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Abstract

Our thesis focuses on the model-checking problem, which is at the heart of both
formal verification of software and algorithmic law. In general, this computa-
tional problem consists of deciding whether a given structure fulfills a given
property expressed by a sentence in a logic1. These structures and logics can
take many forms.

We speak of algorithmic law whenever the application of that particular law
is intended to be performed by a computer on a data set representing a real
case. In the field of algorithmic law one needs an algorithm to decide whether
a particular real case is legal or not. For a model-checking approach, the law
is formalized by a sentence in some logic, whereas a case is viewed as a word
structure.

In the field of formal verification of software, whose goal is to test whether a
program works correctly, the verification task is naturally formalized as a model-
checking problem by associating a structure to every program, and a sentence
in a suitable logic to every desired property of the program [4].

The model-checking framework often allows to transform a complex and
informal question into the formally precise computational problem of whether
K ⊨ φ, where the input K is in some class of structures K and the input φ
is in some language L. As a result, it is of practical interest in many real-
world applications, providing both simple procedures and mathematical proofs
of correctness. Thus, the computational complexity of the mentioned problem
is of central importance.

In our thesis, we discuss different formalisms as inputs of the model-checking
problem to analyze their complexity. In particular, the model-checking problem
of linear-temporal properties is studied, both in the presence of discrete and
continuous time, with an automata-theoretic approach. The strategy in this
setting is to reduce questions about models and sentences, to questions about
automata, and then provide an answer using standard decision procedures for
automata.

1In our setting we view a logic abstractly as given by sets of sentences and a satisfaction
relation between structures and sentences. For example, sentences could be certain automata,
the structures certain words or timed words, and the satisfaction relation given by automaton
acceptance. Thereby, we follow the tradition of abstract model-theory and refer to [11] for a
formal set-up. In this thesis we use the term “logic” only informally and refrain from giving a
definition.
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We start by introducing a conceptual framework that is used throughout the
thesis. In particular, we define the Metric Interval Temporal Logic (MITL) and
its intepretation over real-time words called signals. Next, we give a presentation
of the translation from MITL formulas to a variant of timed transducers from
[14], where we elaborate many claims and sketches that occur in the paper
without further detail. This recent construction from Ferrere et al. stands out
for its simplicity and elegance, as opposed to cumbersome constructions based on
alternating automata or tableaux [15, 17]. Further, an study of the complexity
of the translation is offered, and a complexity analysis of MC(TA, MITL) for
Timed Automata (TA) over MITL sentences is provided.

The desire for even more expressive logics leads us to the class of Stopwatch
Automata (SWA), an extension of Timed Automata. Although the expressive
capacity of SWA is very appealing in the context of reasoning about durations,
the emptiness problem for SWA was unfortunately shown to be undecidable in
[18]. In [18], Henzinger et al. designed a very abstract setting, yielding general
results that provided little insight in the particular case of SWA. In the final
chapter we revisit [18] providing a simpler undecidability proof.
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Introduction

An algorithm is a set of precise instructions designed to perform a specific task.
Similar to a cooking recipe, algorithms are the basis of every executable code.
From smartphones and airplanes to medical devices and power plants, all types
of devices rely heavily on algorithms to perform automated processes that allow
them to function. Public administrations are increasingly using algorithmic
systems to speed up their decision-making processes and (hopefully) minimize
the risk of human errors. What taxes a person must pay, who is eligible for
financial aid and social services, and which school a child will attend are all
questions often answered by an algorithm with a level of efficiency that exceeds
human capabilities.

However, there is a catch: algorithms are intricate and, like any human cre-
ation typically prone to contain some errors. Even minor programming errors
can lead to unexpected outcomes and systematic failures [9]. Due to the the
large presence of software in our lives, the role of software verification has be-
come critical in error prevention and quality assurance. The so-called formal
verification techniques, which aim to provide mathematical proofs of software
correctness, are among the most reliable and recognized techniques for software
verification. Its most prominent exponent, the model-checking technique, was
introduced in the 1980s as a novel framework in the formal verification of con-
current systems by Clarke and Emerson [7] and, independently, by Queille and
Sifakis [25].

The challenge of these computer scientists was to find simple yet rigorous
methods of testing software correctness. To face this challenge, they established
a new theoretical framework where they conceived programs as finite structures
from a class of structures K, representing their possible computations, and de-
sirable properties (or specifications) as sentences in a formal language L. The
final ingredient was a model-checker, an algorithm decision whether the struc-
ture was a model of the sentence or not, through systematic inspection of all
states of the model.

