On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 00

Model checking and formally verified software for
temporal quantitative regulations

Joost J. Joosten

Universitat de Barcelona

Universiteit van Groningen
Groningen, May 18

Time Manager P @OPNUDCJSU'IBRA&?.S MM Generalitat
GURETRUCK Ji de Catalunya

B)’ @:ROMETHEUSS Group
2

Bosch i Glmpu a UNIVERSITATw 3
/05 UNTVRRSITAT m BARORLONA 'H_ BARCELONA ¢

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
©00000000000000 000000000000000000 0000000000000 oo

The business model of our research lab

1 UNIVERSITAToe
il BARCELONA

oo -

Business focussed: from concrete to abstract

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 oo

Nice to have or need to have?

infraccién imputada ¥ en cuanto que no se han

incumplido los tiempos de descansc semanales.

Zfegundo lugar considera que los hechos
ic: 2do

facograly y, espect aTmente, del software ntilizads Gentrs
nE ST i e e e+ m
falta, 13 nomicosciim Gl software stili

Sitorlgadis pars ohioner v prociesr 1os detce registrades on
el tacégralo

Se acepta lo alegado por la parte demandants en lo que Se
refiere a la ausencia de prueba de carge suficiente respecto
al software utilizado por la autoridad correspondiente para
cbtener los datos registrados en el tacégrafo por lo que, sin

marasiAad Aa amalizar a1 wasta As 12 fumAzmantaciAn

Sentence Number: 30/2019, CONTENCIOSO/ADMTVO court N. 4 of
Valladolid

J.J. Joosten Groningen, May 1

On software certification Certification in action Model Checking Looking ahead
00@000000000000 000000000000000000 0000000000000 oo

Law and Code

® | aw essentially discretional
powers when applied

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead

00@000000000000 00000000000 0000000 0000000000000 [e]e]

Law and Code

® | aw essentially discretional
powers when applied

® Hence, ambiguity is needed

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
00@000000000000 000000000000000000 0000000000000 oo

Law and Code

® | aw essentially discretional
powers when applied

® Hence, ambiguity is needed

® Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
00@000000000000 000000000000000000 0000000000000 oo

Law and Code

® | aw essentially discretional
powers when applied

® Hence, ambiguity is needed

® Any automated process and in
particular, any automated

process in the legal sector need
unambiguity

® The programmer needs to
disambiguate?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
00@000000000000 000000000000000000 0000000000000 oo

Law and Code

® | aw essentially discretional
powers when applied

® Hence, ambiguity is needed

® Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

® The programmer needs to
disambiguate?

® Can code be law?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification
00@000000000000

Law and Code

Certification in action
000000000000000000

Model Checking Looking ahead
0000000000000 oo

Law essentially discretional
powers when applied

Hence, ambiguity is needed

Any automated process and in
particular, any automated
process in the legal sector need
unambiguity

The programmer needs to
disambiguate?

Can code be law?

And, what if there's an error in
the code?

J.J. Joosten (UB)

Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000800000000000 000000000000000000 0000000000000 oo

Doubtful results

Il - Les formules de calculs

B APL £7 DES AL ® Bonus payment system of the
Secteur locatif ordinaire French Army'

Depuis Ia réforme intervenve le 17 janvier 2001, le montant de Faide est obteny par
Let en APL (f. artcle D.

e Louvois/SourceSolde

Logements-foyers

. " P D.83224
dvceh)

APL=K([E-E0]

Avec application de deux barémes, APL foyer et APL2 foyer (f. aticles D. 832-25 et
D.832.26 du CCH)

AL=K[L+C-10]

Accession

etderAL P @ "
D.83210¢t D. 5426)du CCH.

APLoUAL=K([L+C-10]

Joosten (UB) Formally Verified Software Groningen, Ma

On software certification Certification in action
000800000000000 000000000000000000

Doubtful results

Model Checking Looking ahead
0000000000000 oo

Il - Les formules de calculs
DE L'APL ET DES AL

Secteur locatif ordinaire

Depuis Ia réforme intervenve le 17 janvier 2001, le montant de Faide est obteny par
Let en APL (f. artcle D.

APLovAL=LiC-Pp.

Logements-foyers
0.85224

. s v
dvceh)
APL=K([E-E0]
Avec application de deux barémes, APL foyer et APL2 foyer (f. aticles D. 832-25 et
D.832.26 du CCH)

AL=K[L+C-10]

Accession

etderAL P
D.83210¢t D. 5426)du CCH.

APLoUAL=K([L+C-10]

® Bonus payment system of the
French Army:
Louvois/SourceSolde

® |n 2012: 465 M € incorrect
payments

Formally Verified Software Groningen, May 18

J.J. Joosten (UB)

Certification in action
000000000000000000

On software certification
000@00000000000

Model Checking Looking ahead
0000000000000 oo

Doubtful results

Il - Les formules de calculs
DE L'APL ET DES AL

ontant de Faide est obteny par
ticle D.

APLovAL=LiC-Pp.

