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Formalised provability and applications

• Provability is a central notion in logic and metamathematics

• For theories like PA we can write a Σ1 predicate □PA(·) such that

PA ⊢ φ ⇐⇒ N |= □PA(⌜φ⌝)

HA ⊢ φ ⇐⇒ N |= □HA(⌜φ⌝)

Some properties about the provability predicate:

• If PA ⊢ A, then PA ⊢ □PAA for any PA-sentence A

• If PA ⊢ λ↔ ¬□PA(⌜λ⌝), then
PA ⊢ λ↔ ¬□PA(⌜0 = 1⌝), that is

PA ⊢ λ↔
(
□PA(⌜0 = 1⌝)→ 0 = 1

)
• PA ⊬ □PA(⌜0 = 1⌝)→ 0 = 1

• ZFC ⊢ □PA(⌜0 = 1⌝)→ 0 = 1
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Formalised provability and completess

• For theories like PA we can write a Σ1 predicate □PA(·) such that

PA ⊢ φ ⇐⇒ N |= □PA(⌜φ⌝)

Theorem

The □PA(·) predicate is Σ0
1-complete. That is, for each c.e. set A, there is

an arithmetical formula ρA(x) such that

A = {n ∈ N | N |= □PA

(
ρA(n)

)
}.
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Formalised provability: provable structural properties

• PA ⊬ □PA(⌜0 = 1⌝)→ 0 = 1

• PA ⊢ □PA(⌜1 = 1⌝)→ 1 = 1

• Löb’s Theorem:

If PA ⊢ □PA(⌜A⌝)→ A, then PA ⊢ A, for any PA formula A

• Formalised Löb’s Theorem (ignoring GNs):

PA ⊢ □PA

(
□PAA→ A

)
→ □PAA

for any PA formula A
• Characterise all provably structural properties in two steps

• L□ with Form□ := ⊥ | Prop | Form□ → Form□ | □Form□
• Define a denotation of L□ formulas inside the LPA formulas
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Arithmetical realizations

An arithmetical realization is any function (·)⋆ taking:

formulas in L□ → sentences in LPA
propositional variables→ arithmetical sentences

boolean connectives→ boolean connectives

□→ □PA

Clearly, for any realization (·)⋆ we have for example

PA ⊢
(
□(p → q)→

(
□p → □q

))⋆
since

PA ⊢ □PA(p
⋆ → q⋆)→

(
□PAp

⋆ → □PAq
⋆
)

regardless of (·)⋆
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The Provability Logic of a Theory

• For a c.e. theory T we define

PL(T ) := {φ ∈ L□ | for any (·)⋆, we have T ⊢ (φ)⋆}

• Here (·)⋆ is as before, but now mapping □ to □T

• We observe that PL(T ) is Π0
2 definable

A candidate
• GL is the normal modal logic with axioms

• All classical logical tautologies in L□ like □p ∨ ¬□p, etc.
• All distributions axioms: □(A→ B)→ (□A→ □B),
• All Löb axioms: □(□A→ A)→ □A.

• and rules

• Modus Ponens
A→ B A

B
,

• Necessitation
A

□A
.
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• All Löb axioms: □(□A→ A)→ □A.

• and rules

• Modus Ponens
A→ B A

B
,

• Necessitation
A

□A
.

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 6 / 48



Provability and logics Provability for HA Quantified reflection calculus QPL(PA) = QPL(HA) Closing

Solovay’s Theorem

Theorem (Solovay, 1976)

Let φ ∈ L□. Then:
GL ⊢ φ
⇕

PA ⊢ (φ)⋆ for any arithmetical realization (·)⋆

Thus, even though PL(PA) is prima facie of complexity Π0
2, it allows for a

decidable description

GL = {φ ∈ L□ | for any (·)⋆, we have PA ⊢ (φ)⋆}

of complexity PSPACE.
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True provability logic

• PA ⊬ □PA(⌜0 = 1⌝)→ 0 = 1

• N |= □PA(⌜φ⌝)→ φ for whatever sentence φ

For a c.e. theory T we define

TPL(T ) := {φ ∈ L□ | for any (·)⋆, we have N |= (φ)⋆}

A priori, complexity above true arithmetic.
However,

TPL(PA) = GLS.

Here GLS is axiomatised by all theorems of GL and all reflection axioms
□A→ A with MP as the only rule.
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Solovay for quantified modal logic?

