Formalised provability in constructive arithmetic

Ana de Almeida Borges Dick de Jongh Joost J. Joosten Albert Visser

Universitat de Barcelona
Institute for Logic, Language and Computation
Universitat de Barcelona
Universiteit Utrecht

Type Theory, Constructive Mathematics and Geometric Logic Marseille
May 1, 2023

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_{1} predicate $\square_{\mathrm{PA}}(\cdot)$ such that

$$
\begin{array}{rll}
\mathrm{PA} \vdash \varphi & \Longleftrightarrow & \mathbb{N}=\square_{\mathrm{PA}}(\ulcorner\varphi\urcorner) \\
\mathrm{HA} \vdash \varphi & \Longleftrightarrow & \mathbb{N}=\square_{\mathrm{HA}}(\ulcorner\varphi\urcorner)
\end{array}
$$

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_{1} predicate $\square_{\mathrm{PA}}(\cdot)$ such that

$$
\begin{aligned}
\mathrm{PA} \vdash \varphi & \Longleftrightarrow \\
\mathrm{HA} \vdash \varphi & \Longleftrightarrow
\end{aligned}
$$

Some properties about the provability predicate:

- If PA $\vdash A$, then $\mathrm{PA} \vdash \square_{\mathrm{PA}} A$ for any PA-sentence A

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_{1} predicate $\square_{\mathrm{PA}}(\cdot)$ such that

$$
\begin{aligned}
\mathrm{PA} \vdash \varphi & \Longleftrightarrow \\
\mathrm{HA} \vdash \varphi & \Longleftrightarrow
\end{aligned}
$$

Some properties about the provability predicate:

- If PA $\vdash A$, then $\mathrm{PA} \vdash \square_{\mathrm{PA}} A$ for any PA-sentence A
- If PA $\vdash \lambda \leftrightarrow \neg \square_{\mathrm{PA}}(\ulcorner\lambda\urcorner)$, then
$\mathrm{PA} \vdash \lambda \leftrightarrow \neg \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner)$, that is
$\mathrm{PA} \vdash \lambda \leftrightarrow\left(\square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1\right)$

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_{1} predicate $\square_{\mathrm{PA}}(\cdot)$ such that

$$
\begin{array}{lll}
\mathrm{PA} \vdash \varphi & \Longleftrightarrow & \mathbb{N} \models \square_{\mathrm{PA}}(\ulcorner\varphi\urcorner) \\
\mathrm{HA} \vdash \varphi & \Longleftrightarrow & \mathbb{N}=\square_{\mathrm{HA}}(\ulcorner\varphi\urcorner)
\end{array}
$$

Some properties about the provability predicate:

- If PA $\vdash A$, then $\mathrm{PA} \vdash \square_{\mathrm{PA}} A$ for any PA-sentence A
- If PA $\vdash \lambda \leftrightarrow \neg \square_{\mathrm{PA}}(\ulcorner\lambda\urcorner)$, then
$\mathrm{PA} \vdash \lambda \leftrightarrow \neg \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner)$, that is
$\mathrm{PA} \vdash \lambda \leftrightarrow\left(\square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1\right)$
- $\operatorname{PA} \nvdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$

Formalised provability and applications

- Provability is a central notion in logic and metamathematics
- For theories like PA we can write a Σ_{1} predicate $\square_{\mathrm{PA}}(\cdot)$ such that

$$
\begin{aligned}
& \mathrm{PA} \vdash \varphi \Longleftrightarrow \\
& \mathrm{HA} \vdash \varphi \Longleftrightarrow \\
& \mathrm{~N} \models \square_{\mathrm{PA}}(\ulcorner\varphi\urcorner) \\
& \mathbb{N}=\square_{\mathrm{HA}}(\ulcorner\varphi\urcorner)
\end{aligned}
$$

Some properties about the provability predicate:

- If PA $\vdash A$, then $\mathrm{PA} \vdash \square_{\mathrm{PA}} A$ for any PA-sentence A
- If PA $\vdash \lambda \leftrightarrow \neg \square_{\mathrm{PA}}(\ulcorner\lambda\urcorner)$, then
$\mathrm{PA} \vdash \lambda \leftrightarrow \neg \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner)$, that is
$\mathrm{PA} \vdash \lambda \leftrightarrow\left(\square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1\right)$
- $\mathrm{PA} \nvdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$
- ZFC $\vdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$

Formalised provability and completess

- For theories like PA we can write a Σ_{1} predicate $\square_{\mathrm{PA}}(\cdot)$ such that

$$
\mathrm{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \square_{\mathrm{PA}}(\ulcorner\varphi\urcorner)
$$

Formalised provability and completess

- For theories like PA we can write a Σ_{1} predicate $\square_{\mathrm{PA}}(\cdot)$ such that

$$
\mathrm{PA} \vdash \varphi \quad \Longleftrightarrow \quad \mathbb{N} \models \square_{\mathrm{PA}}(\ulcorner\varphi\urcorner)
$$

Theorem

The $\square_{\mathrm{PA}}(\cdot)$ predicate is Σ_{1}^{0}-complete. That is, for each c.e. set A, there is an arithmetical formula $\rho_{A}(x)$ such that

$$
A=\left\{n \in \mathbb{N} \mid \mathbb{N} \models \square_{\mathrm{PA}}\left(\rho_{A}(n)\right)\right\}
$$

Formalised provability: provable structural properties

- $\operatorname{PA} \nvdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$

Formalised provability: provable structural properties

- $\operatorname{PA} \nvdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$
- $\mathrm{PA} \vdash \square_{\mathrm{PA}}(\ulcorner 1=1\urcorner) \rightarrow 1=1$

Formalised provability: provable structural properties

- $\mathrm{PA} \nvdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$
- $\mathrm{PA} \vdash \square_{\mathrm{PA}}(\ulcorner 1=1\urcorner) \rightarrow 1=1$
- Löb's Theorem:

If $\mathrm{PA} \vdash \square_{\mathrm{PA}}(\ulcorner A\urcorner) \rightarrow A$, then $\mathrm{PA} \vdash A$, for any PA formula A

Formalised provability: provable structural properties

- $\mathrm{PA} \nvdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$
- $\mathrm{PA} \vdash \square_{\mathrm{PA}}(\ulcorner 1=1\urcorner) \rightarrow 1=1$
- Löb's Theorem:

$$
\text { If } \mathrm{PA} \vdash \square_{\mathrm{PA}}(\ulcorner A\urcorner) \rightarrow A \text {, then } \mathrm{PA} \vdash A \text {, for any PA formula } A
$$

- Formalised Löb's Theorem (ignoring GNs):

$$
\mathrm{PA} \vdash \square_{\mathrm{PA}}\left(\square_{\mathrm{PA}} A \rightarrow A\right) \rightarrow \square_{\mathrm{PA}} A
$$

for any PA formula A

Formalised provability: provable structural properties

- $\mathrm{PA} \nvdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$
- $\mathrm{PA} \vdash \square_{\mathrm{PA}}(\ulcorner 1=1\urcorner) \rightarrow 1=1$
- Löb's Theorem:

$$
\text { If } \mathrm{PA} \vdash \square_{\mathrm{PA}}(\ulcorner A\urcorner) \rightarrow A \text {, then } \mathrm{PA} \vdash A \text {, for any PA formula } A
$$

- Formalised Löb's Theorem (ignoring GNs):

$$
\mathrm{PA} \vdash \square_{\mathrm{PA}}\left(\square_{\mathrm{PA}} A \rightarrow A\right) \rightarrow \square_{\mathrm{PA}} A
$$

for any PA formula A

- Characterise all provably structural properties in two steps
- \mathcal{L}_{\square} with Form $\square:=\perp \mid$ Prop \mid Form $_{\square} \rightarrow$ Form $_{\square} \mid \square$ Form $_{\square}$
- Define a denotation of \mathcal{L}_{\square} formulas inside the $\mathcal{L}_{\text {PA }}$ formulas

Arithmetical realizations

An arithmetical realization is any function $(\cdot)^{\star}$ taking:
formulas in $\mathcal{L}_{\square} \rightarrow$ sentences in $\mathcal{L}_{\text {PA }}$
propositional variables \rightarrow arithmetical sentences
boolean connectives \rightarrow boolean connectives
$\square \rightarrow \square_{\mathrm{PA}}$

Arithmetical realizations

An arithmetical realization is any function $(\cdot)^{\star}$ taking:

$$
\text { formulas in } \mathcal{L}_{\square} \rightarrow \text { sentences in } \mathcal{L}_{\mathrm{PA}}
$$ propositional variables \rightarrow arithmetical sentences boolean connectives \rightarrow boolean connectives

$$
\square \rightarrow \square_{\mathrm{PA}}
$$

Clearly, for any realization $(\cdot)^{\star}$ we have for example

$$
\mathrm{PA} \vdash(\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q))^{\star}
$$

since

$$
\mathrm{PA} \vdash \square_{\mathrm{PA}}\left(p^{\star} \rightarrow q^{\star}\right) \rightarrow\left(\square_{\mathrm{PA}} p^{\star} \rightarrow \square_{\mathrm{PA}} q^{\star}\right)
$$

regardless of $(\cdot)^{\star}$

The Provability Logic of a Theory

- For a c.e. theory T we define

$$
\operatorname{PL}(T):=\left\{\varphi \in \mathcal{L}_{\square} \mid \text { for any }(\cdot)^{\star}, \text { we have } T \vdash(\varphi)^{\star}\right\}
$$

- Here $(\cdot)^{\star}$ is as before, but now mapping \square to \square_{T}

The Provability Logic of a Theory

- For a c.e. theory T we define

$$
\operatorname{PL}(T):=\left\{\varphi \in \mathcal{L}_{\square} \mid \text { for any }(\cdot)^{\star}, \text { we have } T \vdash(\varphi)^{\star}\right\}
$$

- Here $(\cdot)^{\star}$ is as before, but now mapping \square to \square_{T}
- We observe that $\operatorname{PL}(T)$ is Π_{2}^{0} definable

The Provability Logic of a Theory

- For a c.e. theory T we define

$$
\operatorname{PL}(T):=\left\{\varphi \in \mathcal{L}_{\square} \mid \text { for any }(\cdot)^{\star}, \text { we have } T \vdash(\varphi)^{\star}\right\}
$$

- Here $(\cdot)^{\star}$ is as before, but now mapping \square to \square_{T}
- We observe that $\operatorname{PL}(T)$ is Π_{2}^{0} definable

A candidate

- GL is the normal modal logic with axioms
- All classical logical tautologies in \mathcal{L}_{\square} like $\square p \vee \neg \square p$, etc.
- All distributions axioms: $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$,
- All Löb axioms: $\square(\square A \rightarrow A) \rightarrow \square A$.
- and rules
- Modus Ponens $\frac{A \rightarrow B \quad A}{B}$,
- Necessitation $\frac{A}{\square A}$.