Logements-foyers

. " P D.83224
dvceh)

APL=

-E0)
ation de deux barémes, APL1 foyer et APL2 foyer (cf. articles D. 83225 et

Avec 3
D.832.26 du CCH)

AL=K[L+C-10]

Accession

etder
D.83210¢t D. 5426)du CCH.
APLoUAL=K([L+C-10]

J.J. Joosten (UB)

Formally Verified Software

® Bonus payment system of the
French Army:
Louvois/SourceSolde

® |n 2012: 465 M € incorrect
payments

® |t left some soldiers and their
families without any income at
all for months!

Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
0000@00000000000 000000000000000000 0000000000000 oo

Closer to (my) house: Civio vs Bosco

Ana Valdivia

Dr Ana Valdivia is a Postdoctoral Researcher at
King’s College London (ERC Security Flows). She
examines how algorithms impact on people’s life

The Paradox of Efﬁciency' Frictions from a technical, political, and legal perspective.
Between Law and Algorithms

‘This article belongs to the debate » The Rule of Law versus the Rule of the Algorithm

02 April 2022

Javier de la Cueva
On the 13th of January 2022, a Spanish Administrative court ruled in favour of Javier de la Cueva is a lawyer, lecturer and
algorithmic opacity. Fundacién Civio, an independent foundation that monitors and researcher in topics related to open knowledge,
accounts public authorities, reported that an algorithm used by the government was ethics and the digital world.

committing errors.¥ BOSCO, the name of the application which contained the algorithm,

was implemented by the Spanish public administration to more efficiently identify Explore posts related to ths:

ic Efficiency ithmic Justice, Rule of
Law, Rule of the Algorithm

citizens eligible for grants to pay electricity bills. Meanwhile, Civio designed a web app
to inform citizens whether they would be entitled for this grant.2 Thousands of citizens
used this application and some of them reported that, while Civio's web app suggested

The Bosco computer program : errors in the computation of the social
welfare bonuses

Least requirement: access to source code

In France it is mandatory to publish source code of software that is used in
public administration.

However, access to source code will not resolve all problems

Joosten Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead

00000@000000000 00000000000 0000000 0000000000000 [e]e]

Evidencias dudosas

® In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
® STRmix

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead

00000@000000000 00000000000 0000000 0000000000000 [e]e]

Evidencias dudosas

® In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
® STRmix
e FST

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead

00000@000000000 00000000000 0000000 0000000000000 [e]e]

Evidencias dudosas

® In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
® STRmix
e FST
® TrueAllele (not granted)

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

Model Checking Looking ahead
0000000000000 oo

Certification in action

On software certification
000000000000000000

00000e000000000

Evidencias dudosas

® In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
® STRmix
e FST
® TrueAllele (not granted)

® |n two cases the request was granted

Groningen, May 18

Formally Verified Software

J.J. Joosten (UB)

On software certification Certification in action Model Checking Looking ahead
000008000000000 000000000000000000 0000000000000 oo

Evidencias dudosas

® In three law-suits in the USA, the defence requested to open the
proprietary source code to the jury of DNA sequencing software
since there were some doubts.
® STRmix
e FST
® TrueAllele (not granted)

® |n two cases the request was granted
® Again, access to the source code will not solve all problems!

o s o

LTI

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 oo

What is certification?

® |s it just a matter of trust?
(combined with some sanity
checks and experience)

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

Looking ahead
oo

On software certification Certification in action Model Checking
000000000000000 000000000000000000 0000000000000

What is certification?

® |s it just a matter of trust?
(combined with some sanity
checks and experience)

® Certificate = something is
certain

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 oo

What is certification?

® |s it just a matter of trust?
(combined with some sanity
checks and experience)

® Certificate = something is
certain

® Verify == something is
veridical

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000080000000 000000000000000000 0000000000000 oo

The impossibility of unrestricted certification

® A mathematical theorem:

Alan Turing

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead

0000000e0000000 00000000000 0000000 0000000000000 [e]e]

The impossibility of unrestricted certification

® A mathematical theorem:

® Unrestricted certification is
impossible.

Alan Turing

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification

Certification in action Model Checking
00000000e000000

Looking ahead
000000000000000000

0000000000000 oo

Restricted certification is possible

We call a program P a universal certifier (wrt its language) when P takes
two inputs

@ another program Q in a language compatible with P and,

@® a specification S in a language compatible with P that describes the
behaviour of the program Q;

and, given two inputs @ and S, the program P outputs:
o “YES” if the program @ does what is said by S and, it will ouput

e “NQ” if the program @ does something different as that what is
claimed by S.

There does not exist a universal certifier.
This holds for any reasonable class of languages.

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 10 /49

On software certification Certification in action Model Checking Looking ahead
000000000800000 000000000000000000 0000000000000 oo

Formally verified software

Components of formally verified /certified software

> A Specification: a non-ambiguous mathematical description
of the input-output behaviour of the software

[T Implementation: the code, the software, implementing the
algorithm that does the work.

A Proof: a mathematical proof that the program [1 functions
as claimed by ¥

The specification X is written in a formal language (in our case, the
language of dependent types of the Coq proof assistant).