Let L□,∀ be the language of relational quantified modal logic:

⊤, relation symbols, boolean connectives, ∀x , and □

Define arithmetical realizations (·)• for L□,∀:

formulas in L□,∀ → formulas in LPA
n-ary relation symbols→ arithmetical formulas with n free variables

boolean connectives→ boolean connectives

∀x → ∀x and □→ □PA

For a c.e. theory T we define

QPL(T ) := {φ ∈ L□,∀ | for any (·)•, we have T ⊢ (φ)•}

and

TQPL(T ) := {φ ∈ L□,∀ | for any (·)•, we have N |= (φ)•}

Example: □∀xP(x)→ ∀x□P(ẋ)
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Degenerate Quantified Provability Logics

If we define QL(T ) = {φ ∈ Lpred | for any (·)•, we have T ⊢ (φ)•}, then
it is not hard to see that CQC = QL(PA).
Proof:

⊆ if π ⊢CQC φ, then also π• ⊢CQC φ
•, whence π• ⊢PA φ•

⊇ Henkin construction in arithmetic

QPL(PA + Incon(PA)) = CQC +□⊥
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Negative results

Theorem (Vardanyan, 1986 and McGee, 1985)

{closed φ ∈ L□,∀ | for any (·)•, we have PA ⊢ (φ)•}

is Π0
2-complete.

Theorem (Artemov, 1985)

TQPL(PA) is not arithmetical.

Theorem (Vardanyan, 1985)

TQPL(PA) is Π0
1 complete in true arithmetic.
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Artemov’s Lemma

• Let F ∈ LPA be a formula

• Replace arithmetical symbols 0,+1,+,×,=
with predicates Z ,S ,A,M,E , obtaining
{F} ∈ L∀
• Go back to LPA with a realization (·)•

When are F and {F}• equivalent over PA?

• Under {T}• to get arithmetical axioms...

• ... and under D• to get recursive A• and M•

F

LPA

• By Tennenbaum’s Theorem the model induced by (·)• is standard,
hence N |= S ⇐⇒ ({T} ∧ D → {S}) ∈ TQPL(PA)

D :=♢⊤ ∧
∀ x (Z (x)→ □Z (x)) ∧ ∀ x (¬Z (x)→ □¬Z (x)) ∧
· · · S · · ·A · · ·M · · ·E

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 12 / 48
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Robust negative results

Vardanyan : {φ ∈ L□,∀ no modal iterations, just one unary predicate symbol |
for any (·)•, we have PA ⊢ (φ)•} is Π0

2-complete.

Berarducci (’89) : {φ ∈ L□,∀ | for any (·)• ∈ Σ0
1, we have PA ⊢ (φ)•}

is Π0
2-complete.

One easily sees that QPL(PA +□PA⊥) is r.e., but it seems that
QPL(PA +□PA□PA⊥) is also Π0

2-complete.

Theorem (Visser, de Jonge, 2006)

QPL(T ) is Π0
2 complete for any Σ1-sound theory T extending EA.

Archive for Mathematical Logic 2006: No Escape from Vardanyan’s
Theorem
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Open problem for around 60 years

• Can we also characterise PL(HA)?
Open question since the sixties of last century.

• It is long known that iGL ⊆ PL(HA)

• Mojtaba Mojtahedi recently proved (preprint 2022)

The logic PL(HA) is decidable.

• Proving an axiomatisation of the form

iGL + {□A→ □B | for A,B satisfying an intricate technical condition}

• Conjectured to be PSPACE

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 14 / 48
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The closed fragment

• For A a modal formula without any propositional variables, the the
situation was known.

• So, A built from ⊤,⊥, Boolean connectives and □.
• Visser:

• For A letterless, one can constructively find α ∈ ω ∪ {∞}
so that HA ⊢ □HAA↔ □α⊥
where □∞ := ⊤

•
HA ⊢ φ ⇐⇒ HA ⊢ □HAφ

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 15 / 48
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Propositional logic of HA

• We define PropL(T ) = {φ ∈ Lprop | for any (·)∗, we have T ⊢ (φ)∗},

• It is not hard to see that CPC = PropL(PA).

• Likewise, de Jongh:
PropL(HA) = IPC

• Pretty stable but
PropL(HA + CT +MP)

is unknown.

