Turing machines and Computability, II

- 1. Assume $f : \mathbf{N} \to \mathbf{N}$ is computable and $X \subseteq \mathbf{N}$ is decidable. Will $f(X) = \{f(x) : x \in X\}$ and $f^{-1}(X) = \{x : f(x) \in X\}$ be decidable?
- 2. For $A, B \subseteq \mathbb{N}$ let $A \oplus B$ denote $\{2x : x \in A\} \cup \{2x + 1 : x \in B\}$. Show: $A, B \leq_m A \oplus B$. Moreover, if $A, B \leq_m C$ then $A \oplus B \leq_m C$.
- 3. There are A, B such that $A \not\leq_m B$ and $B \not\leq_m A$.
- 4. Is the set of (codes of) TM's that compute total functions decidable? Is it r.e.?
- 5. Consider the set of all TM's $\{0,1\}^* \to \{0,1\}^*$ whose running time on inputs of length n is bounded by 2^n . Is it decidable?
- 6. Show: every regular language is decidable. (*) What about context-free languages?
- 7. Acceptor TM's *M* and *N* are called *equivalent*, if they accept the same language. Is the problem of equivalence of TM's decidable? What about the equivalence problem for finite deterministic automata?
- 8. Show that the fragment of FOL (first order logic) in the language with just a single one-place predicate symbol P(x) is decidable.
- 9. (Huiswerk) Let $\phi_e : \mathbf{N} \to \mathbf{N}$ denote the partial function computable by a TM with a code e. Consider the following two sets:

$$A = \{ x : \phi_x(x) = 0 \}, \quad B = \{ x : \phi_x(x) = 1 \}.$$

Show: (a) A and B are r.e.; (b) there is no decidable set C such that $A \subseteq C$ and $B \subseteq \mathbf{N} \setminus C$. Such sets are called *recursively inseparable*.