Solovay's Theorem

Theorem (Solovay, 1976)

Let $\varphi \in \mathcal{L} \square$. Then:

$$
\begin{gathered}
\mathrm{GL} \vdash \varphi \\
\Uparrow
\end{gathered}
$$

$\mathrm{PA} \vdash(\varphi)^{\star}$ for any arithmetical realization $(\cdot)^{\star}$

Solovay's Theorem

Theorem (Solovay, 1976)

Let $\varphi \in \mathcal{L}_{\square}$. Then:

GL φ
 ॥

$\mathrm{PA} \vdash(\varphi)^{\star}$ for any arithmetical realization $(\cdot)^{\star}$

Thus, even though $\mathrm{PL}(\mathrm{PA})$ is prima facie of complexity Π_{2}^{0}, it allows for a decidable description

$$
\mathrm{GL}=\left\{\varphi \in \mathcal{L}_{\square} \mid \text { for any }(\cdot)^{\star}, \text { we have PA } \vdash(\varphi)^{\star}\right\}
$$

of complexity PSPACE.

True provability logic

- $\mathrm{PA} \nvdash \square_{\mathrm{PA}}(\ulcorner 0=1\urcorner) \rightarrow 0=1$
- $\mathbb{N} \models \square_{\mathrm{PA}}(\ulcorner\varphi\urcorner) \rightarrow \varphi$ for whatever sentence φ

For a c.e. theory T we define

$$
\operatorname{TPL}(T):=\left\{\varphi \in \mathcal{L}_{\square} \mid \text { for any }(\cdot)^{\star}, \text { we have } \mathbb{N} \models(\varphi)^{\star}\right\}
$$

A priori, complexity above true arithmetic.
However,

$$
\mathrm{TPL}(\mathrm{PA})=\mathrm{GLS}
$$

Here GLS is axiomatised by all theorems of GL and all reflection axioms $\square A \rightarrow A$ with MP as the only rule.

Solovay for quantified modal logic?

Let $\mathcal{L}_{\square, \forall}$ be the language of relational quantified modal logic: \top, relation symbols, boolean connectives, $\forall x$, and \square

Solovay for quantified modal logic?

Let $\mathcal{L}_{\square, \forall}$ be the language of relational quantified modal logic:
\top, relation symbols, boolean connectives, $\forall x$, and \square
Define arithmetical realizations $(\cdot)^{\bullet}$ for $\mathcal{L}_{\square, \forall}$:
formulas in $\mathcal{L}_{\square, \forall} \rightarrow$ formulas in $\mathcal{L}_{\text {PA }}$
n-ary relation symbols \rightarrow arithmetical formulas with n free variables boolean connectives \rightarrow boolean connectives

$$
\forall x \rightarrow \forall x \text { and } \square \rightarrow \square_{\mathrm{PA}}
$$

Solovay for quantified modal logic?

Let $\mathcal{L}_{\square, \forall}$ be the language of relational quantified modal logic:
T, relation symbols, boolean connectives, $\forall x$, and \square
Define arithmetical realizations $(\cdot)^{\bullet}$ for $\mathcal{L}_{\square, \forall}$:
formulas in $\mathcal{L}_{\square, \forall} \rightarrow$ formulas in $\mathcal{L}_{\text {PA }}$
n-ary relation symbols \rightarrow arithmetical formulas with n free variables
boolean connectives \rightarrow boolean connectives

$$
\forall x \rightarrow \forall x \text { and } \square \rightarrow \square_{\mathrm{PA}}
$$

For a c.e. theory T we define

$$
\operatorname{QPL}(T):=\left\{\varphi \in \mathcal{L}_{\square, \forall} \mid \text { for any }(\cdot)^{\bullet}, \text { we have } T \vdash(\varphi)^{\bullet}\right\}
$$

and

$$
\operatorname{TQPL}(T):=\left\{\varphi \in \mathcal{L}_{\square, \forall} \mid \text { for any }(\cdot)^{\bullet}, \text { we have } \mathbb{N} \models(\varphi)^{\bullet}\right\}
$$

Solovay for quantified modal logic?

Let $\mathcal{L}_{\square, \forall}$ be the language of relational quantified modal logic:
T, relation symbols, boolean connectives, $\forall x$, and \square
Define arithmetical realizations $(\cdot)^{\bullet}$ for $\mathcal{L}_{\square, \forall}$:
formulas in $\mathcal{L}_{\square, \forall} \rightarrow$ formulas in $\mathcal{L}_{\text {PA }}$
n-ary relation symbols \rightarrow arithmetical formulas with n free variables
boolean connectives \rightarrow boolean connectives

$$
\forall x \rightarrow \forall x \text { and } \square \rightarrow \square_{\mathrm{PA}}
$$

For a c.e. theory T we define

$$
\operatorname{QPL}(T):=\left\{\varphi \in \mathcal{L}_{\square, \forall} \mid \text { for any }(\cdot)^{\bullet}, \text { we have } T \vdash(\varphi)^{\bullet}\right\}
$$

and

$$
\operatorname{TQPL}(T):=\left\{\varphi \in \mathcal{L}_{\square, \forall} \mid \text { for any }(\cdot)^{\bullet}, \text { we have } \mathbb{N} \models(\varphi)^{\bullet}\right\}
$$

Example: $\square \forall x P(x) \rightarrow \forall x \square P(\dot{x})$

Degenerate Quantified Provability Logics

If we define $\operatorname{QL}(T)=\left\{\varphi \in \mathcal{L}_{\text {pred }} \mid\right.$ for any $(\cdot)^{\bullet}$, we have $\left.T \vdash(\varphi)^{\bullet}\right\}$, then it is not hard to see that $\mathrm{CQC}=\mathrm{QL}(\mathrm{PA})$.
Proof:
\subseteq if $\pi \vdash_{\mathrm{CQC}} \varphi$, then also $\pi^{\bullet} \vdash_{\mathrm{CQC}} \varphi^{\bullet}$, whence $\pi^{\bullet} \vdash_{\mathrm{PA}} \varphi^{\bullet}$
\supseteq Henkin construction in arithmetic

Degenerate Quantified Provability Logics

If we define $\operatorname{QL}(T)=\left\{\varphi \in \mathcal{L}_{\text {pred }} \mid\right.$ for any $(\cdot)^{\bullet}$, we have $\left.T \vdash(\varphi)^{\bullet}\right\}$, then it is not hard to see that $\mathrm{CQC}=\mathrm{QL}(\mathrm{PA})$.
Proof:
\subseteq if $\pi \vdash_{\mathrm{CQC}} \varphi$, then also $\pi^{\bullet} \vdash_{\mathrm{CQC}} \varphi^{\bullet}$, whence $\pi^{\bullet} \vdash_{\mathrm{PA}} \varphi^{\bullet}$
\supseteq Henkin construction in arithmetic
$\mathrm{QPL}(\mathrm{PA}+\operatorname{Incon}(\mathrm{PA}))=\mathrm{CQC}+\square \perp$

Negative results

Negative results

Theorem (Vardanyan, 1986 and McGee, 1985)

$\left\{\right.$ closed $\varphi \in \mathcal{L}_{\square, \forall} \mid$ for any $(\cdot)^{\bullet}$, we have $\left.\mathrm{PA} \vdash(\varphi)^{\bullet}\right\}$ is Π_{2}^{0}-complete.

Theorem (Artemov, 1985)

TQPL(PA) is not arithmetical.
Theorem (Vardanyan, 1985)
TQPL(PA) is Π_{1}^{0} complete in true arithmetic.

Artemov's Lemma

- Let $F \in \mathcal{L}_{\mathrm{PA}}$ be a formula

$\mathcal{L}_{P A}$

F

Artemov's Lemma

- Let $F \in \mathcal{L}_{\text {PA }}$ be a formula
- Replace arithmetical symbols $0,+1,+, \times,=$ with predicates Z, S, A, M, E, obtaining $\mathcal{L}_{P A} \quad \mathcal{L}_{\forall}$ $\{F\} \in \mathcal{L}_{\forall}$

Artemov's Lemma

- Let $F \in \mathcal{L}_{\text {PA }}$ be a formula
- Replace arithmetical symbols $0,+1,+, \times,=$ $\mathcal{L}_{P A} \quad \mathcal{L}_{\forall}$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\text {PA }}$ with a realization $(\cdot)^{\bullet}$

Artemov's Lemma

- Let $F \in \mathcal{L}_{\text {PA }}$ be a formula
- Replace arithmetical symbols $0,+1,+, \times,=$ $\mathcal{L}_{\text {PA }} \quad \mathcal{L}_{\forall}$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\text {PA }}$ with a realization $(\cdot)^{\bullet}$

When are F and $\{F\}^{\bullet}$ equivalent over $P A$?

Artemov's Lemma

- Let $F \in \mathcal{L}_{\mathrm{PA}}$ be a formula
- Replace arithmetical symbols $0,+1,+, \times,=$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\text {PA }}$ with a realization $(\cdot)^{\bullet}$

When are F and $\{F\}^{\bullet}$ equivalent over $P A$?