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 16 / 48
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Provability and logics Provability for HA Quantified reflection calculus QPL(PA) = QPL(HA) Closing

Disjunction property

• If HA ⊢ A ∨ B, then HA ⊢ A or HA ⊢ B;

• However, not formalisable in HA (Myhill, Friedman):

HA ⊬ □(A ∨ B)→ □A ∨□B

(Take A the Rosser sentence for HA and B its dual)

• However (Leivant),

HA ⊢ □(A ∨ B)→ □(A ∨□B)

and, in particular

HA ⊢ □(A ∨ B)→ □(□A ∨□B)

• The formalised disjunction property is equivalent over HA to
RFN(HA)

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 17 / 48
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Markov’s principle

• Markov’s Rule is admissible for HA

HA ⊢ ¬¬π ⇒ HA ⊢ π

For π ∈ Π0
2

• Formalisable in HA so that, for example

□(¬¬□A)→ □□A

is in PL(HA)

• And more in general

□
(
¬¬(□A→

∨
i

□Ai )
)
→ □(□A→

∨
i

□Ai )

is in PL(HA)
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Admissible rules

• Recall, a rule A
B is called admissible for a logic L whenever

L ⊢ σ(A) =⇒ L ⊢ σ(B)

for any substitution σ

• For CPC the admissible rules A
B are just ⊢ A→ B

• For IPC the situation is very different where an example of non-trivial
admissible rule is the so-called Independence of premise principle

¬A→ B ∨ C

(¬A→ B) ∨ (¬A→ C )

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 19 / 48
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Admissible rules

• Rybakov: admissibility is decidable for IPC

• Visser: the admissible rules of HA are the same as those of IPC

• Iemhoff: characterisation in terms of Visser rules

• If A
B is admissible for IPC, then □A→ □B ∈ PL(HA)

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 20 / 48
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Visser Rules

• We define the formula abbreviation:

(A)(B1, . . . ,Bn) := (A→ B1) ∨ . . . ∨ (A→ Bn)

• Visser’s rule (Vn) is for

A =
n∧

i=1

(Ei → Fi )

is the following (
A→ (B ∨ C )

)
∨ D

(A)(E1, . . . ,En,B,C ) ∨ D

• Visser’s rule is admissible for IPC and in Iemhoff’s sense these rules
generate all admissible rules.
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Predicate logic of HA

• Recall that QL(T ) = {φ ∈ Lpred | for any (·)•, we have T ⊢ (φ)•},

• and QL(PA) = CQC.

• Likewise, Leivant:
QL(HA) = IQC

with a recent new proof by van Oosten.

• Not stable and (Plisko) already

QL(HA + CT)

is Π0
2-complete.

• It seems that Vardanyan can be extended to QPL(HA).
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Restricted signatures and logics: RC1

Restrict L□ to the strictly positive fragment L♢:

L♢ ::= ⊤ | φ ∧ φ | ♢φ

Define a calculus RC1 with statements φ ⊢RC1 ψ where:

φ,ψ ∈ L♢
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RC1 Main result

Theorem (Dashkov, Beklemishev)

Let φ,ψ ∈ L♢. Then:
GL ⊢ φ→ ψ

⇕
(φ ⊢ ψ) ∈ RC1

⇕
PA ⊢ (φ→ ψ)⋆ for any arithmetical realization (·)⋆

⇕
(φ→ ψ) ∈ PL(PA)

Even though the fragment looks poor, its polymodal (up to ω) version
suffices for an ordinal notation up to ε0 and it can perform the main
computations of an ordinal analyses of PA and subsystems
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QRC1 Main result

Theorem (de Almeida Borges, JjJ)

Let φ,ψ ∈ L♢,∀. Then: φ ⊢QRC1 ψ

⇕
PA ⊢ (φ→ ψ)• for any arithmetical realization (·)•

⇕
(φ→ ψ) ∈ QPL(PA)

Theorem (Decidability)

QRC1 has the finite model property hence is decidable.

Theorem (Positive fragment)

Let φ and ψ be QRC1 formulas (no constants) and let QS be any logic
between QK4 and QGL. Then φ ⊢QRC1 ψ if and only if QS ⊢ φ→ ψ.
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Computational Complexity

1 • K,K4,GL are PSPACE-complete
• K+,K4+,GL+ are polytime decidable

2 • GLP is PSPACE complete
• GLP+ is polytime decidable

3 • GL.3 is coNP-complete
• GL.3+ is polytime decidable

4 • QPL(PA) is Π0
2-complete

• QPL(PA)+ is decidable

5 • TQPL(PA) is Π0
1-complete in (0)ω (non-arithmetical)

• Advanced conjecture:: TQPL(PA)+ is decidable:
(A→ B) ∈ TQPL(PA) ⇔ A ∧ Qn(A) ⊢QRC1 B for n large enough
where Qn denotes n times iterated consistency
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• QPL(PA)+ is decidable