In the field of law, the use of algorithms plays a fundamental role in so-called
algorithmic laws, whose application to a given case is executed by an algorithm.
The algorithm takes as input both a case and a law, and decides whether the
given case is legal according to the given law or not. To be presented as inputs
of an algorithm, both the case and the law have to be suitably formalised. As
before, we formalize a set of cases by a class of finite structures K and a law is
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Figure 0.0.1: Schematic view of model-checking in software verification [4].

translated into some formal language L.
Therefore, the model-checking approach to software verification and the

problem of algorithmic law, can be mathematically formalised into the same
class of computational problems, denoted by MC(K, L):

Input: K ∈ K, φ ∈ L

Problem: K ⊨ φ?

The automata-theoretic approach
The study of the correspondence between logics and classes of automata started
in the 60s with the work of Büchi [6], Elgot [12], McNaughton [23] and Rabin
[26], among others. Motivated by decision problems in mathematical logic,
they investigated relations between variants of second-order logic and automata
over infinite objects. In one of his most famous theorems, Büchi proved that
a fragment of second-order logic is expressively equivalent to finite automata,
by defining, for every formula φ, an automata Aφ that accepted exactly all
the models of φ. With this result, he paved the way to solving many decision
problems in mathematics and logic.

Over the last decades, establishing relations between logics and classes of
automata to solve computational problems has proven to be a fruitful strat-
egy. In the context of software verification, the behaviour of a program can
be represented by the set of all its computations. Moreover, computations are
sequences of states, whence they can be formalised as words over the alphabet
of propositions holding at each state. In this view, a program can be seen as a
formal language. Similarly, a specification is represented by a formula in some
logic, inducing the set of words that are models of the formula. We obtain that
formal languages are mathematical models of both programs and specifications.

Within this framework, the standard model-checking technique relies on a
translation from every formula φ in a suitable logic to an automaton Aφ accept-
ing precisely the words that satisfy the formula [31]. To test a certain property
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φ for a given system S, it is enough to compare the language of A¬φ to the set
of behaviours of the system, represented by AS . If any word in L(AS) happens
to be accepted by A¬φ, then the system doesn’t meet the specification and such
a word is a counterexample.

The above perspective allows to reduce the model-checking problem between
a system and a specification to a decision problem about automata. This ap-
proach can be applied in the context of algorithmic law too as we explain below,
with the help of an example.

The European transport Regulation 561 [13] limits driving times of european
truck drivers and imposes resting periods of various durations. The activities
of a driver are recorded by tachographs. Regulation 561 distinguishes three
activities that a driver can perform: driving, resting and other work. The time
that a driver can spend doing the same activity is regulated by a number of
complex quantitative rules, such as Article 6 (see Figure 0.0.2).

Because the size of the data set given by a tachograph can easily become
untractable to humans, Regulation 561 is a clear example of a law that needs
the help of an algorithm to be applied.

Figure 0.0.2: Example of algorithmic law from Regulation 561 [13].

If one wishes to check the compliance of a given article from Regulation 561
by a particular driver, one needs to formalize both the set of activities performed
by the driver, and the article. The first is naturally formalized as a sequence
of propositions from the set P = {drive, rest, other work} i.e. a finite word over
the alphabet Σ = {d, r, w}. For example the word ddddrrw describes 4 minutes
of driving, followed by 2 minutes of resting and then 1 minute of doing other
work.

A given article is typically formalised into a sentence in some logic L over P .
In general, we choose L depending on the particular features of the law to be
expressive enough while remaining computably tractable. Furthermore, every
sentence in the language of L should have a straightforward interpretation over
words as above. Therefore every sentence from the law can be viewed as a set
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of allowed words, i.e. a language over P .
Then, testing the legality of a case with respect to a law is equivalent to

checking whether the word w formalizing the case belongs to the language of
the automaton Aφ where φ ∈ L formalizes the law.

Model-checking real-time systems

The problem of model-checking linear-time properties in the presence of dis-
crete time has been widely studied [22, 4, 5, 7, 8]. In the discrete case, N is
commonly chosen as time domain and ω-words as semantic structures. To ex-
press properties of these structures, logics such as Linear Temporal Logic (LTL
hereafter) and Computation Tree Logic (CTL) are employed and a variety of
efficient translations from LTL formulas to finite automata have been proposed
[15, 16, 28, 19].

However, the situation in the case where R+
0 is chosen as time domain is

rather different [3, 21, 29]. Many variants of real-time logics and timed au-
tomata have been studied but correspondences among them are not so simple
and natural as in the discrete case.

