
Computational Complexity, I

1. Determine which of the following relations hold: 3n = 2O(n), log2(n) =
o(n), n2 = O(n log2(n)), 1/n = o(1), n = o(2n).

2. Analyse your favourite algorithm for sorting a string of numbers of
length n in terms of the number of required comparisons. Express
the result using ‘O’ and/or ‘o’ notation. (∗) Invent an algorithm that
requires only O(n log n) comparisons.

3. GCD(m,n) is the greatest d that divides both m and n. Analyse
the time and space complexity of the Euclidean algorithm to find
GCD(m,n). (The numbers m and n have decimal representations.)
Is it polynomial?

4. Show that any TM is polynomially equivalent to a TM with the tape
alphabet {0, 1,t}.

5. Show that the size of a graph representation by an adjacency matrix is
polynomial in its number of vertices. What about a representation by
the lists of vertices and edges? (See Sipser, p. 237.)

6. A graph G is connected if any two vertices in G can be connected by a
path. Show that testing connectivity of a graph is in P .

7. Show that P as a class of languages is closed under union, intersection,
concatenation and complementation.

8. Show that graph isomorphism testing is in NP . (It is an open problem
if it is in P .)

9. Problem No. 7.33 from Sipser.

10. (Huiswerk) Show that testing whether a graph has a cycle is in P .