5 • TQPL(PA) is Π0
1-complete in (0)ω (non-arithmetical)

• Advanced conjecture:: TQPL(PA)+ is decidable:
(A→ B) ∈ TQPL(PA) ⇔ A ∧ Qn(A) ⊢QRC1 B for n large enough
where Qn denotes n times iterated consistency
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Older escapes to Vardanyan

• Artemov, Japaridze: single variable fragment, fragment of finitely
refutable modal formulas (semantically defined);

• Yavorski, add □A→ □∀xA
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Some provable and unprovable statements

♢∀ x φ ⊢ ∀ x ♢φ

∀ x ♢φ ̸⊢ ♢∀ x φ

φ ⊢ ψ[x←c]

φ ⊢ ∀ x ψ
x not free in φ and c not in φ nor ψ

Recall that RCω allows for ordinal notations up to ε0 and that it caters Π0
1

ordinal analyses.

Can be extended to RCΛ.
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Relational models

Kripke models where:

• each world w is a first-order model with a finite domain D

• the domain D is the same for every world

• each constant symbol c and relational symbol S has a denotation at
each world

• there is a transitive relation R between worlds

• constants have the same denotation at every world

• the denotation of a relation symbol depends on the world

• we use assignments g : Variables→ D to interpret variables

• we abuse notation and define g(c) := denotation(c) for all
assignments g and constants c

Joosten + (UB+) Formalised provability in constructive arithmetic Marseille, May 1 32 / 48
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Satisfaction

Let g be a w -assignment.

M,w ⊩g S(t, u) ⇐⇒ ⟨g(t), g(u)⟩ ∈ denotationw (S)

M,w ⊩g ♢φ ⇐⇒
there is a world v such that wRv andM, v ⊩g φ

M,w ⊩g ∀ x φ ⇐⇒
for all assignments h ∼x g , we haveM,w ⊩h φ
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Relational soundness

Theorem (Relational soundness)

If φ ⊢ ψ, then for any modelM, world w , and assignment g :

M,w ⊩g φ =⇒ M,w ⊩g ψ.

Countermodels with arbitrarily large domains are needed.

∀ x , y S(x , x , y) ∧ ∀ x , y S(x , y , x) ∧ ∀ x , y S(y , x , x) ⊢ ∀ x , y , z S(x , y , z)

is unprovable in QRC1, but satisfied by every world with at most two
domain elements.

Can be extended to arbitrary n.
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Relational completeness

Theorem (Relational completeness)

If φ ̸⊢ ψ, then there is a finite modelM, a world w , and an assignment g
such that:

M,w ⊩g φ and M,w ̸⊩g ψ.

Since QRC1 has the finite model property (finite number of worlds with
finite constant domain), it is decidable.
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Arithmetical completeness proof

Theorem (Arithmetical completeness)

QRC1 ⊇ {φ ⊢ ψ | for any (·)∗, we have T ⊢ (φ ⊢ ψ)∗}

• Assume φ ̸⊢ ψ
• Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke
modelM satisfying φ and not ψ at world 1 (the root)
• EmbedM (with an extra world 0 pointing to the root) into the
language of arithmetic using the regular Solovay construction i 7→ λi

• T ⊢
∨

i λi
• T ⊢

∧
i ̸=j(λi → ¬λj)

• T ⊢
∧

iRj

(
λi → ♢λj

)
• T ⊢

∧
i>0

(
λi → □(

∨
iRj λj)

)
• N |= λ0
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Arithmetical completeness proof (cont’ed)

Theorem (Arithmetical completeness)

QRC1 ⊇ {φ ⊢ ψ | for any (·)∗, we have T ⊢ (φ ⊢ ψ)∗}

• Define S• as:

(S(xk))
• :=

∨
i∈M

(
λi ∧

∨
⟨a⟩∈SMi

⌜a⌝ = yk mod m
)

• Prove a Truth Lemma stating (for i > 0) that

• if i ⊩g χ then T ⊢ λi → χ•[y←⌜g(x)⌝];
• if i ̸⊩g χ then T ⊢ λi → ¬χ•[y←⌜g(x)⌝].

