
Joost J. Joosten
Associate Professor

University of Barcelona

21 OCTOBER 2O2O

WELCOME

3

 Could logic be of any help?

Driving data is corrupted;

Legal enforcement software flawed;

Certain legal texts at the best ambiguous;

And possibly not consistent or coherent.

THE REGULATIONS ARE LOCALLY
STRICTLY STIPULATED BUT:

4

Mathematical logic can check laws with clear-cut ontologies for

Consistency;

Mathematical logic can check laws with clear-cut ontologies for

Consistency;

Tractability;

3

3

Mathematical logic can check laws with clear-cut ontologies for

Consistency;

Tractability;

Meeting physics constraints;

3

Mathematical logic can check laws with clear-cut ontologies for

Consistency;

Tractability;

Meeting physics constraints;

Certificate that software meets the specification.

4

OUTLINE OF MY TALK:

4

OUTLINE OF MY TALK:

Intro

4

OUTLINE OF MY TALK:

Intro

Bugs in Software

4

OUTLINE OF MY TALK:

Intro

Our programming paradigm

Bugs in Software

4

OUTLINE OF MY TALK:

Intro

Our programming paradigm

Our first application:
Formally Verified Time Library

Bugs in Software

4

OUTLINE OF MY TALK:

Intro

Our programming paradigm

Our first application:
Formally Verified Time Library
The future ahead of us

Bugs in Software

5

Critical software should be error-free!

6

How to be sure that legal software is fair?

AI in society and law

6

How to be sure that legal software is fair?

How to be sure that legal software is
exactly doing what it says it is doing?

AI in society and law

6

How to be sure that legal software is fair?

How to be sure that legal software is
exactly doing what it says it is doing?

How to provide full legal transparency
to legal software without necessarily
disclosing the proprietary source code?

AI in society and law

7

Imperative programming was the first paradigm to be used
when computers where invented.

IMPERATIVE PARADIGM.

It is close to the machine and it gives sequential imperative instructions:

7

Imperative programming was the first paradigm to be used
when computers where invented.

IMPERATIVE PARADIGM.

It is close to the machine and it gives sequential imperative instructions:

Store this number in the memory.

7

Imperative programming was the first paradigm to be used
when computers where invented.

IMPERATIVE PARADIGM.

It is close to the machine and it gives sequential imperative instructions:

Store this number in the memory.

Move this number to another location in the
memory.

7

Imperative programming was the first paradigm to be used
when computers where invented.

IMPERATIVE PARADIGM.

It is close to the machine and it gives sequential imperative instructions:

Store this number in the memory.

Move this number to another location in the
memory.

Repeat process while some condition holds.

7

Imperative programming was the first paradigm to be used
when computers where invented.

IMPERATIVE PARADIGM.

It is close to the machine and it gives sequential imperative instructions:

Store this number in the memory.

Move this number to another location in the
memory.

Repeat process while some condition holds.

Etc.

8

Functional programming is a more advanced paradigm that
 is close to the mathematical language.

FUNCTIONAL PARADIGM.

We do not tell the computer how to operate.
Rather, we tell the computer what the mathematical definitions are.

8

Functional programming is a more advanced paradigm that
 is close to the mathematical language.

FUNCTIONAL PARADIGM.

We do not tell the computer how to operate.
Rather, we tell the computer what the mathematical definitions are.

8

Functional programming is a more advanced paradigm that
 is close to the mathematical language.

FUNCTIONAL PARADIGM.

Advantage: We can easily reason about our programs and prove their correctness.

We do not tell the computer how to operate.
Rather, we tell the computer what the mathematical definitions are.

9

TEST CASE: SORTING ALGORITHM

FOR INSTANCE, APPLYING QUICKSORT TO [2,6,1,7] GIVES [1,2,6,7]

Quicksort is an efficient algorithm which sorts lists of numbers in lexicographical order.

10

IMPERATIVE VS FUNCTIONAL

(A) Titulo: ​Imperative paradigm.
Texto: ​Imperative programming was the first paradigm to be used when computers where
invented. It is close to the machine and it gives sequential imperative instructions:

- Store this number in the memory.
- Move this number to another location in the memory.
- Repeat process while some condition holds
- Etc.