We focus on one of the most prominent real-time extensions of LTL, Metric
Interval Temporal Logic (MITL) [2], which arises as a syntactic restriction of
Metric Temporal Logic (MTL) [20]. In MTL, real time is introduced in the syn-
tax of a linear temporal logic by replacing the unrestricted temporal operators
by time-bounded versions. For example, the bounded operator ♢[2,4] is inter-
preted as “eventually, within 2 to 4 time units”. To obtain MITL from MTL,
one avoids singular intervals of the form [a, a] in the subscripts2.

The aim of this thesis is to give a comprehensive presentation of [14], whose
main contribution concerns an efficient translation from MITL to a variant
of timed automata. To this end, we rewrite formulas using a restricted lan-
guage, into the so-called standard form. Then we explicitly construct four basic
automata that can be combined using what we call parallel-composition and
sequential-composition, yielding temporal testers for any MITL formula.

This construction is they key to show that the model-checking problem of
MITL formulas against Timed Automata is decidable, by adapting the proof
from [1] for signal-based automata.

The Regulation 561 [13] is then used to illustrate the difficulties of MITL
when reasoning about accumulated durations of alternating activies. This brings
us to the class of Stopwatch Automata [10], a variant of timed automata whose
clocks can be running or paused at states. This enables overall durations to
be measured by allowing a clock to stop when the activity is paused and then
reactivate when the activity is resumed. Unfortunately, even automata with a
single stopwatch have undecidable emptiness, a fact which was first shown by
Henzinger et al. in [18]. The last part of our thesis is devoted to an adaptation
of the proof from [18].

2Although this restriction was intented to guarantee decidability, it was discovered that
MTL can be decided over finitary event-based semantics [24].
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Original contributions
In this section we would like to emphasize the original contributions that this
master thesis contains.

As a contribution to the work presented in [14], we extend the translation
for MITL over bounded semantics, a context where we are able to explain the
underlying relation between past and future modalities as presented in Proposi-
tion 2.2.5, obtaining a simple correspondence between past and future temporal
testers. The relation among past and future temporal operators (U vs S, ⃝ vs
⊖ and so on) has to do with a general notion of reversability from automata
theory, introduced in Section 1.3 from Chapter 1.

Many results from [14] that were simply stated or had sketchy proofs, are
proven with detail in Chapter 3, including:

• Interpretability of MITL over signals in Theorem 3.1.1

• Theorem 3.2.2 about the complexity cost of rewriting into standard form

• Correctness of the parallel composition in Proposition 3.4.1

• Correctness of basic temporal testers in Theorems 3.5.2, 3.5.6, 3.5.9

From slight corrections of the paper [14], we obtain completely new theorems,
such as:

• Rewriting of temporal formulas in Lemmas 3.2.5, 3.2.7, 3.2.6, 3.2.8, ob-
taining new compact expressions in Lemmas 3.2.9 and 3.2.10.

• New definition of sequential composition in Definition 3.4.3 and a proof
of its correctness in Proposition 3.4.2, essential for the construction of
temporal testers, which is the main contribution of the paper.

• Reformulation of a characterization of all basic MITL operators U ,S,♢(0,a),♦(0,a)

in Theorems 3.5.1,3.5.4, 3.5.8,3.5.11

In Chapter 4, we provide a model-checker for MITL against timed automata
inspired in Alur and Dill’s construction from [1], which we adapt for signal-
based timed automata. The model-checking algorithm and a time estimation of
its complexity are discussed, something that was again simply outlined in [14].

Finally, in Chapter 5, we revisit a paper by Henzinger et al. [18] about
decision problems for a general class of automata which is very abstract and
difficult to read. We prove in a clear and straightforward way what in the paper
is a particular case of a sketchy proof and do this by adapting the proof to the
specific setting of Stopwatch Automata.
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Chapter 1

Preliminaries

When facing a model-checking problem, one is provided a system (program,
real situation) and a specification, in order to check whether the specification
is met by the system. Before looking for efficient algorithms that give an an-
swer to this question, one has to establish a mathematical framework where a
model of the problem and the elements involved can be defined. In this thesis
we use the standard automata-theoretic approach, that stands out for offering
clarity and simpler decision processes. Based on concepts from automata theory
and logic, its main strategy consists on reducing questions about systems and
specifications, to questions about automata.

