=
W
m
=
=
| &
]

" UNIVERSITAT o
il BARCELONA

Joost J. Joosten

Associate Professor

University of Barcelona

21 OCTOBER 2020

ﬁ[‘&— . EE EUROPEAN UNION
“FUTM:: Time Manager £ EUROPEAN REGIONAL
.. £ Fo Time Library o e DEVELOPMENT FUND
GURETRUCK e

i mn g x5 Bosch i Gimpera PNUDCJgTRRﬁE’S Il Generalitat
oS O e 7/\\ UNIVERSITAT pe BARCELONA Y - Ul de Catalunya

e alfjan

__."-," ' Pl P P 0 P K3 CaE T i ikl A i B S L G e B
4 vl e eseesserey L

é,-“ T P Y TR TR T P PR PR TE PR PR TR PRI P E PR PR RE TTE W |

o TR S e L .."-'._ ks

.!.‘:.--..'_ll,. ['.":“. 1 '."'. I -_-._l ':l.-".-l_”. _"'::I

r P : L el | FTEY Wy
LA 1955

| |

| |
N T =y e

u L M

- |

... |

- '\ubld- : - -
oy
= - -
""1-+.I1--.|..|_I‘_"lﬂ'. e, ar
e e el | .‘ﬁj L
T] e
] e A) g T

(S THE REGULATIONS ARE LOCALLY
STRICTLY STIPULATED BUT:

B Driving data is corrupted;

- B Legal enforcement software flawed;

B Certain legal texts at the best ambiguous;

B And possibly not consistent or coherent.

Could logic be of any help?

Mathematical logic can check laws with clear-cut ontologies for

(® Consistency;)

Mathematical logic can check laws with clear-cut ontologies for

(® Consistency;)

[- Tractability;)

Mathematical logic can check laws with clear-cut ontologies for

[® Consistency;)

[- Tractability;

[l Meeting physics constraints;

Mathematical logic can check laws with clear-cut ontologies for

[® Consistency;

[- Tractability;

__/ _/ \

[l Meeting physics constraints;

[l Certificate that software meets the specification.)

o
=
—_
S
=
=
o
L
=
—
o
—
o

N
=7 8
w’.\\ T

N

N
VOB

. Q\@Wv TN
M S5

P,

A
...W//»Ivbb«Ws.» LX;
, .| B .\A' (v

N

<
=
—_
S
=
=
o
L
=
—
o
—
o

O
S
e
=
|

v, 7 ..-.’ .‘ - N/I‘" MW“..‘IV‘M". ,,_,.,‘,‘,.
\.FCMWM»'“MF”/ <
2478 SR

RNy, ot AN
B L Lﬂﬂu%, NASE

\ /B
¥ X

=T

—ll

I/JVIV ANt
s i

st

<
=
—_
S
=
=
o
L
=
—
o
—
o

O
S
e
=
|

B Bugs in Software

e /-" /.m!hﬂud.lﬁ
% R /

Y
o, o Adﬂm s
i St £V

A4

WA
| X

=T

» 4 .wr RS I
i

<
=
—_
S
=
=
o
L
=
—
o
—
o

O
S
e
=
|

B Bugs in Software

B Our programming paradigm

2 ="
%) g&.@@w)

I, A N
v NE it
;. n.pa.f -~ g &g -\\ ,
R O B NS RS ‘
A~ P o ! "
MR ’\\u«r v.ﬁﬁa@mw. \
i ”_,,_‘, . o ;F ‘_,\u\nv‘ubﬁ y “FM.,MW b‘_m...m..mm_uu\ N
. s =])
N

WA
| X

<
=
—_
S
=
=
o
L
=
—
o
—
o

B Our programming paradigm
Formally Verified Time Library

B Bugs in Software
® Our first application:

O
S
e
=
|

] g
»..A,.\fl..\ -

lind)” -

Ny D M

5 G g
(LA
% SoaL

<} W ‘ R Y

_.___E_,,,,,., \« \7 ‘ s 4%’7//«L : VN

a R N R

A VAKX : d ﬂV\v g ;ﬂln......uﬁ it

B\ n e2\08 r.ﬁ.ﬂ@wm \
NS .m_z\, 7 xfu 4

<
=
—_
S
=
=
o
L
=
—
o
—
o

-

E O

2 Q

© -
5 .23
Q £ w
.) OE B
= ©
5 £ 88 ®©
mC.Ie
S =¥E c
£CESS
» 5 82 2
-3
cC O n= =
= £ L@ 5
OSpﬁmf
r O - =-C 0
= 353 I3 30 C
S mOOoLWw
A A A A |

,.~ o
»..A,.\fl..\ .