This begs the question: How to make the specification more
accessible to the general/judicial public?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 11/49

On software certification Certification in action Model Checking

Looking ahead

0000000000e0000 00000000000 0000000 0000000000000 [e]e]

What is verification?

Formal verification

Mathematical
proof,
computer-
checked

Implementation

Formal specification {-ode)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:

abstract, conceptual,
expressed for experts

Slides FV: Gonzélez Bedmar

J.J. Joosten (UB) Formally Verified Software

Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000008000 000000000000000000 0000000000000 fole}

What is verification?

Formal verification

Coq
(proof assistant)

Mathematical
proof,
computer-
checked

Implementation

Formal specification {edde)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:

abstract, conceptual,
expressed for experts

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 13/

On software certification Certification in action Model Checking Looking ahead
000000000000800 000000000000000000 0000000000000 fole}

What is verification?

Formal verification

Coq
(proof assistant)

Mathematical Extraction

proof, mechanism,
computer- soon formally
checked verified

Implementation
(code)

Formal specification
(formal language) Extracted code
Math-like: M?Chi”e'li_k?: OCamloralike
operations, efficiency, Ready to run
expressed for
computers

abstract, conceptual,
expressed for experts

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000080 000000000000000000 0000000000000 oo

What is verification?

Problem (c[;gofassistant)

Mathematical
proof,

computer-

checked

Designers of specs
(legislators)

Formal specification Implementation
(code)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:
abstract, conceptual,
expressed for experts

Users
(enforcement
agencies, citizens)

“What can be understood
cannot be proven.
What can be proven
cannot be understood.”

Even experts go through intermediate
steps to understand a formal spec

Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000008 000000000000000000 0000000000000 oo

What is verification?

Mathematical

Checked by proof
human computer-
P checked

Implementation
(code)

Formal specification
(formal language)

Math-like: Ma.chlne—ll'k'e:
operations, efficiency,
expressed for
computers

abstract, conceptual,
expressed for experts

Public Certification Formal Verification H

J.J. Joosten (UB) ified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
0000000000000 00 0000000000000 00000 0000000000000 [e]e]

Seven years of research in Barcelona

« > c

%1 Bosch i Gimpera
%gmmm:- .m B

Research

groups of the
uB

‘ " . PROMETHEUSS GRUP
'Software Fallo 0, a UB project to create PROMETHEUSS Group
an error-free software system i Software unreliability and the legal system
12022019 Software malfunction can appear in one or several layers of the
software development cycle, including: natural language
All software contains bugs; even the software that fications, technical fications, coding,
controls the aeronautical or military industry has bugs 'WHO WE ARE compilation, installation, and execution. The consequences of

in its final version. This situation is particularly Software malfunction in legal and administrative settings arguably

Members
! ! imply the violation of legal principles, loss of valuable resources,
troubling because of the increasing dependence on ks on i ights (ooeh s wel-documented cases of utomated
A — cks on civilrights (such s well-documented cases of automat
software of key processes such as computer voting e T racial ‘and degradation of legal systems. Also, in the
medical and I

ter) future as well as in the present, it may aggravate the societal loss of
that decide whether or not a person complies with the Aot e G confidence in technology and in government alike. Legally binding
law. A team from the University of Barcelona Joaduim Caal Buvel eclons taken sl on ot produeea by softvare o v
») jecisions which are automated outright, very rarely acknowiedige the
participates in a four-year project that promotes a new et Gonadie Badmar existence of several crucial potential problems inherent to the nature
s paradigm for the software industry: the development,

Covenant between the University of Barcelona (FBG), Formal Vindications
S.L. & Guretruck S.L.

J.J. Joosten

Groningen, May 18 17 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0®0000000000000000 0000000000000 [e]e}

Three weeks ago in Barcelona

+ APRIL 28-29, 2022
! UNIVERSITAT DE BARCELONA J
3 L) [
LITEA
Finanll lgorithms with imandra destgn 1
Grant ey Pasmore Bart Verhe
P Semoul ntiteofMathertis Compater S

and Artfcal ntelligence - Universiy of Groningen

Impl The
Joost . Joo 3 Netherlands
o, spn Marliesuan Ech
Hoogpiemstr & Partnar nd Radboud University, The
Logica Methods s for goritic Lw Neerioncs
avid er

et Ui Seian
! Verlfied extracton to OCar from Coq, in Coq
Public c.mnmm of Software and ts ecessity in Yannich Forster
[

ol Projck Team Gl
Crafting a Legislation ready for digital public

Mireta Gonat
e b,

15 coding the aw Logal? A French and European administration

approad Julus LyeJensen, Christine Holmareen Mefling &
Lane Huttn Mette Eigaard Rasmussen ;
Unisrsi Par 1 Pontion Srbonne, rance Agénc o Digitlzatin, Wit f Fioance, Demark

Verlfying well-behaved execution o Legislative

oux and the case of Regulation 561
e PrjectTeam Prseco, France Moritz Miller
Unluesitat de Breeons, Spain il

Dmqu EU Legistation in the Era of Al and }
Digitisation Imagine awgers are nat your enemies: legal

