Computational Complexity, II

1. For $A, B \subseteq \mathbf{N}$ let $A \oplus B$ denote $\{2 x: x \in A\} \cup\{2 x+1: x \in B\}$. Show: $A, B \leq_{p} A \oplus B$. Moreover, if $A, B \leq_{p} C$ then $A \oplus B \leq_{p} C$. (Compare with m-reducibility.)
2. Discuss nondeterministic Turing machines. Consider a restricted variant of nondeterminism, where a machine is allowed to choose between no more than two alternatives at each step. (Thus, a computation tree is binary.) Define the corresponding class of languages accepted in polynomial time. Is it the same as NP?
3. Let $L=\left\{\left\langle M, x, 1^{t}\right\rangle: M\right.$ is a nondeterministic Turing machine that accepts x in $\leq t$ steps $\}$. Show that L is an $N P$-complete language.
4. (Huiswerk) Show that if $P=N P$ then a polynomial time algorithm exists that for a boolean formula finds a satisfying assignment, if it is satisfiable, and says 'NO' if it is not. (Thus, this algorithm delivers more information than just a decision algorithm for SAT.)
5. Show that the set of all boolean formulas that have at least two different satisfying assignments is $N P$-complete.
6. Consider the set of all graphs with a 4 -clique. Is it in $N P$? Is it in P ?