/ \\ / »%\..‘v’;\

Ny D M

5 G g
(LA

_ % 5 L = \ VY
a R N R
N AU o T 0
f_. .,,..) ’\\u«r ; Veﬁﬂ.@m&ﬂ “
NS .m_z\, 7 xfu 4

Al in society and law

[l How to be sure that legal software is fair?]

Al in society and law

How to be sure that legal software is fair?]

(»

’

How to be sure that legal software is
exactly doing what it says it is doing?

Al in society and law

[l How to be sure that legal software is fair?]

'® How to be sure that legal software is)
" exactly doing what it says it is doing?)
N

‘® How to provide full legal transparency
to legal software without necessarily
disclosing the proprietary source code?

N\

IMPERATIVE PARADIGM.

Imperative programming was the first paradigm to be used
when computers where invented.
It is close to the machine and it gives sequential imperative instructions:

IMPERATIVE PARADIGM.

Imperative programming was the first paradigm to be used
when computers where invented.
It is close to the machine and it gives sequential imperative instructions:

B Store this number in the memory.

IMPERATIVE PARADIGM.

Imperative programming was the first paradigm to be used
when computers where invented.
It is close to the machine and it gives sequential imperative instructions:

B Store this number in the memory.

B Move this number to another location in the
memory.

IMPERATIVE PARADIGM.

Imperative programming was the first paradigm to be used
when computers where invented.
It is close to the machine and it gives sequential imperative instructions:

B Store this number in the memory.

B Move this number to another location in the
memory.

B Repeat process while some condition holds.

IMPERATIVE PARADIGM.

Imperative programming was the first paradigm to be used
when computers where invented.
It is close to the machine and it gives sequential imperative instructions:

B Store this number in the memory.

B Move this number to another location in the

memory.

B Repeat process while some condition holds.

P Etc.

: IF

instruction

Fal T
-« i expression el
ELSE THEN 7

instruction

FUNCTIONAL PARADIGM.

Functional programming is a more advanced paradigm that

Is close to the mathematical language.
We do not tell the computer how to operate.

Rather, we tell the computer what the mathematical definitions are.

FUNCTIONAL PARADIGM.

Functional programming is a more advanced paradigm that

is close to the mathematical language.
We do not tell the computer how to operate.

Rather, we tell the computer what the mathematical definitions are.

FUNCTIONAL PARADIGM.

Functional programming is a more advanced paradigm that

is close to the mathematical language.
We do not tell the computer how to operate.

Rather, we tell the computer what the mathematical definitions are.

B Advantage: We can easily reason about our programs and prove their correctness.

TEST CASE: SORTING ALGORITHM

P Quicksort is an efficient algorithm which sorts lists of numbers in lexicographical order.

g = N
- ~]
\- ! = J

FOR INSTANCE, APPLYING QUICKSORT TO [2,6,1,7] GIVES [1,2,6,7]

IMPERATIVE VS FUNCTIONAL

IMPERATIVE CODE:

félgorithm quicksort (A, lo, hi) is
if lo < hi then
p := partition(A, lo, hi)
quicksort (A, 1lo, p)
quicksort (A, p + 1, hi)

algorithm partition(A, lo, hi) is

pivot := A[L(hi + lo) / 213
i := 1o -1
J := hi + 1
loop forever
do
i =1+ 1
while A[i1] < pivot
do
J o= 73 -1

while A[]j] > pivot

if i 2 j then
return j

swap A[i1i] with A[]]