Fem
5 prject, arpean Gl

el Sierra
Monica Palmirari Unlvridode Casilr La Manche,Spin
Unlersia & Bologn, faly

JIEEE e s e casonn

J.J. Joosten Groningen, May

On software certification Certification in action Model Checking Looking ahead
000000000000000 00®000000000000000 0000000000000 [e]e}

Time library

Time measurement

leap seconds

2016-12-3123:59:60 UTC exists

‘ require UTC

- R

27 leap seconds added since 1972

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead

0000000000000 00 O00®00000000000000 0000000000000 00

Time formats and managers

date-time

i £ timestamp
<— & Time Manager > <+— | 4555455350
’
|
'ﬁ% & '

2 NotinuTc

Most important feature: formally verified!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 20 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000@0000000000000 0000000000000 [e]e}

What is certification?

Mathematical

Checked by proof
human computer-
P checked

Implementation
(code)

Formal specification
(formal language)

Math-like: Ma.chlne—ll'k'e:
operations, efficiency,
expressed for
computers

abstract, conceptual,
expressed for experts

Public Certification Formal Verification H

J.J. Joosten (UB) ified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead

0000000000000 00 00000000000 0000000 0000000000000 00

Example in FV Time

Formal specification (in Coq): utc_timestamp_plain Implementation

#|[pred t' | (epoch <=t < t)%0]| (code)

Jv2

J & Intuitive specification
ﬁ Given a time ¢, returns the number of
seconds elapsed since the Unix epoch

(1970-1-100:00:00).

Around one-thousand times more expensive!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000@00000000000 0000000000000 [e]e}

A central problem

Problem (c[;gofassistant)

Mathematical
proof,

computer-

checked

Designers of specs
(legislators)

Formal specification Implementation
(code)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:
abstract, conceptual,
expressed for experts

Users
(enforcement
agencies, citizens)

“What can be understood
cannot be proven.
What can be proven
cannot be understood.”

Even experts go through intermediate
steps to understand a formal spec

Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000080000000000 0000000000000 [e]e}

Public certification versus formal verification

Mathematical

Checked by proof.
::n:tr; computer-
P checked

Implementation

Formal specification (code)

(formal language)

Machine-like:
operations, efficiency,
expressed for
computers

Math-like:
abstract, conceptual,
expressed for experts

Public Certification] I Formal Verification ﬁ

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
0000000000000 00 00000000 @000000000 0000000000000 [e]e]

Catala: A Shortcut For Legal Expert System Ce

The Usual Way to Produce Verified Softwal

Using Mireia Gonzales Bedmar's conceptual framework from yesterday’s presentation:

A
Manual Manual A
o review Z proof I Extraction e p——
Interpretation ¢ ¥ Specification ¢ » Implementation >
law.ml
law.docx law.v law.v
Catala’s approach:
O+3+0 (A=g) A
Literate formal Compilation Executable code

executable specification Y law.{ml,py,js,...}

law.catala

Slides Catala: Merigoux

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead

0000000000000 00 0000000008000 00000 0000000000000 00

@ Catala: A Language Reviewable by lawyers

US Tax Code, Section 132, (c)(1) Qualified employee discount

The term “qualified employee discount” means any employee discount with respect to
qualified property or services to the extent such discount does not exceed—

(A) in the case of property, the gross profit percentage of the price at which the property
is being offered by the employer to customers

scope QualifiedEmployeeDiscount :
definition qualified_employee_discount
under condition is_property consequence equals
if employee_discount >$ customer_price *$ gross_profit_percentage then
customer_price *$ gross_profit_percentage
else employee_discount

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification
000000000000000

Certification in action
0000000000e0000000

Can code be the law?

TENSION TABLE:

Specification
Language

Natural
Language

Technical

Language

Formal Language

Formal Language

Model Checking

Computable laws:

0000000000000

Language, software paradigm and legal principles

Programming
paradigm

Not
Formally
Verified,

Not
Formally
\erified,

Not
Formally
Verified,

Formally
Verified

Legal Principles

Legal Certainty l

& J

Accountability

. »

Contestability

8 J

Decisions will probably not be
consistent with the established
legal framework. The text will
be accessible and
comprehensible to the public
and authorities.

Decisions will likely not be
consistent with the established
legal framework. The text will
be less comprehensible to
public and authorities

Decisions will probably be
consistent with the established
legal framework. The text will
only be accessible to experts.

Decisions will be consistent
with established legal
[framework. The text will only be
accessible to experts

Automated decision won't be
reliable and explainability will
be difficult: the software is not
comprehensible to the public,
challenging the principle of
transparency.

Automated decision will be
barely reliable and
explainability will be dificult:
the software is not
comprehensible to
the public, challenging the
principle of transparency.

Automated decision will be
qite reliable and
explainability will be diffcult
the software is not
comprehensible to
the public, challenging the
principle of transparency.

Automated decision will be
reliable and
explainability will be difficult,
but it will be guaranteed that
the software is the exact
reproduction of its specification

Right to contest tums almost
impossible since authorities
can' explain software
decisions, which will be
unreliable.

Right to contest tums almost
impossible since authorities
can't explain software
decisions, which will be
mostly unreliable.