Añadir imagen: old_pc.png y ite.png

(B) Titulo: ​Functional paradigm.
 ​ Texto:​ Functional programming is a more advanced paradigm that is close to the
mathematical language. We do not tell the computer ​how to operate​. Rather, we tell the
computer what the mathematical definitions are.

Advantage​: We can easily reason about our programs and prove their correctness.

(C) Titulo:​ Test case: sorting algorithm.
Texto:​ Quicksort is an efficient algorithm which sorts lists of numbers in

lexicographical order.

Añadir quicksort.gif

For instance, applying quicksort to [2,6,1,7] gives [1,2,6,7].

(D) Titulo:​ Imperative vs functional
Descripción: Esta diapo debería contener dos cajas con código, una al lado de la
otra (2 columnas).

Contents of code Box 1:
algorithm​ quicksort(A, lo, hi) ​is
 ​if ​ lo < hi ​then
 p := partition(A, lo, hi)

 quicksort(A, lo, p)

 quicksort(A, p + 1, hi)

algorithm ​ partition(A, lo, hi) ​is
 pivot := A[⌊(hi + lo) / 2⌋]
 i := lo - 1

 j := hi + 1

 ​loop forever
 ​do
 i := i + 1

 ​while ​ A[i] < pivot
 ​do
 j := j - 1

 ​while ​ A[j] > pivot
 ​if ​ i ≥ j ​then
 ​return​ j
 swap A[i] with A[j]

IMPERATIVE CODE:

10

IMPERATIVE VS FUNCTIONAL

(A) Titulo: ​Imperative paradigm.
Texto: ​Imperative programming was the first paradigm to be used when computers where
invented. It is close to the machine and it gives sequential imperative instructions:

- Store this number in the memory.
- Move this number to another location in the memory.
- Repeat process while some condition holds
- Etc.

Añadir imagen: old_pc.png y ite.png

(B) Titulo: ​Functional paradigm.
 ​ Texto:​ Functional programming is a more advanced paradigm that is close to the
mathematical language. We do not tell the computer ​how to operate​. Rather, we tell the
computer what the mathematical definitions are.

Advantage​: We can easily reason about our programs and prove their correctness.

(C) Titulo:​ Test case: sorting algorithm.
Texto:​ Quicksort is an efficient algorithm which sorts lists of numbers in

lexicographical order.

Añadir quicksort.gif

For instance, applying quicksort to [2,6,1,7] gives [1,2,6,7].

(D) Titulo:​ Imperative vs functional
Descripción: Esta diapo debería contener dos cajas con código, una al lado de la
otra (2 columnas).

Contents of code Box 1:
algorithm​ quicksort(A, lo, hi) ​is
 ​if ​ lo < hi ​then
 p := partition(A, lo, hi)

 quicksort(A, lo, p)

 quicksort(A, p + 1, hi)

algorithm ​ partition(A, lo, hi) ​is
 pivot := A[⌊(hi + lo) / 2⌋]
 i := lo - 1

 j := hi + 1

 ​loop forever
 ​do
 i := i + 1

 ​while ​ A[i] < pivot
 ​do
 j := j - 1

 ​while ​ A[j] > pivot
 ​if ​ i ≥ j ​then
 ​return​ j
 swap A[i] with A[j]

IMPERATIVE CODE:

Contents of code Box 2:
algorithm​ ​quicksort (l : list) :=
 ​case ​ l ​of
 [] -> []

 [a] -> [a]

 (a :: as) -> quicksort [x ∈ l : x ≤ a] ++

 quicksort [a ∈ l: x > a]

(E) ​Titulo:​ Verification of functional code.
Descripción:​ ​La idea es reproducir el esquema de Slide5Schematic.pdf pero en
consonancia con el diseño general de la presentación.

(F) Titulo:​ Example theorems
Descripción:​ ​La idea seria que cada uno de los bloques de texto esten contenidos

en una caja.

Lemma leq_trans a b c : a <= b -> b <= c -> a <= c.

Proof. by elim: a b c => [|i IHn] [|b] [|c] //; apply: IHn b

c. Qed.

Lemma quicksort_correct : …

(G) Titulo:​ The goal

Descripción:​ ​La idea es reproducir el esquema de Slide4Pipelines.pdf pero en
consonancia con el diseño general de la presentación.