• Conclude (using external reflection) that

T ⊢ χ•[y←⌜g(x)⌝] ⇔ 1 ⊩ χ•[y←⌜g(x)⌝]

for relevant χ whence PA ⊬ (φ→ ψ)•[y←⌜g(x)⌝]
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Main results

Theorem (AdAB, DdJ, JjJ, AV)

Let φ,ψ ∈ L♢,∀. Then: φ ⊢QRC1 ψ

⇕
(φ→ ψ) ∈ QPL(PA)

and: φ ⊢QRC1 ψ

⇕
(φ→ ψ) ∈ QPL(PA)

• Soundness also works for HA

• HA proves: PA is Π0
2 conservative over HA

• Complexity of unprovable substitutions using Solovay is not high
• this low complexity is preserved during the translation
• universal quantification can be seen reduces to finite conjunction
• Recall that PL(HA) was a long-standing open problem
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Semi-closure

• HA ⊬ ¬∀ x φ↔ ∃ x ¬φ.

• HA ⊢ ∀ x ¬φ↔ ¬∃ x φ.
• In general
HA ⊬ φ↔ ¬¬φ
• But we do have excluded middle for decidable D and in particular

HA ⊢ D ↔ ¬¬D

for ∆0
1 formulas

• In general excluded middle for Σ1 sentences fails HA ⊬ S ↔ ¬¬S
• But: HA ⊢ □HAS ↔ □HA¬¬S for S ∈ Σ1

• Trick: employ Π2-conservativity between HA and PA where we have
HA ⊢ ∀A (□HAA→ □PAA) for any A.
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Semi-closure

Lemma
• HA ⊢ ∀S ∈ Σ1 □HAS ↔ □HA¬¬S
• HA ⊢ ∀S ∈ Σ1 (□HA ∀ x ¬¬S ↔ □HA ∀ x S).

The negation of a Π1 sentence is equivalent to the double negation of a
Σ1 sentence over HA:

Lemma

HA ⊢ ¬∀ x D ↔ ¬∀ x ¬¬D
↔ ¬¬∃ x ¬D (1)

where clearly ∃ x ¬D ∈ Σ1.
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Lemma

HA ⊢ ∀A ∈ Σ2 (♢HAA↔ ♢PAA).

Proof.

In HA, fixing A ∈ Σ2 with A = ∃ x P. and S ∈ Σ1 so that
HA ⊢ ¬P ↔ ¬¬S . (2)

♢HAA ↔ ¬□HA¬A
↔ ¬□HA¬∃ x P
↔ ¬□HA ∀ x ¬P
↔ ¬□HA ∀ x ¬¬S by (2)
↔ ¬□HA ∀ x S
↔ ¬□PA ∀ x S
↔ ¬□PA¬¬∀ x S
↔ ♢PA¬∀ x S
↔ ♢PA ∃ x ¬S
↔ ♢PAA by (2).
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Bounds on complexity

• The λi are limit statements, a priori Σ2

• but actually lower: a combination of Π1 and Σ1 as follows:

(∃ x f (x) = i) ∧ ∀ x , y (f (x) = i ∧ x ≤ y → f (y) = i).

• For any such limited substitutions ∗ we have in HA that

A∗ is of Σ2 complexity for any theory T

for arbitrary A
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Theorem

A ⊢RC1 B if and only if for all realizations ·∗ we have HA ⊢ (A→ B)∗.

Proof.

(Completeness) Assume A ⊬RC1 B. Embed the extended counter model
into arithmetic using the PA Solovay function, which will be our
arithmetical interpretation, ·⊛.

Thus, p⊛ :=
∨

i⊩p λi . Note that p⊛ is a Boolean combination of Σ1 and
Π1 formula and so is A⊛ for any A
Assume towards a contradiction that HA ⊢ A⊛HA → B⊛HA .

Then HA ⊢ A⊛PA → B⊛PA ,

Whence PA ⊢ A⊛PA → B⊛PA ,

This contradicts completeness of RC1 w.r.t. PA.
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In summary

• PL(HA) finally settled but lacks an easy axiomatisation

• Strictly positive fragment has an easy axiomatisation with RC

• There is no quantified provability logic with L□,∀
QRC1:

• quantified, strictly positive provability logic with L♢,∀
• decidable

• sound and complete w.r.t. relational semantics (with constant domain
models!)

• sound and complete w.r.t. arithmetical semantics

• for all sound r.e. theories extending IΣ1

• Both for HA and PA
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Forthcoming research

• Determine the set of always true QRC1 sequents

• Gauge computational complexity of QRC1

• Neighbourhood / topological semantics for QRC1?

• Polymodal version of QRC1 (also for HA?), that is

• Extend results to QRCn

• Computational complexity of QPL(PA +∆n⊥) for ∆ a suitable slow
provability notion

• Can we enhance the expressibility of QRC1 without losing decidability?

• Applications to Π0
1 ordinal analysis?
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Thank you
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