From a logical perspective, each state of a system (resp. a real case) can be
associated to the set of propositions that hold in that state. For example, the
following sets of propositions

P1 = {green, yellow, red}
P2 = {start, close,heat, stop}

allow to describe the state of a traffic light and a microwave. Therefore, each
behaviour of a system over a set of propositions P induces a word over the
alphabet P(P ), and the set of all possible behaviours of the system induces a
language over the same alphabet.

A system specification (resp. a law) is typically formalised as a sentence in
some logic over P . Furthermore, every system specification can be viewed as a
set of allowed computations, that is, a language over P(P ).

Therefore we can conceive systems and specifications as formal languages,
and sometimes represent them by finite automata. Within this framework, the
stardard strategy is to reduce questions about systems and specifications, to
questions about automata, such as

• is the language of an automaton empty?

• is the language of an automaton contained in the language of another
automaton?

19
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We devote this chapter to the basic concepts that allow to use all the tools
from automata theory. First, we explain what we mean by formal languages
and how some of them can be represented by finite automata. Then, we give a
definition of finite automata and divide them into groups according to different
features. To continue, we present timed automata as extensions of finite au-
tomata equipped with a finite set of real-valued clocks. Lastly, a natural way
to reverse words is shown and the Reverse Theorem 1.3.1 for finite automata is
exposed.

1.1 Words and formal languages
An alphabet Σ is a finite set of symbols (also called letters), and a finite word
over Σ is a finite sequence of symbols w = a0a1 . . . an−1 from Σ. Given a word
w = a0a1 . . . an−1 we say that w has length |w| = n. We denote by Σn the set
of words over Σ of length n and by Σ∗ =

⋃
n∈N Σn the set of all finite words

over Σ. The empty word is denoted by ε and Σ+ = Σ∗\{ε}. A formal language
L is any subset of Σ∗.

Example. Let Σ = {a, b}. Then Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab . . . }. The
set

{a, ab, bab}

is a language over Σ. Because it contains a finite set of words, we call it a finite
language. The set

L = {abn : n ≥ 0}

is also a language over Σ, an infinite language. Words such as a or abbbb belong
to L, while aba doesn’t.

In the context of formal verification, each letter of the alphabet will be used
to describe the state of a system at a given time, and the sequence of letters
shows the evolution of the system as the time is incremented.

Every finite word w = a0a1 . . . an−1 can be viewed as a map w : [n] → Σ
where [n] := {0, . . . , n − 1} and w(i) = ai for i ∈ [n]. We sometimes call [n]-
words those finite words of length n. We also define an ω-word as an infinite
countable sequence of symbols from Σ. We denote by Σω the set of all infinite
words and a subset L of Σω is called an ω-language. Similarly, we can view
ω-words as maps w : ω → Σ.

In the following section we study how to represent languages and ω-languages
by finite automata and ω-automata.

1.2 Finite automata
An automaton is a mathematical model of a machine that perfoms computations
on an input by moving through a series of configurations. Mathematically,
automata are very similar to a graph, consisting of a set of states and transitions.
However, they are provided with some additional elements that make them a
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useful tool in a wide range of logical and computational problems. We classify
automata according to their purpose, into

• acceptors (either accept the input or not),

• transducers (generate output from given input),

• and combinations of them,

according to their transition relation, into

• deterministic (one transition for each possible input),

• non-deterministic (one, none, or more than one transition for each possible
input),

and according to the class of words they may take as input, into

• finite automata (reading finite words),

• ω-automata (reading ω-words),

• timed automata (reading variants of R+
0 -words).

1.2.1 Acceptors

Here we present a kind of finite automata whose most significant feature is being
able to read finite words and then accepting or rejecting them.

Definition 1.2.1. A deterministic finite automaton DFA is a tuple A =
(S, s0,Σ,∆, F ) where

• S is a finite set of states,

• s0 is the initial state,

• Σ is a nonempty alphabet,

• ∆ : S × Σ → S is the transition function,

• F ⊆ S is a set of final states.

A DFA takes as input a finite word w ∈ Σ∗. From the initial state, it moves
thoroughout w by reading a letter at each step, and moving to different states
by means of transition. A transition from state s to state s′ after reading letter
a is denoted by s a−→ s′. Formally, a run of the automaton is defined as follows.