- Under $\{T\}$ to get arithmetical axioms...

$$
\mathcal{L}_{P A} \quad \mathcal{L}_{\forall}
$$

Artemov's Lemma

- Let $F \in \mathcal{L}_{\text {PA }}$ be a formula
- Replace arithmetical symbols $0,+1,+, \times,=$ $\mathcal{L}_{P A} \quad \mathcal{L}_{\forall}$ with predicates Z, S, A, M, E, obtaining $\{F\} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\text {PA }}$ with a realization $(\cdot)^{\bullet}$

When are F and $\{F\}^{\bullet}$ equivalent over $P A$?

- Under $\{T\}^{\bullet}$ to get arithmetical axioms...

- ... and under D^{\bullet} to get recursive A^{\bullet} and M^{\bullet}

$$
\begin{aligned}
D:= & \diamond \top \wedge \\
& \forall x(Z(x) \rightarrow \square Z(x)) \wedge \forall x(\neg Z(x) \rightarrow \square \neg Z(x)) \wedge \\
& \cdots S \cdots A \cdots M \cdots E
\end{aligned}
$$

Artemov's Lemma

- Let $F \in \mathcal{L}_{\text {PA }}$ be a formula
- Replace arithmetical symbols $0,+1,+, \times,=$

- ... and under D^{\bullet} to get recursive A^{\bullet} and M^{\bullet}
- By Tennenbaum's Theorem the model induced by $(\cdot)^{\bullet}$ is standard, hence $\mathbb{N} \models S \Longleftrightarrow(\{T\} \wedge D \rightarrow\{S\}) \in \operatorname{TQPL}(\mathrm{PA})$

$$
\begin{aligned}
D:= & \diamond \top \wedge \\
& \forall x(Z(x) \rightarrow \square Z(x)) \wedge \forall x(\neg Z(x) \rightarrow \square \neg Z(x)) \wedge \\
& \cdots S \cdots A \cdots M \cdots E
\end{aligned}
$$

Robust negative results

Robust negative results

Vardanyan : $\left\{\varphi \in \mathcal{L}_{\square, \forall}\right.$ no modal iterations, just one unary predicate symbol for any $(\cdot)^{\bullet}$, we have $\left.\operatorname{PA} \vdash(\varphi)^{\bullet}\right\}$ is Π_{2}^{0}-complete.

Robust negative results

Vardanyan : $\left\{\varphi \in \mathcal{L}_{\square, \forall}\right.$ no modal iterations, just one unary predicate symbol for any $(\cdot)^{\bullet}$, we have $\left.\mathrm{PA} \vdash(\varphi)^{\bullet}\right\}$ is Π_{2}^{0}-complete.

$$
\begin{gathered}
\text { Berarducci }\left(\text { '89) : }\left\{\varphi \in \mathcal{L}_{\square, \forall} \mid \text { for any }(\cdot)^{\bullet} \in \Sigma_{1}^{0} \text {, we have PA } \vdash(\varphi)^{\bullet}\right\}\right. \\
\text { is } \Pi_{2}^{0} \text {-complete. }
\end{gathered}
$$

Robust negative results

Vardanyan : $\left\{\varphi \in \mathcal{L}_{\square, \forall}\right.$ no modal iterations, just one unary predicate symbol for any $(\cdot)^{\bullet}$, we have $\left.\operatorname{PA} \vdash(\varphi)^{\bullet}\right\}$ is Π_{2}^{0}-complete.

$$
\begin{gathered}
\text { Berarducci }\left(\text { '89) : }\left\{\varphi \in \mathcal{L}_{\square, \forall} \mid \text { for any }(\cdot)^{\bullet} \in \Sigma_{1}^{0} \text {, we have PA } \vdash(\varphi)^{\bullet}\right\}\right. \\
\text { is } \Pi_{2}^{0} \text {-complete. }
\end{gathered}
$$

One easily sees that $\mathrm{QPL}\left(\mathrm{PA}+\square_{\mathrm{PA}} \perp\right)$ is r.e., but it seems that $\mathrm{QPL}\left(\mathrm{PA}+\square_{\mathrm{PA}} \square_{\mathrm{PA}} \perp\right)$ is also Π_{2}^{0}-complete.

Theorem (Visser, de Jonge, 2006)
$\operatorname{QPL}(T)$ is Π_{2}^{0} complete for any Σ_{1}-sound theory T extending EA.
Archive for Mathematical Logic 2006: No Escape from Vardanyan's

Open problem for around 60 years

- Can we also characterise $\operatorname{PL}(\mathrm{HA})$? Open question since the sixties of last century.

Open problem for around 60 years

- Can we also characterise $\operatorname{PL}(\mathrm{HA})$? Open question since the sixties of last century.
- It is long known that $i \mathrm{GL} \subseteq \mathrm{PL}(\mathrm{HA})$

Open problem for around 60 years

- Can we also characterise $\operatorname{PL}(\mathrm{HA})$? Open question since the sixties of last century.
- It is long known that $i G L \subseteq \mathrm{PL}(\mathrm{HA})$
- Mojtaba Mojtahedi recently proved (preprint 2022)

Open problem for around 60 years

- Can we also characterise $\mathrm{PL}(\mathrm{HA})$? Open question since the sixties of last century.
- It is long known that $i G L \subseteq \mathrm{PL}(\mathrm{HA})$
- Mojtaba Mojtahedi recently proved (preprint 2022) The logic $\mathrm{PL}(\mathrm{HA})$ is decidable.

Open problem for around 60 years

- Can we also characterise $\operatorname{PL}(\mathrm{HA})$? Open question since the sixties of last century.
- It is long known that $i G L \subseteq \mathrm{PL}(\mathrm{HA})$
- Mojtaba Mojtahedi recently proved (preprint 2022) The logic $\mathrm{PL}(\mathrm{HA})$ is decidable.
- Proving an axiomatisation of the form
$i \mathrm{GL}+\{\square A \rightarrow \square B \mid$ for A, B satisfying an intricate technical condition $\}$

Open problem for around 60 years

- Can we also characterise $\operatorname{PL}(\mathrm{HA})$? Open question since the sixties of last century.
- It is long known that $i G L \subseteq \mathrm{PL}(\mathrm{HA})$
- Mojtaba Mojtahedi recently proved (preprint 2022) The logic $\mathrm{PL}(\mathrm{HA})$ is decidable.
- Proving an axiomatisation of the form
$i G L+\{\square A \rightarrow \square B \mid$ for A, B satisfying an intricate technical condition $\}$
- Conjectured to be PSPACE

The closed fragment

- For A a modal formula without any propositional variables, the the situation was known.

The closed fragment

- For A a modal formula without any propositional variables, the the situation was known.
- So, A built from \top, \perp, Boolean connectives and \square.

The closed fragment

- For A a modal formula without any propositional variables, the the situation was known.
- So, A built from \top, \perp, Boolean connectives and \square.
- Visser:

The closed fragment

- For A a modal formula without any propositional variables, the the situation was known.
- So, A built from \top, \perp, Boolean connectives and \square.
- Visser:
- For A letterless, one can constructively find $\alpha \in \omega \cup\{\infty\}$ so that HA $\vdash \square_{\text {нА }} A \leftrightarrow \square^{\alpha} \perp$ where $\square^{\infty}:=\top$

The closed fragment

- For A a modal formula without any propositional variables, the the situation was known.
- So, A built from \top, \perp, Boolean connectives and \square.
- Visser:
- For A letterless, one can constructively find $\alpha \in \omega \cup\{\infty\}$ so that HA $\vdash \square_{\text {нА }} A \leftrightarrow \square^{\alpha} \perp$ where $\square^{\infty}:=\top$

$$
\mathrm{HA} \vdash \varphi \Longleftrightarrow \mathrm{HA} \vdash \square_{\mathrm{HA}} \varphi
$$

Propositional logic of HA

- We define $\operatorname{PropL}(T)=\left\{\varphi \in \mathcal{L}_{\text {prop }} \mid\right.$ for any $(\cdot)^{*}$, we have $\left.T \vdash(\varphi)^{*}\right\}$,

Propositional logic of HA

- We define $\operatorname{PropL}(T)=\left\{\varphi \in \mathcal{L}_{\text {prop }} \mid\right.$ for any $(\cdot)^{*}$, we have $\left.T \vdash(\varphi)^{*}\right\}$,
- It is not hard to see that $\mathrm{CPC}=\operatorname{PropL}(\mathrm{PA})$.

Propositional logic of HA

- We define $\operatorname{PropL}(T)=\left\{\varphi \in \mathcal{L}_{\text {prop }} \mid\right.$ for any $(\cdot)^{*}$, we have $\left.T \vdash(\varphi)^{*}\right\}$,
- It is not hard to see that $\mathrm{CPC}=\operatorname{PropL}(\mathrm{PA})$.
- Likewise, de Jongh:

$$
\operatorname{PropL}(\mathrm{HA})=\mathrm{IPC}
$$

Propositional logic of HA

- We define $\operatorname{PropL}(T)=\left\{\varphi \in \mathcal{L}_{\text {prop }} \mid\right.$ for any $(\cdot)^{*}$, we have $\left.T \vdash(\varphi)^{*}\right\}$,
- It is not hard to see that $\mathrm{CPC}=\operatorname{PropL}(\mathrm{PA})$.
- Likewise, de Jongh:

$$
\operatorname{PropL}(\mathrm{HA})=\mathrm{IPC}
$$

- Pretty stable but

$$
\operatorname{PropL}(\mathrm{HA}+\mathrm{CT}+\mathrm{MP})
$$

is unknown.

