efficiently identify
citizens eligible for grants to pay electricity bills. Meanwhile, Civio designed a web app
to inform citizens whether they would be entitled for this grant.? Thousands of citizens

Explore posts related to this:
Algorithmic Efficiency, Algorithmic Justice, Rule of

Law, Rule of the Algorithm
used this application and some of them reported that, while Civio's web app suggested

The Bosco computer program : errors in the computation of the social
welfare bonuses

Least requirement: access to source code

In France it is mandatory to publish source code of software that is used in
public administration.

However, access to source code will not resolve all problems

Joosten Logic, CNL & LLMs A’'dam, June 2

Law analysis Formally verified software Lost in translation: language models, large and not so large
000000000000000000000000 00000000000000000000 OO00000000000000000000e

Thanks

J.J. Joosten (UB) Logic, CNL & LLMs A'dam, June 26 68 /68

	Law analysis
	Formally verified software
	Lost in translation: language models, large and not so large