Definition 1.2.2. A run of a DFA A over a word a0a1 . . . an−1 is an alternating
sequence of states and letters s0a0s1 · · · an−1sn such that ∆(si, ai) = si+1 for
all 0 ≤ i ≤ n−1. The automaton A accepts a word a0a1 . . . an−1 if the (unique)
run s0a0s1 · · · an−1sn ends in a final state, this is, sn ∈ F .
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Every DFA is an acceptor and therefore induces a set of words: the set of
words accepted by the automaton. For every DFA A, the set of words accepted
by A is called the language of A and it is denoted by L(A). The class of languages
that are accepted by DFAs are the so-called regular languages.

Observe that DFAs are deterministic automata, meaning that for every
(s, a) ∈ S × Σ, there is a unique s′ such that (s, a, s′) ∈ ∆. Automata that
don’t satisfy this property are called non-deterministic.

Definition 1.2.3. A non-deterministic finite automata NFA is a tuple A =
(S, S0,Σ,∆, F ) where S0 ⊆ S is a set of initial states, ∆ ⊆ S × Σ × S is the
transition relation, and the rest is defined as before.

In the case of non-deterministic automata, the same word w can lead to
different runs, obtaining the following definition of acceptance.

Definition 1.2.4. A run of a NFA A over a word a0a1 · · · an−1 is an alternat-
ing sequence of states and letters s0a0s1a1 · · · an−1sn such that s0 ∈ S0 and
(si, ai, si+1) ∈ ∆ for all 0 ≤ i ≤ n − 1. The automaton A accepts a given in-
put word w = a0a1 . . . an−1 iff there is an execution s0a0s1 · · · an−1sn such that
sn ∈ F .

We say that two automata A,A′ are equivalent if and only if L(A) = L(A′).

Theorem 1.2.1. For every NFA A with k states there is an equivalent DFA B.

Proof. Given an NFA A = (S, S0,Σ,∆, F ), let A′ = (S, s0,Σ,∆, F ) be the equiv-
alent automaton to A with a single start state. Then define B = (S′, s′0,Σ,∆

′, F ′)
where

• S′ := P(S)

• s′0 := {s0}

• ∆′ consists of elements (X, a, Y ) with X ⊆ S, a ∈ Σ and Y = {s′ ∈ S :
(s, a, s′) ∈ ∆, s ∈ X}

• F ′ := {X ⊆ S : X ∩ F ̸= ∅}

Then B is a DFA with L(B) = L(A).

We will be interested in representing sets of ω-words as well, thereby we
define a new class of automata, the so-called ω-automata. In this context, the
notion of final state makes no sense, and is replaced by a different notion of
acceptance.

In general, a non-deterministic finite ω-automaton is a tuple A = (S, S0,Σ,
∆, F ) where every component has the usual meaning and F is called the ac-
ceptance condition. For every interpretation of F , one obtains a different kind
of ω-automata. One of the most popular ω-automata are the so-called Büchi
automata, whose accepting condition requires that some final state occurs in-
finitely often in the run. The class of languages accepted by these automata are
the so-called ω-regular languages.
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Definition 1.2.5. A non-deterministic Büchi-automaton NBA is a tuple A =
(S, S0,Σ,∆, F ) where every component has the usual meaning. A run of the au-
tomaton is an infinite alternating sequence s0a0s1a1 · · · such that (si, ai, si+1) ∈
∆ for every i ∈ N, and s0 ∈ S0. The automaton A accepts a given input word
w = a0a1a2 · · · ∈ Σω iff there is a run s0a0s1a1 · · · such that si ∈ F for infinitely
many i ∈ N.

We can extend this notion into a more general class of ω-automata.

Definition 1.2.6. A generalized non-deterministic Büchi automaton GNBA is
a tuple A = (S, S0,Σ,∆,F) where F ⊆ P(S) is the generalized Büchi condition.
The automaton A accepts a given input word w = a0a1a2 · · · ∈ Σω iff there is a
run s0a0a1s1 . . . such that for all F ∈ F there are infinitely many i ∈ N with
si ∈ F .

Theorem 1.2.2. For every GBA A with k states and n sets of accepting states
there is an equivalent BA A with k · n states.

1.2.2 Timed automata
In this section we discuss different formalisms that have been proposed to model
the behaviour of real-time systems. These formalisms typically arise as R+

0 -
words over the set of states of the system, to which we apply some restrictions.
Also, we explain how to broaden the definition of finite automata using clocks
so that they accept these words.

In particular, we can describe these models as countable sequences of the
form

(a0, I0)(a1, I1)(a2, I2) · · ·

where w forms the word of domain R+
0 constantly taking value ai throughout

Ii, and I0I1I2 · · · is an interval sequence [2] as explained below.