Right to contest tums almost
impossible since authorities
cantt explain software
decisions, yet they will
probably be working according
to the law

Right to contest will be diffcult
since authorities cantt explain
software decisions, yet those
are working according to the
law

J.J. Joosten

Groningen, May

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000008000000 0000000000000 [e]e}

Further benefits of formalisation

_ 0 1 2 3

minute labelling | ! ! I

no shift | I I I

H d H H H

second labelling :
minute labelling i i i i
shift d T T ! !
0 1 2 3
B Rest

B Driving

We proved that the labelling is not shift-invariant!

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000e00000 0000000000000 [e]e}

Some regulations regarding weekly rest periods

Regulation (EC) No 561/2006
§8.6. In any two consecutive weeks, a driver shall take at least:

® two regular weekly rest periods [of at least 45 hours], or

® one regular weekly rest period and one reduced weekly rest period of
at least 24 hours. However, the reduction shall be compensated by an
equivalent period of rest taken en bloc before the end of the third
week following the week in question.

A weekly rest period shall start no later than at the end of six 24-hour
periods from the end of the previous weekly rest period.

§8.9. A weekly rest period that falls in two weeks may be counted in either
week, but not in both.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 29 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000e0000 0000000000000 [e]e}

Let’s break it down...

® Regular weekly rest: > 45 hours

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000e0000 0000000000000 [e]e}

Let’s break it down...

® Regular weekly rest: > 45 hours

® Reduced weekly rest: > 24 hours

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30/49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000e0000 0000000000000 [e]e}

Let's break it down...

® Regular weekly rest: > 45 hours
® Reduced weekly rest: > 24 hours

® FEach rest period is assigned to only one week it intersects

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30/49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000e0000 0000000000000 [e]e}

Let's break it down...

Regular weekly rest: > 45 hours

Reduced weekly rest: > 24 hours

Each rest period is assigned to only one week it intersects

Every week must have a regular or reduced weekly rest

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30/49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000e0000 0000000000000 [e]e}

Let's break it down...

Regular weekly rest: > 45 hours

® Reduced weekly rest: > 24 hours

® FEach rest period is assigned to only one week it intersects
® Every week must have a regular or reduced weekly rest

® Every other week must have a full weekly rest

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30/49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000e0000 0000000000000 [e]e}

Let's break it down...

Regular weekly rest: > 45 hours

Reduced weekly rest: > 24 hours

Each rest period is assigned to only one week it intersects

Every week must have a regular or reduced weekly rest

Every other week must have a full weekly rest

Any reduced rest must be compensated by a continuous block in the
following three weeks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 30/49

On software certification Certification in action Model Checking Looking ahead
O00000000000000 0000000000000 0e000

0000000000000 oo

Combinatorics of rest assignments

Can we assign a week to each rest period so that each week is assigned to
at least one rest period?

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 31/49

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000e000 0000000000000 [e]e}

Combinatorics of rest assignments

Can we assign a week to each rest period so that each week is assigned to
at least one rest period?

In principle this is an NP problem (assign 0 or 1 to each rest period

according to whether it should belong to the earlier week or the later
week).

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 31/49

On software certification
000000000000000

Certification in action
0000000000000 00e00

Model Checking

Looking ahead
0000000000000

oo

Non-locality of compensations

A

v o444 Ty
lllegal

J.J. Joosten (UB)

45

Formally Verified Software

24 v 45 o

Groningen, May 18

On software certification
000000000000000

Certification in action
0000000000000 00e00

Non-locality of compensations

Model Checking
0000000000000

oo

A | B
v 44 v 45 45 v 45 24 45
Illegal

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18

Looking ahead

32/49

On software certification

Certification in action
000000000000000

Model Checking
0000000000000 00e00

Looking ahead
0000000000000

oo

Non-locality of compensations

A | | | J B
v 44 TV 45 v 45 ¥ 45 v 24 Ty 45 Ty
lllegal

v 44 ¥ 45 ¥ 4411 v a5 Vv 24 V4511
Legal

LA S N J B

v 44 Va5 T 45 v 24 v 45 o

This can be iterated indefinitely: non-locality

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 32/49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis
® |[s the regulation consistent?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis

® |[s the regulation consistent?
® |s the implied behaviour of the regulation desirable?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis
® |[s the regulation consistent?
® |s the implied behaviour of the regulation desirable?
® Shift-invariance of labelling, locality of legality checks, etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis
® |[s the regulation consistent?
® |s the implied behaviour of the regulation desirable?
® Shift-invariance of labelling, locality of legality checks, etc.
® But also: if x and y are similar data containers (e.g., formal repr. of
persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

J.J. Joosten (UB)

Groningen, May 18 33/49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis
® |[s the regulation consistent?
® |s the implied behaviour of the regulation desirable?
® Shift-invariance of labelling, locality of legality checks, etc.
® But also: if x and y are similar data containers (e.g., formal repr. of

persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

® Are the algorithms implied computationally feasible?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis
® |[s the regulation consistent?
® |s the implied behaviour of the regulation desirable?

