
Turing machines and Computability, I

Construct explicit Turing machines for the following functions:

1. Neg : {0, 1}∗ → {0, 1}∗ , where Neg(x) is obtained from x by replacing
the symbols 0 by 1 and 1 by 0.

2. Even : {0, 1}∗ → {0, 1}, accepting a word x iff x has an even number of
symbols.

3. (Unary addition) Add : {0, 1}∗ → {1}∗ mapping

1 . . . 1︸ ︷︷ ︸
n times

0 1 . . . 1︸ ︷︷ ︸
m times

7−→ 1 . . . 1︸ ︷︷ ︸
n+m times

.

4. (Huiswerk) Inv : {0, 1}∗ → {0, 1}∗ rewriting a word x in reverse order.

Describe on the level of implementation:

5. Simulate any TM by a TM with the tape alphabet {0, 1,t}.

6. Invent a definition of a 2-dimensional Turing machine and show its
equivalence with a standard TM.

For the rest of your life you may use Church-Turing Thesis.

7. Show that the class of Turing recognizable (r.e.) languages is closed
under union, intersection, concatenation.

8. Prove: an infinite subset of N is decidable iff there is a TM enumerating
it in strictly increasing order.

9. Show: there is a language which is not r.e. Give an example.

10. Is there a language L such that neither L nor the complement of L is
r.e.? (∗) Give an example.1

11. There is a partial computable function f : N→ N which has no total
computable extension. (Try to play with the universal function.)

1(∗) means ‘a more difficult problem’.