FUNCTIONAL CODE:

DEPENDENT TYPE THEORY CAN REASON ABOUT FUNCTIONAL
CODE AND CAN BE USED TO PROVE CORRECTNESS OF THE CODE

11

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

11

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

11

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

11

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

11

12

EXAMPLE THEOREMS

Contents of code Box 2:
algorithm​ ​quicksort (l : list) :=
 ​case ​ l ​of
 [] -> []

 [a] -> [a]

 (a :: as) -> quicksort [x ∈ l : x ≤ a] ++

 quicksort [a ∈ l: x > a]

(E) ​Titulo:​ Verification of functional code.
Descripción:​ ​La idea es reproducir el esquema de Slide5Schematic.pdf pero en
consonancia con el diseño general de la presentación.

(F) Titulo:​ Example theorems
Descripción:​ ​La idea seria que cada uno de los bloques de texto esten contenidos

en una caja.

Lemma​ leq_trans a b c ​: ​ a ​<= ​ b ​-> ​ b ​<= ​ c ​-> ​ a ​<= ​ c ​.
Proof ​. ​ ​by​ ​elim​: ​ a b c ​=> ​ ​[| ​i ​IHn ​] ​ ​[| ​b ​] ​ ​[| ​c ​] ​ ​//;

apply ​: ​ ​IHn​ b c ​. ​ ​Qed​.

Lemma​ quicksort_correct ​:

 forall ​ l ​,
 permutation l ​(​quicksort l ​)
 /\ ​ is_sorted ​(​quicksort l ​).

(G) Titulo:​ The goal

Descripción:​ ​La idea es reproducir el esquema de Slide4Pipelines.pdf pero en
consonancia con el diseño general de la presentación.

12

EXAMPLE THEOREMS

Contents of code Box 2:
algorithm​ ​quicksort (l : list) :=
 ​case ​ l ​of
 [] -> []

 [a] -> [a]

 (a :: as) -> quicksort [x ∈ l : x ≤ a] ++

 quicksort [a ∈ l: x > a]

(E) ​Titulo:​ Verification of functional code.
Descripción:​ ​La idea es reproducir el esquema de Slide5Schematic.pdf pero en
consonancia con el diseño general de la presentación.

(F) Titulo:​ Example theorems
Descripción:​ ​La idea seria que cada uno de los bloques de texto esten contenidos

en una caja.

Lemma​ leq_trans a b c ​: ​ a ​<= ​ b ​-> ​ b ​<= ​ c ​-> ​ a ​<= ​ c ​.
Proof ​. ​ ​by​ ​elim​: ​ a b c ​=> ​ ​[| ​i ​IHn ​] ​ ​[| ​b ​] ​ ​[| ​c ​] ​ ​//;

apply ​: ​ ​IHn​ b c ​. ​ ​Qed​.

Lemma​ quicksort_correct ​:

 forall ​ l ​,
 permutation l ​(​quicksort l ​)
 /\ ​ is_sorted ​(​quicksort l ​).

(G) Titulo:​ The goal

Descripción:​ ​La idea es reproducir el esquema de Slide4Pipelines.pdf pero en
consonancia con el diseño general de la presentación.

Contents of code Box 2:
algorithm​ ​quicksort (l : list) :=
 ​case ​ l ​of
 [] -> []

 [a] -> [a]

 (a :: as) -> quicksort [x ∈ l : x ≤ a] ++

 quicksort [a ∈ l: x > a]

(E) ​Titulo:​ Verification of functional code.
Descripción:​ ​La idea es reproducir el esquema de Slide5Schematic.pdf pero en
consonancia con el diseño general de la presentación.

(F) Titulo:​ Example theorems
Descripción:​ ​La idea seria que cada uno de los bloques de texto esten contenidos

en una caja.

Lemma​ leq_trans a b c ​: ​ a ​<= ​ b ​-> ​ b ​<= ​ c ​-> ​ a ​<= ​ c ​.
Proof ​. ​ ​by​ ​elim​: ​ a b c ​=> ​ ​[| ​i ​IHn ​] ​ ​[| ​b ​] ​ ​[| ​c ​] ​ ​//;

apply ​: ​ ​IHn​ b c ​. ​ ​Qed​.