® Shift-invariance of labelling, locality of legality checks, etc.

® But also: if x and y are similar data containers (e.g., formal repr. of
persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

® Are the algorithms implied computationally feasible?

® Implement software in a ZERO-ERROR fashion using proof assistants.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis
® |[s the regulation consistent?
® |s the implied behaviour of the regulation desirable?

® Shift-invariance of labelling, locality of legality checks, etc.

® But also: if x and y are similar data containers (e.g., formal repr. of
persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

® Are the algorithms implied computationally feasible?
® Implement software in a ZERO-ERROR fashion using proof assistants.

® Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 33 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 0000000000000000e0 0000000000000 [e]e}

Lab activities

® Regulation analysis via logical/mathematical analysis

® |[s the regulation consistent?
® |s the implied behaviour of the regulation desirable?

® Shift-invariance of labelling, locality of legality checks, etc.

® But also: if x and y are similar data containers (e.g., formal repr. of
persons) with the only difference that x has one passport and y has
two passports, will the program behave the same for x and y?

® Are the algorithms implied computationally feasible?
® Implement software in a ZERO-ERROR fashion using proof assistants.
® Develop general purpose models with the above considerations taken
into account so that zero-error software scales.

® Provide verified software with a dialogue fragment that enables a
possible rudimentary dialogue between the user and the software
about the software's behaviour

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language
® conversion of lambda-terms to ones using in these
ontologies/constructors

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language
® conversion of lambda-terms to ones using in these
ontologies/constructors

® Zero-knowledge certificates for proprietary software!

J.J. Joosten (UB) Groningen, May 18 34 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language
® conversion of lambda-terms to ones using in these
ontologies/constructors
® Zero-knowledge certificates for proprietary software!
e Standards and good practices for public certification.

J.J. Joosten (UB) Groningen, May 18 34 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language
® conversion of lambda-terms to ones using in these
ontologies/constructors
® Zero-knowledge certificates for proprietary software!
e Standards and good practices for public certification.
e A formal subset of natural language (domain specific) to bridge the
gap between formal specifications and technical specifications (public

certification)

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language
® conversion of lambda-terms to ones using in these
ontologies/constructors
Zero-knowledge certificates for proprietary software!
e Standards and good practices for public certification.
A formal subset of natural language (domain specific) to bridge the
gap between formal specifications and technical specifications (public
certification)
Teaching courses on formal verification/certification techniques (and
consulting)

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language
® conversion of lambda-terms to ones using in these
ontologies/constructors

® Zero-knowledge certificates for proprietary software!

e Standards and good practices for public certification.

e A formal subset of natural language (domain specific) to bridge the
gap between formal specifications and technical specifications (public
certification)

® Teaching courses on formal verification/certification techniques (and
consulting)

® Adding to Coq development and libraries

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language
® conversion of lambda-terms to ones using in these
ontologies/constructors

® Zero-knowledge certificates for proprietary software!

e Standards and good practices for public certification.

e A formal subset of natural language (domain specific) to bridge the
gap between formal specifications and technical specifications (public
certification)

® Teaching courses on formal verification/certification techniques (and
consulting)

® Adding to Coq development and libraries

e Study impact of techniques on society and ethical/legal principles,
e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 00000000000000000e 0000000000000 [e]e}

Lab activities

® Develop explanatory certificates by
® choosing ontologies of the right granularity to define semi-formal
language
® conversion of lambda-terms to ones using in these
ontologies/constructors

® Zero-knowledge certificates for proprietary software!

e Standards and good practices for public certification.

e A formal subset of natural language (domain specific) to bridge the
gap between formal specifications and technical specifications (public
certification)

® Teaching courses on formal verification/certification techniques (and
consulting)

® Adding to Coq development and libraries

e Study impact of techniques on society and ethical/legal principles,
e.g., Accessibility, Accountability, Transparency, Equality,
Contestability, etc

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 34 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 ©000000000000 oo

The central computational problem of algorithmic law

(Work and slides with Moritz Miiller)
Need to formalize activity sequences and laws

e formalize activity sequences are words w € £* over a finite alphabet
e.g, dddrrw formalizes 6 minutes of activities in ¥ = {d, r, w}.
® formalize a law by a sentence in a suitable logic L.

Need algorithm that decides the computational problem
MC(Z*, L)
Input: a word w € X* and a sentence ¢ € L
Problem: is w legal according to ¢, i.e. w =@ ?

MC(X*, L) is a formal model for algorithmic law (on activity sequences).
Question For which L is it good?

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 35 /49

On software certification

Certification in action Model Checking
000000000000000

Looking ahead
000000000000000000 0@00000000000

oo

Candidate: monadic second order logic

Starting point
Borges, Conejero, Fernandez-Duque, Gonzélez, Joosten.

To drive or not to drive: A logical and computational analysis of European
transport regulations. Information and Computation 280, 2021.
e naturally formalizes Regulation 561.

e model-checking in time f(|¢|) - |w|, Parameterized Complexity
where f : N — N is some computable function.
e but f grows very fast:

Theorem (Frick, Grohe 04)
Assume P # NP. Then MC(X*,MSO) is not decidable in time

Flel) - lw|°®)

for elementary f : N — N.