Definition 1.2.7. An interval sequence I = I0I1I2 · · · is a countable (finite or
infinite) sequence of adjacent intervals that partitions the time domain R+

0 . In
other words,

• {t : t ∈ Ii for some i} = R+
0 , and

• for all i, the right end-point of Ii and the left end-point of Ii+1 coincide
and belongs to exactly one of them.

The following sequences are examples of interval sequences

[0, 1)[1, 2)[2, 3)[3, 4) · · ·
[0, 102)[102, 102](102,+∞)

[0, 0](0, 0.5](0.5, 1)[1, 1.5] · · ·

Definition 1.2.8. We say that an interval partition I = {Ii}i∈N and a word
w : R+

0 → Σ are compatible if w is constant over every Ii, for all i ≥ 0.
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Therefore the models we are interested in are those words w of domain R+
0

for which there exists some compatible interval sequence I. In the literature,
we find two main classes of models (w, I) by applying restrictions to I, namely,
timed words, and signals.

Timed words

In [1], Dill introduces the so-called timed words by associating a real-valued time
with each symbol in a word. Also, they define the corresponding class of timed
automata accepting timed words, which can be employed to develop a theory
of timed languages.

Definition 1.2.9. A timed word is pair (w, I) where w is a word of domain R+
0

and I = I0I1I2 · · · is an infinite interval sequence such that Ii is left-closed and
right-open, for all i ≥ 0.

Given a timed word w we define Iw as the sequence [0, d1)[d1, d2)[d2, d3) · · ·
where every di is a discontinuity of w with respect to the usual topology in R+

0

and the discrete topology in Σ. It is clear that Iw is compatible with w for
every timed word w.

Definition 1.2.10. A timed language Lt over Σ is a set of timed words over Σ.

A simpler representation of timed words is shown in [1] using time sequences,
infinite increasing sequences τ = τ1τ2τ3 . . . of time values τi ∈ R with τi > 0,
satisfying that τi < τi+1 for all i ≥ 1, and that for every t ∈ R+

0 , there is
some i ≥ 1 such that τi > t. Let us observe that for every time sequence τ =
τ1τ2τ3 . . . , I = [0, τ1)[τ1, τ2)[τ2, τ3) · · · is an interval sequence from Definition
1.2.9, and viceversa. Thus, every timed word over Σ can be represented as an
infinite countable sequence

(a0, 0)(a1, τ1)(a2, τ2)(a3, τ3) · · ·

where ai ∈ Σ and τ = τ1τ2τ3 · · · is a time sequence.
To define timed automata recognizing timed words we shall introduce a few

concepts. Let C = {x1, . . . , xn} denote a finite set of clock variables, intended
to range over R+

0 . These variables measure the time between transitions in the
automaton and evolve all at the same rate. Furthermore, they can be reset
along some transitions, and used as guards along other transitions or invariants
to be preserved while letting time elapse in locations of the automaton.

Definition 1.2.11. For a set C of clock variables, a clock constraint ϕ(C) is
a set with elements of the form x < k, x ≤ k, x = k, x ≥ k and x > k where
k ∈ Q+

0 , x ∈ C. We denote by Φ(C) the set of all clock constraints over C.

At every time instant, each clock in C has a particular value given by a
valuation v : C → R+

0 . We say that a clock interpretation v for C satisfies a
clock constraint ϕ(C) iff ϕ(C) evaluates to true using the values given by v. For
every t ≥ 0, we denote by v+ t the valuation mapping every clock x to the value
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v(x) + t. For a reset condition R ⊆ C, we denote R[v] the valuation obtained
by setting to zero every component vi of v such that xi ∈ R.

Now we present a description of automata recognizing timed words.

Definition 1.2.12. A non-deterministic timed automaton TA A is a tuple
(S, S0,Σ, C,∆, Inv) where S is a set of states and S0 ⊆ S, C is a finite set
of clock variables, Inv : S ∪ S0 → Φ(C) is a map assigning an invariance condi-
tion to every state, and ∆ ⊆ (S ∪ S0)× Φ(C)× Σ×P(C)× S is the transition
relation, whose elements are of the form (s, g, a,R, s′), where

• s ∈ S ∪ S0 and s′ ∈ S are states,

• g ∈ Φ(C) is a clock constraint over C,

• a ∈ Σ is a letter,

• R ⊆ C is a set of clock variables that are reset after the transition.