Disjunction property

- If $\mathrm{HA} \vdash A \vee B$, then $\mathrm{HA} \vdash A$ or $\mathrm{HA} \vdash B$;

Disjunction property

- If $\mathrm{HA} \vdash A \vee B$, then $\mathrm{HA} \vdash A$ or $\mathrm{HA} \vdash B$;
- However, not formalisable in HA (Myhill, Friedman):

$$
\mathrm{HA} \nvdash \square(A \vee B) \rightarrow \square A \vee \square B
$$

(Take A the Rosser sentence for HA and B its dual)

Disjunction property

- If $\mathrm{HA} \vdash A \vee B$, then $\mathrm{HA} \vdash A$ or $\mathrm{HA} \vdash B$;
- However, not formalisable in HA (Myhill, Friedman):

$$
\mathrm{HA} \nvdash \square(A \vee B) \rightarrow \square A \vee \square B
$$

(Take A the Rosser sentence for HA and B its dual)

- However (Leivant),

$$
\mathrm{HA} \vdash \square(A \vee B) \rightarrow \square(A \vee \square B)
$$

and, in particular

$$
\mathrm{HA} \vdash \square(A \vee B) \rightarrow \square(\square A \vee \square B)
$$

Disjunction property

- If $\mathrm{HA} \vdash A \vee B$, then $\mathrm{HA} \vdash A$ or $\mathrm{HA} \vdash B$;
- However, not formalisable in HA (Myhill, Friedman):

$$
\mathrm{HA} \nvdash \square(A \vee B) \rightarrow \square A \vee \square B
$$

(Take A the Rosser sentence for HA and B its dual)

- However (Leivant),

$$
\mathrm{HA} \vdash \square(A \vee B) \rightarrow \square(A \vee \square B)
$$

and, in particular

$$
\mathrm{HA} \vdash \square(A \vee B) \rightarrow \square(\square A \vee \square B)
$$

- The formalised disjunction property is equivalent over HA to RFN(HA)

Markov's principle

- Markov's Rule is admissible for HA

$$
\mathrm{HA} \vdash \neg \neg \pi \quad \Rightarrow \quad \mathrm{HA} \vdash \pi
$$

For $\pi \in \Pi_{2}^{0}$

Markov's principle

- Markov's Rule is admissible for HA

$$
\mathrm{HA} \vdash \neg \neg \pi \quad \Rightarrow \quad \mathrm{HA} \vdash \pi
$$

For $\pi \in \Pi_{2}^{0}$

- Formalisable in HA so that, for example

$$
\square(\neg \neg \square A) \rightarrow \square \square A
$$

is in $\mathrm{PL}(\mathrm{HA})$

Markov's principle

- Markov's Rule is admissible for HA

$$
\mathrm{HA} \vdash \neg \neg \pi \quad \Rightarrow \quad \mathrm{HA} \vdash \pi
$$

For $\pi \in \Pi_{2}^{0}$

- Formalisable in HA so that, for example

$$
\square(\neg \neg \square A) \rightarrow \square \square A
$$

is in $\mathrm{PL}(\mathrm{HA})$

- And more in general

$$
\square\left(\neg \neg\left(\square A \rightarrow \bigvee_{i} \square A_{i}\right)\right) \rightarrow \square\left(\square A \rightarrow \bigvee_{i} \square A_{i}\right)
$$

is in $\mathrm{PL}(\mathrm{HA})$

Admissible rules

- Recall, a rule $\frac{A}{B}$ is called admissible for a logic L whenever

$$
L \vdash \sigma(A) \quad \Longrightarrow \quad L \vdash \sigma(B)
$$

for any substitution σ

Admissible rules

- Recall, a rule $\frac{A}{B}$ is called admissible for a logic L whenever

$$
L \vdash \sigma(A) \quad \Longrightarrow \quad L \vdash \sigma(B)
$$

for any substitution σ

- For CPC the admissible rules $\frac{A}{B}$ are just $\vdash A \rightarrow B$

Admissible rules

- Recall, a rule $\frac{A}{B}$ is called admissible for a logic L whenever

$$
L \vdash \sigma(A) \quad \Longrightarrow \quad L \vdash \sigma(B)
$$

for any substitution σ

- For CPC the admissible rules $\frac{A}{B}$ are just $\vdash A \rightarrow B$
- For IPC the situation is very different where an example of non-trivial admissible rule is the so-called Independence of premise principle

$$
\frac{\neg A \rightarrow B \vee C}{(\neg A \rightarrow B) \vee(\neg A \rightarrow C)}
$$

Admissible rules

- Rybakov: admissibility is decidable for IPC

Admissible rules

- Rybakov: admissibility is decidable for IPC
- Visser: the admissible rules of HA are the same as those of IPC

Admissible rules

- Rybakov: admissibility is decidable for IPC
- Visser: the admissible rules of HA are the same as those of IPC
- lemhoff: characterisation in terms of Visser rules

Admissible rules

- Rybakov: admissibility is decidable for IPC
- Visser: the admissible rules of HA are the same as those of IPC
- lemhoff: characterisation in terms of Visser rules
- If $\frac{A}{B}$ is admissible for IPC, then $\square A \rightarrow \square B \in \mathrm{PL}(\mathrm{HA})$

Visser Rules

- We define the formula abbreviation:

$$
(A)\left(B_{1}, \ldots, B_{n}\right):=\left(A \rightarrow B_{1}\right) \vee \ldots \vee\left(A \rightarrow B_{n}\right)
$$

Visser Rules

- We define the formula abbreviation:

$$
(A)\left(B_{1}, \ldots, B_{n}\right):=\left(A \rightarrow B_{1}\right) \vee \ldots \vee\left(A \rightarrow B_{n}\right)
$$

- Visser's rule $\left(V_{n}\right)$ is for

$$
A=\bigwedge_{i=1}^{n}\left(E_{i} \rightarrow F_{i}\right)
$$

is the following

$$
\frac{(A \rightarrow(B \vee C)) \vee D}{(A)\left(E_{1}, \ldots, E_{n}, B, C\right) \vee D}
$$

Visser Rules

- We define the formula abbreviation:

$$
(A)\left(B_{1}, \ldots, B_{n}\right):=\left(A \rightarrow B_{1}\right) \vee \ldots \vee\left(A \rightarrow B_{n}\right)
$$

- Visser's rule $\left(V_{n}\right)$ is for

$$
A=\bigwedge_{i=1}^{n}\left(E_{i} \rightarrow F_{i}\right)
$$

is the following

$$
\frac{(A \rightarrow(B \vee C)) \vee D}{(A)\left(E_{1}, \ldots, E_{n}, B, C\right) \vee D}
$$

- Visser's rule is admissible for IPC and in lemhoff's sense these rules generate all admissible rules.

Predicate logic of HA

- Recall that $\operatorname{QL}(T)=\left\{\varphi \in \mathcal{L}_{\text {pred }} \mid\right.$ for any $(\cdot)^{\bullet}$, we have $\left.T \vdash(\varphi)^{\bullet}\right\}$,

Predicate logic of HA

- Recall that $\mathrm{QL}(T)=\left\{\varphi \in \mathcal{L}_{\text {pred }} \mid\right.$ for any $(\cdot)^{\bullet}$, we have $\left.T \vdash(\varphi)^{\bullet}\right\}$,
- and $\mathrm{QL}(\mathrm{PA})=\mathrm{CQC}$.

Predicate logic of HA

- Recall that $\mathrm{QL}(T)=\left\{\varphi \in \mathcal{L}_{\text {pred }} \mid\right.$ for any $(\cdot)^{\bullet}$, we have $\left.T \vdash(\varphi)^{\bullet}\right\}$,
- and $\mathrm{QL}(\mathrm{PA})=\mathrm{CQC}$.
- Likewise, Leivant:

$$
\mathrm{QL}(\mathrm{HA})=\mathrm{IQC}
$$

with a recent new proof by van Oosten.

Predicate logic of HA

- Recall that $\operatorname{QL}(T)=\left\{\varphi \in \mathcal{L}_{\text {pred }} \mid\right.$ for any $(\cdot)^{\bullet}$, we have $\left.T \vdash(\varphi)^{\bullet}\right\}$,
- and $\mathrm{QL}(\mathrm{PA})=\mathrm{CQC}$.
- Likewise, Leivant:

$$
\mathrm{QL}(\mathrm{HA})=\mathrm{IQC}
$$

with a recent new proof by van Oosten.

- Not stable and (Plisko) already

$$
\mathrm{QL}(\mathrm{HA}+\mathrm{CT})
$$

is Π_{2}^{0}-complete.

Predicate logic of HA

- Recall that $\operatorname{QL}(T)=\left\{\varphi \in \mathcal{L}_{\text {pred }} \mid\right.$ for any $(\cdot)^{\bullet}$, we have $\left.T \vdash(\varphi)^{\bullet}\right\}$,
- and $\mathrm{QL}(\mathrm{PA})=\mathrm{CQC}$.
- Likewise, Leivant:

$$
\mathrm{QL}(\mathrm{HA})=\mathrm{IQC}
$$

with a recent new proof by van Oosten.

- Not stable and (Plisko) already

$$
\mathrm{QL}(\mathrm{HA}+\mathrm{CT})
$$

is Π_{2}^{0}-complete.

- It seems that Vardanyan can be extended to QPL(HA).