Hence MSO is not sufficiently tractable.

J.J. Joosten (UB) Formally Verified Software

Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0080000000000 oo

Candidate: linear time temporal logic

Model-checking in time O(|¢| - |w|), but not sufficiently expressive and not
sufficiently succinct (BRFB21)

Example Article 6.2: The weekly driving time shall not
exceed 56 hours

Straightforwardly formalized over words of length 1w: disjunction of

/\ng (/\rdgiddﬂ O'=d A /\€d§i<rd Oid)

for all D < 1w and
alln =0/l <nn<---<flp <rp<{fpy1:=1w with
> (5 —¢;) < 56h
1<j<D
This has > (72%0) > 102784 many disjuncts.
Warning
Algorithmic laws could use large constants for time constraints.
Model-checking complexity should scale well with them.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 37 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 oo

Which MC(X*, L) are good models for algorithmic law?

Tractability
sufficiently fast model-checkers
fine-grained complexity analysis: parameterized complexity theory
important parameter: large time constants in law

Expressivity
test case: formalize Regulation 561
Naturality

readable sentences
sufficiently succinct

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 38/49

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000800000000 oo

Stopwatch automata . syntax

Stopwatch automaton A
Q finite set of states including start, accept
X finite set of stopwatches
Amapsqge€ Q toA(g) €L
B maps x € X to bound f(x) € N
(is the set of (x,q) € X x Q such that x is active in q
A s the set of transitions (q, g, o, q')
where q,q' € Q, g is a guard, « is an action.

Assignment £ maps x € X to {(x) < ((x)
Guard g is a set of assignments
Action @ maps assignments to assignments

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 39 /49

On software certification Certification in action Model Checking

Looking ahead
000000000000000 000000000000000000 0000000000000

oo

Stopwatch automata : semantics

Transition system of A
configurations (q, &)
switch edges (q,€) > (q',€")
whenever (q,8,0,q') € A, § € g, § = a(§)
stay edges (q,€) = (q,€)
where ' increases &(x) for x active in g to min{&(x)+t, B(x)}
. to—
Computation (qo, $0) = (q1,&1) = (q2,&2) 3 -+ =" (qr, &)
reads w := A(qo)® A(q1)™ -~ A(ge—1)"
accepts if qo = start, & =0, qy = accept, q; # accept for i < £.

J.J. Joosten (UB) Formally Verified Software

Groningen, May 18 40/ 49

On software certification

Certification in action Model Checking
000000000000000

00000000000 0000000

Looking ahead
000000000000 (e]e)

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

[break
—

(drive,00) = (drive,30) > (break,30) > (break,32) > (work,32) >
(break, 30)
reads dddrr

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 41 /49

On software certification

Certification in action Model Checking
000000000000000

00000000000 0000000

Looking ahead
000000000000 (e]e)

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

[break
—

(drive,00) = (drive,30) > (break,30) > (break,32) > (work,32) >
(break, 30)
reads dddrr

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 41 /49

On software certification

Certification in action Model Checking
000000000000000

00000000000 0000000

Looking ahead
000000000000 (e]e)

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

[break
—

(drive,00) > (drive,30) > (break,30) > (break,32) > (work,32) >
(break, 30)
reads dddrr

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 41 /49

On software certification

Certification in action Model Checking
000000000000000

00000000000 0000000

Looking ahead
000000000000 (e]e)

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

[break
—

(drive,00) > (drive,30) > (break,30) 3 (break,32) > (work,32) >
(break, 30)
reads dddrr

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 41 /49

On software certification

Certification in action Model Checking
000000000000000

00000000000 0000000

Looking ahead
000000000000 (e]e)

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

[break
—

(drive,00) > (drive, 30) > (break,30) 3 (break,32) > (work,32) >
(break, 30)
reads dddrr

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 41 /49

On software certification

Certification in action Model Checking
000000000000000

00000000000 0000000

Looking ahead
000000000000 (e]e)

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

[break
—

(drive,00) = (drive,30) > (break,30) > (break,32) > (work,32) %
(break, 30)
reads dddrr

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 41 /49

On software certification

Certification in action Model Checking
000000000000000

00000000000 0000000

Looking ahead
000000000000 (e]e)

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

[break
—

(drive,00) = (drive,30) > (break,30) > (break,32) > (work,32) >
(break, 30)
reads dddrr

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 41 /49

On software certification

Certification in action Model Checking
000000000000000

00000000000 0000000

Looking ahead
000000000000 (e]e)

Example: continuous driving

Article 7 (1st part): After a driving period of four and a

half hours a driver shall take an uninterrupted break of
not less than 45 minutes,...