A configuration of a timed automaton is determined by a pair (s, v) where s
is a state and v is a clock valuation. Informally, given a timed word (w, τ) the
timed automaton A starts in one of its start states at time 0 with all its clocks
initialized to 0. As time advances, the values of all clocks change, reflecting the
elapsed time, as long as their values satisfy the invariance condition associated
with the current state. At time τi, A moves from s to s′ using some transition
of the form (s, g, ai, R, s

′) reading the input ai, if the current values of clocks
satisfy g. With this transition the clocks in R are reset to 0, and thus start
counting time with respect to the time of occurrence of this transition.

Definition 1.2.13. A run of a timed automaton (S, S0,Σ, C,∆, Inv) over a
timed word (w, τ) is an infinite sequence of configurations and time transitions

r : (s0, v0)
a1−→
τ1

(s1, v1)
a2−→
τ2

(s2, v2)
a3−→
τ3

(s3, v3) · · ·

where

• si are states and s0 is initial,

• v0 is constantly 0,

• for all i ≥ 1 there is a transition of the form (si−1, gi, ai, Ri, si) such that

– (vi−1 + τi − τi−1) satisfies the guard gi,

– vi = Ri[vi−1 + τi − τi−1],

– for all t ∈ (0, τi − τi−1), vi + t satisfies Inv(si−1).
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Signals

In this section we introduce a kind of interval sequences wich alternate closed
unitary intervals and open intervals.

Definition 1.2.14. A point-segment sequence is an interval sequence I =
I0I1I2 · · · such that

1. I0 = [0, 0],

2. I2n = [t, t] and I2n+1 = (t′, t′′) for n ∈ N, where t′ < t′′ and t′′ is allowed
to be +∞.

Thus, every point-segment sequence I can be represented as

{0}(0, t0){t0}(t0, t1) . . .

Definition 1.2.15. A signal is a word of domain R+
0 that admits a compatible

point-segment sequence I.

Thus, given a signal w and a compatible point-segement sequence I =
{0}(0, t0){t0}(t0, t1){t1} . . . , there is a unique decomposition of w of the form

ȧ0 · ar00 · ȧ1 · ar11 · ȧ2 · · ·

where ȧi = w(ti), ai = w(t) for any t ∈ (ti, ti+1), and ri = ti+1 − ti, for every
i ≥ 0.

Given a signal w we define Iw as the point-segement sequence {0}(0, t1){t1}
(t1, t2){t2} · · · where every ti is a discontinuity of w. It is clear that Iw is
compatible with w for every signal w.

Definition 1.2.16. A signal language Lt over Σ is a set of signals over Σ.

Definition 1.2.17. A non-deterministic signal-based timed automaton TA A
is a tuple (S, s,Σ, C,∆, Inv) where S is a set of states and s /∈ S is the initial
state, C is a finite set of clock variables, Inv : S → Φ(C) is a map assigning an
invariance condition to every state, and ∆ ⊆ S ∪ {s} × ϕ(C)×Σ×P(C)× S is
the transition relation, whose elements are of the form (s, g, a,R, s′), where

• s ∈ S ∪ {s} and s′ ∈ S are states,

• g ∈ Φ(C) is a clock constraint over C,

• a ∈ Σ is an input letter,

• R ⊆ C is a set of clock variables that are reset after the transition.

The configuration of the timed automaton is again given by a pair (s, v).
Informally, a run of the timed automaton is an alternating sequence of time and
discrete transitions. The transducer can either stay in a state for some time,
provided that the invariance condition holds, or take a transition to a different
state whose guard is satisfied.

Given a signal w, the two kinds of transitions are defined as follows:
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• A time transition is of the form (s, v)
ar−→ (s, v + r) where

– there is some ta ≥ 0 such that w(t) = a for every t ∈ (ta, ta + r),
– v + t satisfies Inv(s) for all t ∈ (0, r).

• A discrete transition is of the form (s, v)
ȧ−→
δ

(s′, v′) where

– δ = (s, g, R, s′) ∈ ∆,
– v′ = R[v],
– there is some ta ≥ 0 such that w(ta) = ȧ,
– v satisfies the guard g.

Definition 1.2.18. A run of the automaton starting at configuration (s, v) for
an arbitrary clock valuation v over the input signal w decomposed as ȧ0 · ar00 ·
a1 · ar11 · · · is a finite or infinite sequence of the form

(s, v)
ȧ0−→
δ0

(s0, v0)
a
r0
0−−→ (s0, v0 + r0)

ȧ1−→
δ1

(s1, v1)
a
r1
1−−→ (s1, v1 + r1) . . . ,

Proposition 1.2.1. Every timed word is a signal.