~

10

IMPERATIVE VS FUNCTIONAL

IMPERATIVE CODE:

félgorithm quicksort (A, lo, hi) is
if lo < hi then
p := partition(A, lo, hi)
quicksort (A, 1lo, p)
quicksort (A, p + 1, hi)

algorithm partition(A, lo, hi) is

pivot := A[L(hi + lo) / 213
i := 1o -1
J := hi + 1
loop forever
do
i =1+ 1
while A[i1] < pivot
do
J o= 73 -1

while A[]j] > pivot

if i 2 j then
return j

swap A[i1i] with A[]]

FUNCTIONAL CODE:
/;goﬁﬂwnquicksort (1 : list) :=)
case 1 of
(1 -> []
[a] -> [a]
(a :: as) —-> quicksort [x € 1 : x £ a] ++
quicksort [a € 1: x > a]
_ J

DEPENDENT TYPE THEORY CAN REASON ABOUT FUNCTIONAL
CODE AND CAN BE USED TO PROVE CORRECTNESS OF THE CODE

10

VERIFICATION OF FUNCTIONAL CODE

VERIFICATION OF FUNCTIONAL CODE

VERIFICATION OF FUNCTIONAL CODE

VERIFICATION OF FUNCTIONAL CODE

Code Extraction

VERIFICATION OF FUNCTIONAL CODE

2 IT JAY

Specification Code meeting Proof of correctness
specification

C

oq

Ocaml

Extracted Code

i

11

EXAMPLE THEOREMS

Lemma leq trans a b c : a <= Db -> Db <= ¢ -> a <= c.
Proof. by elim: a b ¢ => [|i IHn] [|b] [lc] //;
apply: IHn b c. Qed.

12

EXAMPLE THEOREMS

Lemma leq trans a b c : a <=Db -> b <= ¢ -> a <= c.
Proof. by elim: a b ¢ => [|i IHn] [|b] [Ic] //;
apply: IHn b c. Qed.

Lemma quicksort correct
forall 1, B
permutation 1 (quicksort 1)
/\ 1s_sorted (quicksort 1).

12

THE GOAL

20, 14, 15, 21 |

8,12,14,9 1 |

20, 14, 15, 21 WI

4 N

Non-Verified
Sorting Algorithm

")

-

8,12,14,9 1 I

"

~

Verified
Sorting Algorithm

b

J

N

%>
>
>

14, 15, 20, 21 |

8,9, 14,12 |

14, 15, 20, 21 |

8,9,12, 14 |

13

TIME MANAGEMENT IS IMPORTANT

\\\III]' A

< T ?

Y 5545,

14

TIME MANAGEMENT IS IMPORTANT

[l Time management is a crucial part of many industry projects.

14

TIME MANAGEMENT IS IMPORTANT

4 A
® Time management is a crucial part of many industry projects.

. J

(® We have developed our own verified library to be integrated in a bigger)

L project)

14

TIME MANAGEMENT IS IMPORTANT

4 A

® Time management is a crucial part of many industry projects.
\ J
(® We have developed our own verified library to be integrated in a bigger)
L project.)
S

(» Bigger project: legal software involving time and durations

for example

full tachograph software.

14

SPECIFICATION

| Rec.WordF n —

4)
®» Mathematical definitions
® Blueprint of the running sofware
B Unambiguosly defines sofware intended behaviour
- J
| Rec.ArrayF t’ n, —
(fix array_of_word n from :=
match n with
| O = Modify (InitSliceWithCapacity ng) ~(vdst)
| S n’ =

(go_rec_type t?) (A —>

(array_of_word n’ (from + Rec.len t?’);
go_of_word t’ wvt’ wvsrc from;
Modify Append ~(vdst, vt?)))

>nd) n, from

| Rec.RecF fs —
(fix rec_of_word fs vdst from :=
match fs with

| [1] = Modify (@SetConst (Struct [1) tt) ~(vdst)
|

(_, £) :: f£fs’> =
(go rec tvpe £) (—

15

SPECIFICATION

Rec.WordF n —

Mathematical definitions
Blueprint of the running sofware
Unambiguosly defines sofware intended behaviour

Rec.ArrayF t’ n, —

N [R
9|\~ ¥ ¥ 9 | —

Given a time in format Year- Month- Day- hour : minute : second,

obtain the number of seconds elapsed since 1970-01-01-00:00:00 until then

Mathematical definition:
timestamp(T) := |{t: 1970-01-01-00:00:00 < t < T }|

5V_\J_L_v\l'u_l__/|. o v WOk L s _L_I_\JJ.J.J.,
Modify Append ~(vdst, vt?)))
) n, from
Rec.ReckF fs —