Restricted signatures and logics: RC_{1}

Restrict \mathcal{L}_{\square} to the strictly positive fragment \mathcal{L}_{\diamond} :

$$
\mathcal{L}_{\diamond}::=\top|\varphi \wedge \varphi| \diamond \varphi
$$

Restricted signatures and logics: RC_{1}

Restrict \mathcal{L}_{\square} to the strictly positive fragment \mathcal{L}_{\diamond} :

$$
\mathcal{L}_{\diamond}::=\top|\varphi \wedge \varphi| \diamond \varphi
$$

Define a calculus RC_{1} with statements $\varphi \vdash_{\mathrm{RC}_{1}} \psi$ where:

$$
\varphi, \psi \in \mathcal{L}_{\diamond}
$$

RC_{1} : Axioms and rules

$$
\begin{array}{cc}
\varphi \vdash \top & \varphi \wedge \psi \vdash \varphi \\
\varphi \vdash \varphi & \varphi \wedge \psi \vdash \psi \\
\frac{\varphi \vdash \psi \quad \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi \quad \varphi \vdash \chi}{\varphi \vdash \psi \wedge \chi}
\end{array}
$$

RC_{1} : Axioms and rules

$$
\begin{array}{cccc}
\varphi \vdash \top & \varphi \wedge \psi \vdash \varphi & \diamond \Delta \varphi \vdash \Delta \varphi & \frac{\varphi \vdash \psi}{\Delta \varphi \vdash \Delta \psi} \\
\varphi \vdash \varphi & \varphi \wedge \psi \vdash \psi & & \\
\frac{\varphi \vdash \psi \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi \varphi \vdash \chi}{\varphi \vdash \psi \wedge \chi} & &
\end{array}
$$

RC_{1} : Axioms and rules

$$
\begin{array}{cccc}
\varphi \vdash \top & \varphi \wedge \psi \vdash \varphi & \diamond \Delta \varphi \vdash \Delta \varphi & \frac{\varphi \vdash \psi}{\Delta \varphi \vdash \Delta \psi} \\
\varphi \vdash \varphi & \varphi \wedge \psi \vdash \psi & & \\
\frac{\varphi \vdash \psi \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi \varphi \vdash \chi}{\varphi \vdash \psi \wedge \chi} & &
\end{array}
$$

RC_{1} Main result

Theorem (Dashkov, Beklemishev)

Let $\varphi, \psi \in \mathcal{L}_{\diamond}$. Then:

$$
\begin{gathered}
\mathrm{GL} \vdash \varphi \rightarrow \psi \\
\mathbb{\imath} \\
(\varphi \vdash \psi) \in \mathrm{RC}_{1} \\
\mathbb{\Downarrow}
\end{gathered}
$$

$\mathrm{PA} \vdash(\varphi \rightarrow \psi)^{\star}$ for any arithmetical realization $(\cdot)^{\star}$ ॥

$$
(\varphi \rightarrow \psi) \in \mathrm{PL}(\mathrm{PA})
$$

RC_{1} Main result

Theorem (Dashkov, Beklemishev)

Let $\varphi, \psi \in \mathcal{L}_{\diamond}$. Then:

$$
\begin{gathered}
\mathrm{GL} \vdash \varphi \rightarrow \psi \\
\mathbb{\imath} \\
(\varphi \vdash \psi) \in \mathrm{RC}_{1} \\
\mathbb{1}
\end{gathered}
$$

PA $\vdash(\varphi \rightarrow \psi)^{\star}$ for any arithmetical realization $(\cdot)^{\star}$ §

$$
(\varphi \rightarrow \psi) \in \operatorname{PL}(\mathrm{PA})
$$

Even though the fragment looks poor, its polymodal (up to ω) version suffices for an ordinal notation up to ε_{0} and it can perform the main computations of an ordinal analyses of PA and subsystems

Restricted signatures and logics: QRC $_{1}$

Restrict $\mathcal{L}_{\square, \forall}$ to the strictly positive fragment $\mathcal{L}_{\diamond, \forall}$:
Terms ::= Variables | Constants
$\mathcal{L}_{\diamond, \forall}::=\top \mid$ relation symbols applied to Terms $|\varphi \wedge \varphi| \forall x \varphi \mid \diamond \varphi$

Restricted signatures and logics: QRC $_{1}$

Restrict $\mathcal{L}_{\square, \forall}$ to the strictly positive fragment $\mathcal{L}_{\diamond, \forall}$:

$$
\text { Terms }::=\text { Variables | Constants }
$$

$\mathcal{L}_{\diamond, \forall}::=\top \mid$ relation symbols applied to Terms $|\varphi \wedge \varphi| \forall x \varphi \mid \diamond \varphi$
Define a calculus QRC_{1} with statements $\varphi \vdash_{\mathrm{QRC}_{1}} \psi$ where:

$$
\varphi, \psi \in \mathcal{L}_{\diamond, \forall}
$$

QRC $_{1}$: Axioms and rules

$$
\begin{array}{cc}
\varphi \vdash \top & \varphi \wedge \psi \vdash \varphi \\
\varphi \vdash \varphi & \varphi \wedge \psi \vdash \psi \\
\frac{\varphi \vdash \psi \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi}{\varphi \vdash \psi \wedge \chi}
\end{array}
$$

QRC_{1} : Axioms and rules

$$
\begin{array}{cccc}
\varphi \vdash \top & \varphi \wedge \psi \vdash \varphi & \diamond \diamond \varphi \vdash \diamond \varphi & \frac{\varphi \vdash \psi}{\diamond \varphi \vdash \diamond \psi} \\
\varphi \vdash \varphi & \varphi \wedge \psi \vdash \psi & & \\
\frac{\varphi \vdash \psi}{\varphi \vdash \gamma \vdash \chi} & \frac{\varphi \vdash \psi \varphi \vdash \chi}{\varphi \vdash \psi \wedge \chi} & &
\end{array}
$$

QRC_{1} : Axioms and rules

$$
\begin{array}{cccc}
\varphi \vdash \top & \varphi \wedge \psi \vdash \varphi & \diamond \diamond \varphi \vdash \diamond \varphi & \frac{\varphi \vdash \psi}{\diamond \varphi \vdash \diamond \psi} \\
\varphi \vdash \varphi & \varphi \wedge \psi \vdash \psi & & \\
\frac{\varphi \vdash \psi \psi \vdash \chi}{\varphi \vdash \chi} & \frac{\varphi \vdash \psi \quad \varphi \vdash \chi}{\varphi \vdash \psi \wedge \chi} & \frac{\varphi \vdash \psi}{\varphi \vdash \forall x \psi} & \frac{\varphi[x \leftarrow t] \vdash \psi}{\forall x \varphi \vdash \psi} \\
x \notin \mathrm{fv} \varphi & t \text { free for } x \text { in } \varphi
\end{array}
$$

QRC $_{1}$: Axioms and rules

$$
\begin{aligned}
& \varphi \vdash T \quad \varphi \wedge \psi \vdash \varphi \\
& \varphi \vdash \varphi \quad \varphi \wedge \psi \vdash \psi \\
& \begin{array}{ccc}
\varphi \vdash \psi \quad \psi \vdash \chi \\
\varphi \vdash \chi & \frac{\varphi \vdash \psi \quad \varphi \vdash \chi}{\varphi \vdash \psi \wedge \chi} & \begin{array}{c}
\varphi \vdash \psi \\
\varphi \vdash \forall x \psi \\
x \notin \mathrm{fv} \varphi
\end{array}
\end{array} \\
& \frac{\varphi \vdash \psi}{\varphi[x \leftarrow t] \vdash \psi[x \leftarrow t]} \\
& t \text { free for } x \text { in } \varphi \text { and } \psi \\
& \diamond \diamond \varphi \vdash \diamond \varphi \quad \frac{\varphi \vdash \psi}{\diamond \varphi \vdash \diamond \psi}
\end{aligned}
$$

QRC $_{1}$ Main result

Theorem (de Almeida Borges, JjJ)
 Let $\varphi, \psi \in \mathcal{L}_{\diamond, \forall}$. Then: $\quad \varphi \vdash_{\mathrm{QRC}_{1}} \psi$
 §

$\mathrm{PA} \vdash(\varphi \rightarrow \psi)^{\bullet}$ for any arithmetical realization $(\cdot)^{\bullet}$
॥ $(\varphi \rightarrow \psi) \in \operatorname{QPL}(\mathrm{PA})$

QRC $_{1}$ Main result

Theorem (de Almeida Borges, JjJ)
 Let $\varphi, \psi \in \mathcal{L}_{\diamond, \forall}$. Then: $\quad \varphi \vdash_{\mathrm{QRC}_{1}} \psi$
 I

\[

\]

Theorem (Decidability)

QRC_{1} has the finite model property hence is decidable.

QRC $_{1}$ Main result

Theorem (de Almeida Borges, JjJ)

Let $\varphi, \psi \in \mathcal{L}_{\diamond, \psi}$. Then: $\quad \varphi \vdash_{\mathrm{QRC}_{1}} \psi$
॥
PA $\vdash(\varphi \rightarrow \psi)^{\bullet}$ for any arithmetical realization $(\cdot)^{\bullet}$
§

$$
(\varphi \rightarrow \psi) \in \operatorname{QPL}(\mathrm{PA})
$$

Theorem (Decidability)

QRC_{1} has the finite model property hence is decidable.

Theorem (Positive fragment)

Let φ and ψ be QRC_{1} formulas (no constants) and let QS be any logic between QK4 and QGL. Then $\varphi \vdash_{\mathrm{QRC}_{1}} \psi$ if and only if QS $\vdash \varphi \rightarrow \psi$.