Lemma​ quicksort_correct ​:

 forall ​ l ​,
 permutation l ​(​quicksort l ​)
 /\ ​ is_sorted ​(​quicksort l ​).

(G) Titulo:​ The goal

Descripción:​ ​La idea es reproducir el esquema de Slide4Pipelines.pdf pero en
consonancia con el diseño general de la presentación.

13

THE GOAL

Non-Verified
Sorting Algorithm

20, 14, 15, 21

8, 12, 14, 9

14, 15, 20, 21

8, 9, 14, 12

Verified
Sorting Algorithm

20, 14, 15, 21

8, 12, 14, 9

14, 15, 20, 21

8, 9, 12, 14

14

TIME MANAGEMENT IS IMPORTANT

14

TIME MANAGEMENT IS IMPORTANT

Time management is a crucial part of many industry projects.

14

TIME MANAGEMENT IS IMPORTANT

Time management is a crucial part of many industry projects.

We have developed our own verified library to be integrated in a bigger
project

14

TIME MANAGEMENT IS IMPORTANT

Time management is a crucial part of many industry projects.

We have developed our own verified library to be integrated in a bigger
project.

Bigger project: legal software involving time and durations

for example

full tachograph software.

15

SPECIFICATION

Mathematical definitions

Blueprint of the running sofware

Unambiguosly defines sofware intended behaviour

15

SPECIFICATION

Mathematical definitions

Blueprint of the running sofware

Unambiguosly defines sofware intended behaviour

Given a time in format Year- Month- Day- hour : minute : second,

obtain the number of seconds elapsed since 1970-01-01-00:00:00 until then

Mathematical definition:

15

SPECIFICATION

Given a time in format Year- Month- Day- hour : minute : second,

obtain the number of seconds elapsed since 1970-01-01-00:00:00 until then

Mathematical definition:

Mathematical definitions

Blueprint of the running sofware

Unambiguosly defines sofware intended behaviour

Different implementations might correspond to the same specification

Is not obvious when the implementation satisfies its specification

16

17

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

THEOREM TIMESTAMPE (LS:
LEAP SECONDS) (T : TIME LS) :
SORTED

<%O%O (UNZIP1 LS) -> ALL
VALID DATE (UNZIP1 LS) ->
TIMESTAMP

LS T = CALENDAR.TIMESTAMP
LS T.

DEFINITION TIMESTAMP

(LS : LEAP SECONDS) (RT :
RAWTIME) : NAT :=

LET DTS := DATESTAMP RT
* 86400%UINT INLET HTS :=
HOUR RT *

3600%UINT INLET MTS :=
MINUTE RT * 60%UINT IN
|(DTS%:Z + HTS+ MTS +
SECOND RT + OFFSET RD LS
RT)%R|.

PROOF.

MOVE=> LS_SORTED LS_
VALID.

BY REWRITE -[T IN LHS]
TIMESTAMP_ITERK ?ITER_
NEXT_TIMEK ?LEQ_ORD//

MAX_TIMEP.

QED.

LET TIMESTAMP RT =

LET DTS =

MULN (DATESTAMP (DATE_OF_
TIME RT)) (OF_UINT (D8 (D6 (D4
(D0 (D0

NIL)))))) IN

LET HTS = MULN RT.HOUR (OF_
UINT (D3 (D6 (D0 (D0 NIL))))) IN

...

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

18

TIME LIBRARY FUNCTIONALITY

Time Library is formally verified
with an ample functionality:

Conversion functions (4);

Shift functions (6);

Add functions (6);

Auxiliary functions (174).

19

TIME LIBRARY PROGRAMMING STATISTICS

Some statistics about the library and corresponding extraction:

Estimated programming hours 30.000 = 41 formal months;

Nr of lines of Coq code and proofs= 4114 (4821 incl. extraction directives);

Nr of lemmata/theorems = 190 (278 incl. extraction directives);

Nr of lines of extracted code = 1363 (down from an earlier (±) 100 MB)

A particularly hard function to deal with was yoe_of_doe

20

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

20

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

20

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

20

VERIFICATION OF FUNCTIONAL CODE

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

Specification

Coq

Ocaml

Code meeting
specification

Extracted Code

Proof of correctness

Code Extraction

20

THANK YOU!