(rec_of_word fs wvdst from :=
fs
| [1] = Modify (@SetConst (Struct [1) tt)
| (_, £) :: £fs’ —

(go _rec tvpe f£) (—

~(wvdst)

15

SPECIFICATION

Rec.WordF n —

Mathematical definitions
Blueprint of the running sofware
Unambiguosly defines sofware intended behaviour

Rec.ArrayF t’ n, —

N [R
9|\~ ¥ ¥ 9 | —

Given a time in format Year- Month- Day- hour : minute : second,
obtain the number of seconds elapsed since 1970-01-01-00:00:00 until then

Mathematical definition:
timestamp(T) := |{t: 1970-01-01-00:00:00 < t < T }|

E)'_/ j . LU A BN e B o v VRS A N _L_I__IJ.J.J.,

Madd fxr Arnnend —(srde=+ v+ 23D

Different implementations might correspond to the same specification
Is not obvious when the implementation satisfies its specification

fs
| [= Modify (@SetConst (Struct []) tt) ~(vdst)
| (—} f) o fs? —

(go rec tvpe £) (—

15

Definition timestamp (ls : leap_seconds) (rt : rawTime)
nat :=

let Dts := datestamp rt * 86400%uint in

let hts := hour rt * 3600%uint in

let mts := minute rt * 60%uint in

| (Dts%:Z hts + mts + second rt + offset_rd 1ls rt)%RI.

>

Specification

THEOREM TIMESTAMPE (LS:
LEAP SECONDS) (T : TIME LS) :
SORTED

<%0%O0 (UNZIP1 LS) -> ALL
VALID DATE (UNZIP1 LS) ->
TIMESTAMP

LS T = CALENDAR.TIMESTAMP
LST.

DEFINITION TIMESTAMP

I1

Code meeting
specification

(LS : LEAP SECONDS) (RT :
RAWTIME) : NAT :=

LET DTS := DATESTAMP RT
* 86400%UINT INLET HTS :=
HOUR RT *

3600%UINT INLET MTS :=
MINUTE RT * 60%UINT IN
|(DTS%:Z + HTS+ MTS +
SECOND RT + OFFSET RD LS
RT)%R.

Code Extraction

Extracted Code

LET TIMESTAMP RT =
LET DTS =

MULN (DATESTAMP (DATE_OF_
TIME RT)) (OF_UINT (D8 (D6 (D4
(DO (DO

NIL)))) IN

LET HTS = MULN RT.HOUR (OF _
UINT (D3 (D6 (DO (DO NIL))))) IN

A

Proof of correctness

PROOF.

MOVE=> LS_SORTED LS_
VALID.

BY REWRITE -[T IN LHS]
TIMESTAMP_ITERK ?ITER_
NEXT_TIMEK ?LEQ_ORD//
MAX_TIMEP.

QED.

17

TIME LIBRARY FUNCTIONALITY

i Time Library is formally verified

with an ample functionality:
B Conversion functions (4);

® Shift functions (6);
» Add functions (6);
® Auxiliary functions (174).

N

~

18

TIME LIBRARY PROGRAMMING STATISTICS

-

Some statistics about the library and corresponding extraction:

B Estimated programming hours 30.000 = 41 formal months;

B Nr of lines of Coq code and proofs= 4114 (4821 incl. extraction directives);
» Nr of lemmata/theorems = 190 (278 incl. extraction directives);

B Nr of lines of extracted code = 1363 (down from an earlier (x) 100 MB)

A particularly hard function to deal with was yoe of doe

N

19

VERIFICATION OF FUNCTIONAL CODE

VERIFICATION OF FUNCTIONAL CODE

VERIFICATION OF FUNCTIONAL CODE

VERIFICATION OF FUNCTIONAL CODE

Code Extraction

VERIFICATION OF FUNCTIONAL CODE

2 IT JAY

Specification Code meeting Proof of correctness
specification

C

oq

Ocaml

Extracted Code

i

20