Computational Complexity

Computational Complexity

(1) $\mathrm{K}, \mathrm{K} 4, \mathrm{GL}$ are PSPACE-complete

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- $\mathrm{K}+, \mathrm{K} 4+$, $\mathrm{GL}+$ are polytime decidable

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- $\mathrm{K}+, \mathrm{K} 4+$, $\mathrm{GL}+$ are polytime decidable

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable
(3) GL. 3 is coNP-complete

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable
(3) GL. 3 is coNP-complete
- GL.3+ is polytime decidable

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable
(3) GL. 3 is coNP-complete
- GL.3+ is polytime decidable

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) - GLP is PSPACE complete
- GLP+ is polytime decidable
(3) GL. 3 is coNP-complete
- GL.3+ is polytime decidable
(4) $\quad \mathrm{QPL}(\mathrm{PA})$ is Π_{2}^{0}-complete

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable
(3) GL. 3 is coNP-complete
- GL.3+ is polytime decidable
(4) $\quad \mathrm{QPL}(\mathrm{PA})$ is Π_{2}^{0}-complete
- QPL(PA) + is decidable

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable
(3) GL. 3 is coNP-complete
- GL.3+ is polytime decidable
(4) $\quad \mathrm{QPL}(\mathrm{PA})$ is Π_{2}^{0}-complete
- QPL(PA) + is decidable

Computational Complexity

(1) $\mathrm{K}, \mathrm{K} 4, \mathrm{GL}$ are PSPACE-complete

- K + , K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable
(3) GL. 3 is coNP-complete
- GL.3+ is polytime decidable
(4) $\mathrm{QPL}(\mathrm{PA})$ is Π_{2}^{0}-complete
- QPL(PA) + is decidable
(5) $\operatorname{TQPL}(\mathrm{PA})$ is Π_{1}^{0}-complete in (0) ${ }^{\omega}$ (non-arithmetical)

Computational Complexity

(1) K, K4, GL are PSPACE-complete

- K+, K4+, GL+ are polytime decidable
(2) GLP is PSPACE complete
- GLP+ is polytime decidable
(3) GL. 3 is coNP-complete
- GL.3+ is polytime decidable
(4) $\quad \mathrm{QPL}(\mathrm{PA})$ is Π_{2}^{0}-complete
- QPL(PA) + is decidable
(5) TQPL(PA) is Π_{1}^{0}-complete in (0) ${ }^{\omega}$ (non-arithmetical)
- Advanced conjecture:: TQPL(PA)+ is decidable: $(A \rightarrow B) \in \mathrm{TQPL}(\mathrm{PA}) \Leftrightarrow A \wedge Q^{n}(A) \vdash_{\mathrm{QRC}_{1}} B$ for n large enough where Q^{n} denotes n times iterated consistency

Older escapes to Vardanyan

- Artemov, Japaridze: single variable fragment, fragment of finitely refutable modal formulas (semantically defined);

Older escapes to Vardanyan

- Artemov, Japaridze: single variable fragment, fragment of finitely refutable modal formulas (semantically defined);
- Yavorski, add $\square A \rightarrow \square \forall x A$

Some provable and unprovable statements

$$
\begin{gathered}
\diamond \forall x \varphi \vdash \forall x \diamond \varphi \\
\forall x \diamond \varphi \nvdash \diamond \forall \varphi \\
\frac{\varphi \vdash \psi[x \leftarrow c]}{\varphi \vdash \forall x \psi} \\
x \text { not free in } \varphi \text { and } c \text { not in } \varphi \text { nor } \psi
\end{gathered}
$$

Recall that RC_{ω} allows for ordinal notations up to ε_{0} and that it caters Π_{1}^{0} ordinal analyses.

Can be extended to RC_{Λ}.

Relational models

Kripke models where:

- each world w is a first-order model with a finite domain D
- the domain D is the same for every world
- each constant symbol c and relational symbol S has a denotation at each world
- there is a transitive relation R between worlds
- constants have the same denotation at every world
- the denotation of a relation symbol depends on the world

Relational models

Kripke models where:

- each world w is a first-order model with a finite domain D
- the domain D is the same for every world
- each constant symbol c and relational symbol S has a denotation at each world
- there is a transitive relation R between worlds
- constants have the same denotation at every world
- the denotation of a relation symbol depends on the world
- we use assignments g : Variables $\rightarrow D$ to interpret variables
- we abuse notation and define $g(c):=$ denotation (c) for all assignments g and constants c

Satisfaction

Let g be a w-assignment.

$$
\mathcal{M}, w \Vdash^{g} S(t, u) \Longleftrightarrow\langle g(t), g(u)\rangle \in \operatorname{denotation}_{w}(S)
$$

$\mathcal{M}, w \Vdash^{g} \diamond \varphi \Longleftrightarrow$
there is a world v such that $w R v$ and $\mathcal{M}, v \Vdash^{g} \varphi$
$\mathcal{M}, w \Vdash^{g} \forall x \varphi \Longleftrightarrow$
for all assignments $h \sim_{x} g$, we have $\mathcal{M}, w \Vdash^{h} \varphi$

Relational soundness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M}, world w, and assignment g :

$$
\mathcal{M}, w \Vdash^{g} \varphi \Longrightarrow \mathcal{M}, w \Vdash^{g} \psi
$$

Relational soundness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M}, world w, and assignment g :

$$
\mathcal{M}, w \Vdash^{g} \varphi \Longrightarrow \mathcal{M}, w \Vdash^{g} \psi .
$$

Countermodels with arbitrarily large domains are needed.

$$
\forall x, y S(x, x, y) \wedge \forall x, y S(x, y, x) \wedge \forall x, y S(y, x, x) \vdash \forall x, y, z S(x, y, z)
$$

is unprovable in QRC_{1}, but satisfied by every world with at most two domain elements.

Relational soundness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M}, world w, and assignment g :

$$
\mathcal{M}, w \Vdash^{g} \varphi \Longrightarrow \mathcal{M}, w \Vdash^{g} \psi
$$

Countermodels with arbitrarily large domains are needed.

$$
\forall x, y S(x, x, y) \wedge \forall x, y S(x, y, x) \wedge \forall x, y S(y, x, x) \vdash \forall x, y, z S(x, y, z)
$$

is unprovable in QRC_{1}, but satisfied by every world with at most two domain elements.

Can be extended to arbitrary n.

Relational completeness

Theorem (Relational completeness)

If $\varphi \nvdash \psi$, then there is a finite model \mathcal{M}, a world w, and an assignment g such that:

$$
\mathcal{M}, w \Vdash^{g} \varphi \quad \text { and } \quad \mathcal{M}, w \Vdash^{g} \psi .
$$

Since QRC_{1} has the finite model property (finite number of worlds with finite constant domain), it is decidable.

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed \mathcal{M} (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction $i \mapsto \lambda_{i}$

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed \mathcal{M} (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction $i \mapsto \lambda_{i}$
- $T \vdash \bigvee_{i} \lambda_{i}$

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed \mathcal{M} (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction $i \mapsto \lambda_{i}$
- $T \vdash \bigvee_{i} \lambda_{i}$
- $T \vdash \bigwedge_{i \neq j}\left(\lambda_{i} \rightarrow \neg \lambda_{j}\right)$

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed \mathcal{M} (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction $i \mapsto \lambda_{i}$
- $T \vdash \bigvee_{i} \lambda_{i}$
- $T \vdash \bigwedge_{i \neq j}\left(\lambda_{i} \rightarrow \neg \lambda_{j}\right)$
- $T \vdash \bigwedge_{i R j}\left(\lambda_{i} \rightarrow \diamond \lambda_{j}\right)$

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed \mathcal{M} (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction $i \mapsto \lambda_{i}$
- $T \vdash \bigvee_{i} \lambda_{i}$
- $T \vdash \bigwedge_{i \neq j}\left(\lambda_{i} \rightarrow \neg \lambda_{j}\right)$
- $T \vdash \bigwedge_{i R j}\left(\lambda_{i} \rightarrow \diamond \lambda_{j}\right)$
- $T \vdash \bigwedge_{i>0}\left(\lambda_{i} \rightarrow \square\left(\bigvee_{i R j} \lambda_{j}\right)\right)$

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed \mathcal{M} (with an extra world 0 pointing to the root) into the language of arithmetic using the regular Solovay construction $i \mapsto \lambda_{i}$
- $T \vdash \bigvee_{i} \lambda_{i}$
- $T \vdash \bigwedge_{i \neq j}\left(\lambda_{i} \rightarrow \neg \lambda_{j}\right)$
- $T \vdash \bigwedge_{i R j}\left(\lambda_{i} \rightarrow \diamond \lambda_{j}\right)$
- $T \vdash \bigwedge_{i>0}\left(\lambda_{i} \rightarrow \square\left(\bigvee_{i R j} \lambda_{j}\right)\right)$
- $\mathbb{N} \mid=\lambda_{0}$

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid\right.$ for any $(\cdot)^{*}$, we have $\left.T \vdash(\varphi \vdash \psi)^{*}\right\}$

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$$
\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Define S^{\bullet} as:

$$
\left(S\left(x_{k}\right)\right)^{\bullet}:=\bigvee_{i \in \mathcal{M}}\left(\lambda_{i} \wedge \bigvee_{\langle a\rangle \in S^{\mathcal{M}_{i}}}\ulcorner a\urcorner=y_{k} \bmod m\right)
$$

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$$
\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Define S^{\bullet} as:

$$
\left(S\left(x_{k}\right)\right)^{\bullet}:=\bigvee_{i \in \mathcal{M}}\left(\lambda_{i} \wedge \bigvee_{\langle a\rangle \in S^{\mathcal{M}_{i}}}\ulcorner a\urcorner=y_{k} \bmod m\right)
$$

- Prove a Truth Lemma stating (for $i>0$) that

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$$
\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Define S^{\bullet} as:

$$
\left(S\left(x_{k}\right)\right)^{\bullet}:=\bigvee_{i \in \mathcal{M}}\left(\lambda_{i} \wedge \bigvee_{\langle a\rangle \in S^{\mathcal{M}_{i}}}\ulcorner a\urcorner=y_{k} \bmod m\right)
$$

- Prove a Truth Lemma stating (for $i>0$) that - if $i \nVdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$;

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$$
\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Define S^{\bullet} as:

$$
\left(S\left(x_{k}\right)\right)^{\bullet}:=\bigvee_{i \in \mathcal{M}}\left(\lambda_{i} \wedge \bigvee_{\langle a\rangle \in S^{\mathcal{M}_{i}}}\ulcorner a\urcorner=y_{k} \bmod m\right)
$$

- Prove a Truth Lemma stating (for $i>0$) that
- if $i \Vdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$;
- if $i \Vdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \neg \chi \bullet[y \leftarrow\ulcorner g(x)\urcorner]$.