[break
—

(drive,00) = (drive, 30) > (break,30) > (break,32) > (work,32) >
(break, 30)
reads dddrr

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 41 /49

On software certification
000000000000000

Certification in action
000000000000000000

Model Checking
0000000800000

Looking ahead
oo

Automaton that accepts exactly the legal words according

to Reg. 561

drive other work

Teds Tdays
Tdds Tweeks

Lww; Tday,
Tuweek
4

Twu Tdw
IS

™

reg daily

[WAN

break Tdr; Tday,

Lweek

red daily

iy
compensatel reg weekly
Ter; Tday, Twry Tdays
Tuweek Lweck
—
compensate2 red weekly
G, By Turs Tdays
Tweek Tuweek

Tdrs Tdays

Tweek

J.J. Joosten (UB)

week

Tweeks Tday

)
accept

Formally Verified Software

12 states

> 100 transitions

34 stopwatches

23 are nowhere active:
bits
counters
registers

Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000080000 oo

> 100 transitions

8 .4 <45h
Tday S 15h
9 < xgq < 10h
Cdd < 2

drive > reg. daily

a0

Tdd = 0

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 43 /49

On software certification Certification in action Model Checking
000000000000000 000000000000000000 0000000000000

Expressivity and model-checking

Theorem

A set of words is accepted by an SWA iff it is definable in MSO.
Theorem

There is an algorithm that decides

Input: stopwatch automaton A and a word w over
Problem: does A accepts w 7

in time
O(JA]2 -t |w|)
where

t := largest stopwatch bound of A
x := number of stopwatches of A

.J. Joosten (UB) Formally Verified Software

Groningen, May 18

Looking ahead
oo

44/ 49

On software certification

Certification in action Model Checking
000000000000000

Looking ahead
000000000000000000 0000000000000

oo

Consistency-checking

Theorem

There is an algorithm that decides
Input: SWAs A, B
Problem: is there a word accepted by both A and B 7

in time
O(|A]® - [B® - t*-)

where
t := largest stopwatch bound of A
x := number of stopwatches of A
s := largest stopwatch bound of B
y := number of stopwatches of B

.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 45 /49

On software certification Certification in action

Model Checking Looking ahead
000000000000000 000000000000000000

0000000000080 oo

Scheduling

Theorem
There is an algorithm that decides
Input: SWA A, letter a€ ¥, word w over ¥, n € N

Problem: compute length n word v over ¥ such that
A accepts wv

v maximizes #a4(v)
in time
O(IAl? -t (Jw| + n))
where

t := largest stopwatch bound of A
x := number of stopwatches of A

. Joosten (UB) Formally Verified Software

Groningen, May 18 46 /49

On software certification

Certification in action Model Checking
000000000000000

Looking ahead
000000000000000000

000000000000 e oo

Lower bound

Know: MC(X*, SWA) decidable in time O(|A[* - t* - |w|)
Doubt: Is t* tolerable? Can it be improved?

Interesting instances have large t and small x.
Question: replace t* by 100100 . +100 2

Theorem
Assume FPT # WJ1]. Let f : N — N be a computable function.
Then MC(X*, SWA) cannot be decided in time
o(1
(JA] - () - £ |wl) .

Question: Can we hardwire large constants in the data structure using
Hybrid Modal Logic?

J.J. Joosten (UB)

Formally Verified Software

Groningen, May 18 47 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 [1]

Some further development

® Study if data-representation can improve complexity of model
checking;

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 [1]

Some further development

e Study if data-representation can improve complexity of model
checking;

® Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 [1]

Some further development

e Study if data-representation can improve complexity of model
checking;

® Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

® Formally verify the meta-theorems of model checking;

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 [1]

Some further development

Study if data-representation can improve complexity of model
checking;

Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

Formally verify the meta-theorems of model checking;

Write a formally verified implementation of the model checker;

J.J. Joosten (UB) Formally Verified Software Groningen, May 18

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 [1]

Some further development

e Study if data-representation can improve complexity of model
checking;

® Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

® Formally verify the meta-theorems of model checking;
® Write a formally verified implementation of the model checker;

® Provide a front-end interface to build your law yourself;

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 [1]

Some further development

e Study if data-representation can improve complexity of model
checking;

® Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

® Formally verify the meta-theorems of model checking;
® Write a formally verified implementation of the model checker;
® Provide a front-end interface to build your law yourself;

® Translate automata to semi-natural language description of the
regulation;

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 [1]

Some further development

e Study if data-representation can improve complexity of model
checking;

® Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

® Formally verify the meta-theorems of model checking;
® Write a formally verified implementation of the model checker;
® Provide a front-end interface to build your law yourself;

® Translate automata to semi-natural language description of the
regulation;

® etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 /49

On software certification Certification in action Model Checking Looking ahead
000000000000000 000000000000000000 0000000000000 [1]

Some further development

e Study if data-representation can improve complexity of model
checking;

® Define/carve out a language that corresponds naturally to bounded
stopwatch automata;

® Formally verify the meta-theorems of model checking;
® Write a formally verified implementation of the model checker;
® Provide a front-end interface to build your law yourself;

® Translate automata to semi-natural language description of the
regulation;

® etc.

® etc.

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 48 /49

On software certification Certification in action Model Checking Looking ahead
0000000000000 00 00000000000 0000000 0000000000000 oce

Thanks

J.J. Joosten (UB) Formally Verified Software Groningen, May 18 49 /49

	On software certification
	Certification in action
	Model Checking
	Looking ahead

