Computational Complexity, I

1. Determine which of the following relations hold: $3^{n}=2^{O(n)}, \log _{2}(n)=$ $o(n), n^{2}=O\left(n \log _{2}(n)\right), 1 / n=o(1), n=o(2 n)$.
2. Analyse your favourite algorithm for sorting a string of numbers of length n in terms of the number of required comparisons. Express the result using ' O ' and/or ' o ' notation. (*) Invent an algorithm that requires only $O(n \log n)$ comparisons.
3. $\operatorname{GCD}(m, n)$ is the greatest d that divides both m and n. Analyse the time and space complexity of the Euclidean algorithm to find $\operatorname{GCD}(m, n)$. (The numbers m and n have decimal representations.) Is it polynomial?
4. Show that any TM is polynomially equivalent to a TM with the tape alphabet $\{0,1, \sqcup\}$.
5. Show that the size of a graph representation by an adjacency matrix is polynomial in its number of vertices. What about a representation by the lists of vertices and edges? (See Sipser, p. 237.)
6. A graph G is connected if any two vertices in G can be connected by a path. Show that testing connectivity of a graph is in P.
7. Show that P as a class of languages is closed under union, intersection, concatenation and complementation.
8. Show that graph isomorphism testing is in $N P$. (It is an open problem if it is in P.)
9. Problem No. 7.33 from Sipser.
10. (Huiswerk) Show that testing whether a graph has a cycle is in P.