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Define S^{\bullet} as:

$$
\left(S\left(x_{k}\right)\right)^{\bullet}:=\bigvee_{i \in \mathcal{M}}\left(\lambda_{i} \wedge \bigvee_{\langle a\rangle \in S \mathcal{M}_{i}}\ulcorner a\urcorner=y_{k} \bmod m\right)
$$

- Prove a Truth Lemma stating (for $i>0$) that
- if $i \nmid \boldsymbol{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$;
- if $i \|^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \neg \chi$ • $[y \leftarrow\ulcorner g(x)\urcorner]$.
- Conclude (using external reflection) that

$$
T \vdash \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner] \quad \Leftrightarrow \quad 1 \Vdash \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]
$$

for relevant χ whence $\operatorname{PA} \nvdash(\varphi \rightarrow \psi)^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$

Main results

Theorem (AdAB, DdJ, JjJ, AV)

Let $\varphi, \psi \in \mathcal{L}_{\diamond, \forall}$. Then:
$\varphi \vdash_{\mathrm{QRC}_{1}} \psi$
\Uparrow
$(\varphi \rightarrow \psi) \in \mathrm{QPL}(\mathrm{PA})$
and:

$$
\begin{gathered}
\varphi \vdash_{\mathrm{QRC}_{1}} \psi \\
\Uparrow \\
(\varphi \rightarrow \psi) \in \mathrm{QPL}(\mathrm{PA})
\end{gathered}
$$

- Soundness also works for HA

Main results

Theorem (AdAB, DdJ, JjJ, AV)

Let $\varphi, \psi \in \mathcal{L}_{\diamond, \forall}$. Then:
$\varphi \vdash_{\mathrm{QRC}_{1}} \psi$
॥
$(\varphi \rightarrow \psi) \in \operatorname{QPL}(\mathrm{PA})$
and:

$$
\begin{gathered}
\varphi \vdash_{\mathrm{QRC}_{1}} \psi \\
\Uparrow \downarrow \\
(\varphi \rightarrow \psi) \in \mathrm{QPL}(\mathrm{PA})
\end{gathered}
$$

- Soundness also works for HA
- HA proves: PA is Π_{2}^{0} conservative over HA

Main results

Theorem (AdAB, DdJ, JjJ, AV)

Let $\varphi, \psi \in \mathcal{L}_{\diamond, \forall}$. Then:
$\varphi \vdash_{\mathrm{QRC}_{1}} \psi$
\Uparrow
$(\varphi \rightarrow \psi) \in \operatorname{QPL}(\mathrm{PA})$
and:

$$
\begin{gathered}
\varphi \vdash_{\mathrm{QRC}_{1}} \psi \\
\Uparrow \downarrow \\
(\varphi \rightarrow \psi) \in \mathrm{QPL}(\mathrm{PA})
\end{gathered}
$$

- Soundness also works for HA
- HA proves: PA is Π_{2}^{0} conservative over HA
- Complexity of unprovable substitutions using Solovay is not high

Main results

Theorem (AdAB, DdJ, JjJ, AV)

Let $\varphi, \psi \in \mathcal{L}_{\diamond, \forall}$. Then:
$\varphi \vdash_{\mathrm{QRC}_{1}} \psi$
॥
$(\varphi \rightarrow \psi) \in \operatorname{QPL}(\mathrm{PA})$
and:

$$
\begin{gathered}
\varphi \vdash_{\mathrm{QRC}_{1}} \psi \\
\Uparrow \downarrow \\
(\varphi \rightarrow \psi) \in \mathrm{QPL}(\mathrm{PA})
\end{gathered}
$$

- Soundness also works for HA
- HA proves: PA is Π_{2}^{0} conservative over HA
- Complexity of unprovable substitutions using Solovay is not high
- this low complexity is preserved during the translation

Main results

Theorem (AdAB, DdJ, JjJ, AV)

Let $\varphi, \psi \in \mathcal{L}_{\diamond, \forall}$. Then:
$\varphi \vdash_{\mathrm{QRC}_{1}} \psi$
介
$(\varphi \rightarrow \psi) \in \operatorname{QPL}(\mathrm{PA})$
and:

$$
\begin{gathered}
\varphi \vdash_{\mathrm{QRC}_{1}} \psi \\
\mathbb{\Downarrow} \\
(\varphi \rightarrow \psi) \in \mathrm{QPL}(\mathrm{PA})
\end{gathered}
$$

- Soundness also works for HA
- HA proves: PA is Π_{2}^{0} conservative over HA
- Complexity of unprovable substitutions using Solovay is not high
- this low complexity is preserved during the translation
- universal quantification can be seen reduces to finite conjunction

Main results

Theorem (AdAB, DdJ, JjJ, AV)

Let $\varphi, \psi \in \mathcal{L}_{\diamond, \forall}$. Then:

$$
\begin{gathered}
\varphi \vdash_{\mathrm{QRC}_{1}} \psi \\
\Uparrow \downarrow \\
(\varphi \rightarrow \psi) \in \mathrm{QPL}(\mathrm{PA})
\end{gathered}
$$

and:

$$
\begin{gathered}
\varphi \vdash_{\mathrm{QRC}_{1}} \psi \\
\Uparrow \downarrow \\
(\varphi \rightarrow \psi) \in \mathrm{QPL}(\mathrm{PA})
\end{gathered}
$$

- Soundness also works for HA
- HA proves: PA is Π_{2}^{0} conservative over HA
- Complexity of unprovable substitutions using Solovay is not high
- this low complexity is preserved during the translation
- universal quantification can be seen reduces to finite conjunction
- Recall that PL(HA) was a long-standing open problem

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
- HA $\vdash \forall x \neg \varphi \leftrightarrow \neg \exists x \varphi$.

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
- HA $\vdash \forall x \neg \varphi \leftrightarrow \neg \exists x \varphi$.

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
- HA $\vdash \forall x \neg \varphi \leftrightarrow \neg \exists x \varphi$.
- In general

НА $\nvdash \varphi \leftrightarrow \neg \neg \varphi$

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
- HA $\vdash \forall x \neg \varphi \leftrightarrow \neg \exists x \varphi$.
- In general

HA $\nvdash \varphi \leftrightarrow \neg \neg \varphi$

- But we do have excluded middle for decidable D and in particular

$$
\mathrm{HA} \vdash D \leftrightarrow \neg \neg D
$$

for Δ_{1}^{0} formulas

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
- HA $\vdash \forall x \neg \varphi \leftrightarrow \neg \exists x \varphi$.
- In general

HA $\vdash \varphi \leftrightarrow \neg \neg \varphi$

- But we do have excluded middle for decidable D and in particular

$$
\mathrm{HA} \vdash D \leftrightarrow \neg \neg D
$$

for Δ_{1}^{0} formulas

- In general excluded middle for Σ_{1} sentences fails HA $\nvdash S \leftrightarrow \neg \neg S$

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
- HA $\vdash \forall x \neg \varphi \leftrightarrow \neg \exists x \varphi$.
- In general

HA $\vdash \varphi \leftrightarrow \neg \neg \varphi$

- But we do have excluded middle for decidable D and in particular

$$
\mathrm{HA} \vdash D \leftrightarrow \neg \neg D
$$

for Δ_{1}^{0} formulas

- In general excluded middle for Σ_{1} sentences fails HA $\nvdash S \leftrightarrow \neg \neg S$
- But: HA $\vdash \square_{\mathrm{HA}} S \leftrightarrow \square_{\mathrm{HA}} \neg \neg S$ for $S \in \Sigma_{1}$

Semi-closure

- HA $\nvdash \neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$.
- HA $\vdash \forall x \neg \varphi \leftrightarrow \neg \exists x \varphi$.
- In general

HA $\vdash \varphi \leftrightarrow \neg \neg \varphi$

- But we do have excluded middle for decidable D and in particular

$$
\mathrm{HA} \vdash D \leftrightarrow \neg \neg D
$$

for Δ_{1}^{0} formulas

- In general excluded middle for Σ_{1} sentences fails HA $\nvdash S \leftrightarrow \neg \neg S$
- But: HA $\vdash \square_{\mathrm{HA}} S \leftrightarrow \square_{\mathrm{HA} \neg \neg S \text { for } S \in \Sigma_{1}, ~}^{\text {d }}$
- Trick: employ Π_{2}-conservativity between HA and PA where we have $\mathrm{HA} \vdash \forall A\left(\square_{\mathrm{HA}} A \rightarrow \square_{\mathrm{PA}} A\right)$ for any A.

Semi-closure

Lemma

- HA $\vdash \forall S \in \Sigma_{1} \square_{\mathrm{HA}} S \leftrightarrow \square_{\mathrm{HA}} \neg \neg S$
- $\mathrm{HA} \vdash \forall S \in \Sigma_{1}\left(\square_{\mathrm{HA}} \forall x \neg \neg S \leftrightarrow \square_{\mathrm{HA}} \forall x S\right)$.

The negation of a Π_{1} sentence is equivalent to the double negation of a Σ_{1} sentence over HA:

Lemma

$$
\begin{align*}
\mathrm{HA} \vdash \neg \forall x D & \leftrightarrow \neg \forall x \neg \neg D \\
& \leftrightarrow \neg \neg \exists x \neg D \tag{1}
\end{align*}
$$

where clearly $\exists x \neg D \in \Sigma_{1}$.

Lemma

$\left.\mathrm{HA} \vdash \forall A \in \Sigma_{2}\left(\nabla_{\mathrm{HA}} A \leftrightarrow\right\rangle_{\mathrm{PA}} A\right)$.

Proof.

In HA, fixing $A \in \Sigma_{2}$ with $A=\exists x P$. and $S \in \Sigma_{1}$ so that

$$
\begin{equation*}
\mathrm{HA} \vdash \neg P \leftrightarrow \neg \neg S \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \diamond_{\mathrm{HA}} A \leftrightarrow \quad \neg \square_{\mathrm{HA}} \neg A \\
& \leftrightarrow \quad \neg \square_{\mathrm{HA}} \neg \exists \mathrm{xP} \\
& \leftrightarrow \quad \neg \square_{\mathrm{HA}} \forall x \neg P \\
& \leftrightarrow \quad \neg \square_{\mathrm{HA}} \forall x \neg \neg S \quad \text { by (2) } \\
& \leftrightarrow \neg \square_{\mathrm{HA}} \forall x S \\
& \leftrightarrow \quad \neg \square_{\mathrm{PA}} \forall x S \\
& \leftrightarrow \quad \neg \square_{\mathrm{PA}} \neg \neg \forall x S \\
& \leftrightarrow \diamond_{\mathrm{PA}} \neg \forall x S \\
& \leftrightarrow \diamond_{\text {PA }} \exists x \neg S \\
& \leftrightarrow \vartheta_{\mathrm{PA}} A \quad \text { by (2). }
\end{aligned}
$$

Bounds on complexity

- The λ_{i} are limit statements, a priori Σ_{2}

Bounds on complexity

- The λ_{i} are limit statements, a priori Σ_{2}
- but actually lower: a combination of Π_{1} and Σ_{1} as follows:

$$
(\exists x f(x)=i) \wedge \forall x, y(f(x)=i \wedge x \leq y \rightarrow f(y)=i)
$$

Bounds on complexity

- The λ_{i} are limit statements, a priori Σ_{2}
- but actually lower: a combination of Π_{1} and Σ_{1} as follows:

$$
(\exists x f(x)=i) \wedge \forall x, y(f(x)=i \wedge x \leq y \rightarrow f(y)=i)
$$

- For any such limited substitutions $*$ we have in HA that for arbitrary A

Bounds on complexity

- The λ_{i} are limit statements, a priori Σ_{2}
- but actually lower: a combination of Π_{1} and Σ_{1} as follows:

$$
(\exists x f(x)=i) \wedge \forall x, y(f(x)=i \wedge x \leq y \rightarrow f(y)=i)
$$

- For any such limited substitutions $*$ we have in HA that A^{*} is of Σ_{2} complexity for any theory T for arbitrary A

Theorem

$A \vdash_{\mathrm{RC}_{1}} B$ if and only if for all realizations .* we have $\mathrm{HA} \vdash(A \rightarrow B)^{*}$.

Proof.

(Completeness) Assume $A \nvdash_{\mathrm{RC}_{1}} B$. Embed the extended counter model into arithmetic using the PA Solovay function, which will be our arithmetical interpretation, ${ }^{\circledast}$.

Theorem

$A \vdash_{\mathrm{RC}_{1}} B$ if and only if for all realizations .* we have $\mathrm{HA} \vdash(A \rightarrow B)^{*}$.

Proof.

(Completeness) Assume $A \nvdash_{\mathrm{RC}_{1}} B$. Embed the extended counter model into arithmetic using the PA Solovay function, which will be our arithmetical interpretation, ${ }^{\circledast}$.

Thus, $p^{\circledast}:=\bigvee_{i \vdash p} \lambda_{i}$. Note that p^{\circledast} is a Boolean combination of Σ_{1} and Π_{1} formula and so is A^{\circledast} for any A
Assume towards a contradiction that $\mathrm{HA} \vdash A^{\circledast \mathrm{HA}} \rightarrow B^{\circledast \mathrm{HA}}$.

Theorem

$A \vdash_{\mathrm{RC}_{1}} B$ if and only if for all realizations .* we have $\mathrm{HA} \vdash(A \rightarrow B)^{*}$.

Proof.

(Completeness) Assume $A \nvdash_{\mathrm{RC}_{1}} B$. Embed the extended counter model into arithmetic using the PA Solovay function, which will be our arithmetical interpretation, ${ }^{\circledast}$.

Thus, $p^{\circledast}:=\bigvee_{i \vdash p} \lambda_{i}$. Note that p^{\circledast} is a Boolean combination of Σ_{1} and Π_{1} formula and so is A^{\circledast} for any A
Assume towards a contradiction that $\mathrm{HA} \vdash A^{\circledast \mathrm{HA}} \rightarrow B^{\circledast \mathrm{HA}}$.

Then HA $\vdash A^{\circledast \mathrm{PA}} \rightarrow B^{\circledast \mathrm{PA}}$,

Theorem

$A \vdash_{\mathrm{RC}_{1}} B$ if and only if for all realizations .* we have $\mathrm{HA} \vdash(A \rightarrow B)^{*}$.

Proof.

(Completeness) Assume $A \nvdash_{\mathrm{RC}_{1}} B$. Embed the extended counter model into arithmetic using the PA Solovay function, which will be our arithmetical interpretation, ${ }^{\circledast}$.

Thus, $p^{\circledast}:=\bigvee_{i \vdash p} \lambda_{i}$. Note that p^{\circledast} is a Boolean combination of Σ_{1} and Π_{1} formula and so is A^{\circledast} for any A
Assume towards a contradiction that $\mathrm{HA} \vdash A^{\circledast \mathrm{HA}} \rightarrow B^{\circledast \mathrm{HA}}$.

Then HA $\vdash A^{\circledast \mathrm{PA}} \rightarrow B^{\circledast \mathrm{PA}}$,
Whence PA $\vdash A^{\circledast \mathrm{PA}} \rightarrow B^{\circledast \mathrm{PA}}$,

Theorem

$A \vdash_{\mathrm{RC}_{1}} B$ if and only if for all realizations .* we have $\mathrm{HA} \vdash(A \rightarrow B)^{*}$.

Proof.

(Completeness) Assume $A \nvdash_{\mathrm{RC}_{1}} B$. Embed the extended counter model into arithmetic using the PA Solovay function, which will be our arithmetical interpretation, ${ }^{\circledast}$.

Thus, $p^{\circledast}:=\bigvee_{i \vdash p} \lambda_{i}$. Note that p^{\circledast} is a Boolean combination of Σ_{1} and Π_{1} formula and so is A^{\circledast} for any A
Assume towards a contradiction that $\mathrm{HA} \vdash A^{\circledast \mathrm{HA}} \rightarrow B^{\circledast \mathrm{HA}}$.

Then HA $\vdash A^{\circledast \mathrm{PA}} \rightarrow B^{\circledast \mathrm{PA}}$,

Whence PA $\vdash A^{\circledast \mathrm{PA}} \rightarrow B^{\circledast \mathrm{PA}}$,

This contradicts completeness of RC_{1} w.r.t. PA.

In summary

- PL(HA) finally settled but lacks an easy axiomatisation
- Strictly positive fragment has an easy axiomatisation with RC
- There is no quantified provability logic with $\mathcal{L}_{\square, \forall}$ QRC $_{1}$:
- quantified, strictly positive provability logic with $\mathcal{L}_{\diamond, \forall}$
- decidable
- sound and complete w.r.t. relational semantics (with constant domain models!)
- sound and complete w.r.t. arithmetical semantics
- for all sound r.e. theories extending $I \Sigma_{1}$
- Both for HA and PA

Forthcoming research

- Determine the set of always true QRC_{1} sequents

Forthcoming research

- Determine the set of always true QRC_{1} sequents
- Gauge computational complexity of QRC_{1}

Forthcoming research

- Determine the set of always true QRC_{1} sequents
- Gauge computational complexity of QRC_{1}
- Neighbourhood / topological semantics for QRC $_{1}$?

Forthcoming research

- Determine the set of always true QRC_{1} sequents
- Gauge computational complexity of QRC_{1}
- Neighbourhood / topological semantics for QRC $_{1}$?
- Polymodal version of QRC_{1} (also for HA?), that is

Forthcoming research

- Determine the set of always true QRC_{1} sequents
- Gauge computational complexity of QRC_{1}
- Neighbourhood / topological semantics for QRC_{1} ?
- Polymodal version of QRC_{1} (also for HA?), that is
- Extend results to QRC_{n}

Forthcoming research

- Determine the set of always true QRC_{1} sequents
- Gauge computational complexity of QRC_{1}
- Neighbourhood / topological semantics for QRC $_{1}$?
- Polymodal version of QRC_{1} (also for HA?), that is
- Extend results to $Q_{R C}$
- Computational complexity of $\operatorname{QPL}\left(\mathrm{PA}+\Delta^{n} \perp\right)$ for Δ a suitable slow provability notion

Forthcoming research

- Determine the set of always true QRC_{1} sequents
- Gauge computational complexity of QRC_{1}
- Neighbourhood / topological semantics for QRC $_{1}$?
- Polymodal version of QRC_{1} (also for HA?), that is
- Extend results to QRC $_{n}$
- Computational complexity of $\operatorname{QPL}\left(\mathrm{PA}+\Delta^{n} \perp\right)$ for Δ a suitable slow provability notion
- Can we enhance the expressibility of QRC_{1} without losing decidability?

Forthcoming research

- Determine the set of always true QRC_{1} sequents
- Gauge computational complexity of QRC_{1}
- Neighbourhood / topological semantics for QRC $_{1}$?
- Polymodal version of QRC_{1} (also for HA?), that is
- Extend results to $Q_{R C}$
- Computational complexity of $\operatorname{QPL}\left(\mathrm{PA}+\Delta^{n} \perp\right)$ for Δ a suitable slow provability notion
- Can we enhance the expressibility of QRC_{1} without losing decidability?
- Applications to Π_{1}^{0} ordinal analysis?

Thank you

Further Reading I

S.N. Artemov (1985)

Nonarithmeticity of truth predicate logics of provability.
Doklady Akad. Nauk SSSR 284(2), 270-271 (Russian)
Soviet Mathematics Doklady 33, 403-405 (English)
嗇 G. Boolos (1995)
The Logic of Provability
Cambridge University Press
目 A.A. Borges. and J.J. Joosten (2020)
Quantified Reflection Calculus with one modality
Advances in Modal Logic 13
R A.A. Borges. and J.J. Joosten (2021)
An Escape from Vardanyan's Theorem
https://arxiv.org/abs/2102.13091

Further Reading II

R R. Goldblatt (2011)
Quantifiers, propositions and identity: admissible semantics for quantified modal and substructural logics
Cambridge University Press
固 V.A. Vardanyan (1986)
Arithmetic complexity of predicate logics of provability and their fragments
Doklady Akad. Nauk SSSR 288(1), 11-14 (Russian)
Soviet Mathematics Doklady 33, 569-572 (English)
回 A. Visser, M. de Jonge (2006)
No Escape from Vardanyan's Theorem
Archive for Mathematical Logic 45(1), 539-554