Proof. Let w be a timed word and I = [0, τ1)[τ1, τ2)[τ2, τ3) · · · be a witness of
it. Then [0, 0](0, τ1)[τ1, τ1](τ1, τ2)[τ2, τ2](τ2, τ3) · · · is a point-segment sequence
compatible with w.

1.2.3 Transducers
So far we have focused on representing sets of words. In addition to that,
automata can also be used to represent relations between sets of words, and in
particular, functions. These automata are the so-called transducers. They are
endowed with an output alphabet O and a relation λ ⊆ S × Σ×O × S, whose
elements are of the form (s, a, b, s′). A transition where the automaton is in
state s, reads symbol a, outputs symbol b, and goes to state s′ is represented
by the expression s

a/b−−→ s′.

Definition 1.2.19. A non-deterministic finite transducer NFT T is a tuple
(S, S0,Σ, O,∆) where the usual symbols have the usual meaning, O is a finite
set called the output alphabet and ∆ ⊆ S×Σ×O×S is the transition relation
consisting of elements δ = (s, a, b, s′) where a, b are the input and output labels of
the edge δ. A run of the transducer over the input word w = a0a1 · · · an−1 ∈ Σ∗

is a finite sequence s0a0b0s1 · · · an−1bn−1sn such that (si, ai, bi, si+1) ∈ ∆ for
every 0 ≤ i ≤ n− 1.

At each step, a transducer reads an input letter a from a word a0a1 · · · an−1

and synchronously outputs a letter b from the output alphabet. At the end of
the run, we obtain an output word b0b1 · · · bn−1 by looking at all the edges of
the run. In general, one input word can give rise to none, one, or more than
one output word.
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Definition 1.2.20. Given an input w = a0a1 · · · an−1 ∈ Σ∗ and a transducer
T , we say that u = b0b1 · · · bn−1 ∈ O+ is a T -output over w iff there is some
run s0a0b0s1 · · · an−1bn−1sn of T over w.

Definition 1.2.21. A transducer T is functional if, for every input w, there
exists a unique T -output over w. If T is functional, we denote by T the map
over Σ∗ defined as T (w) = u iff u is the unique T -output over w.

Transducers can be augmented with acceptance conditions so that a word u
is a T -output over w if u is the output of an accepting run of T over w.

Definition 1.2.22. A non-deterministic finite Büchi transducer NFT T is a
tuple (S, S0,Σ, O,∆, F ). A run of the transducer over the input word w =
a0a1 · · · ∈ Σω is a finite or infinite sequence s0a0b0s1a1b1s2 · · · such that
(si, ai, bi, si+1) ∈ ∆ for every i ≥ 0. The transducer T accepts an ω-word w iff
there exists an infinite run of T over w where infinitely many states are in F .

Definition 1.2.23. Given an input w = a0a1 · · · an−1 ∈ Σ+ and a Büchi trans-
ducer T , we say that u = b0b1 · · · bn−1 ∈ O+ is a T -output over w iff there is
some accepting run of T over w.

1.3 Reversing automata

For two alphabets Σ1,Σ2, we define sequential functions as maps of the form
f : Σ∗

1 → Σ∗
2 from finite words over alphabet Σ1 to finite words over alphabet

Σ2.

Definition 1.3.1. We define the reverse wR of a finite word by εR := ε, and
(aw)R := wRa where a is a letter and w a finite word. Equivalently for every
finite word w, wR(t) := w(|w|− t−1), for t < |w|. If L is a language, the reverse
of L is the language LR = {wR : w ∈ L}. The reverse of a sequential function
between finite words f : Σ∗

1 → Σ∗
2 is the sequential function fR : Σ∗

1 → Σ∗
2 such

that fR(w) = (f(w))R.

The goal of this section is to explain how to represent the reverse of a regular
language in a simple way by using automata. Intuitively, if we know how to build
a DFA that accepts language L, then we can easily obtain a NFA that accepts
LR by inverting the arrows and switching initial and final states. Moreover,
from an input-deterministic transducer representing the sequential function f ,
one can similarly construct an output deterministic transducer representing the
sequential function fR.

Formally, we define the reverse of a DFA A = (S, S0,Σ,∆, F ) as the NFA
AR := (S, F,Σ,∆R, S0) such that (s, a, s′) ∈ ∆R iff ∆(s′, a) = s for all s, s′ ∈
S,and a ∈ Σ.

And for any transducer with acceptance conditions T = (S, S0,Σ, O,∆, F ),
the reverse transducer is defined as T R := (S, F,Σ,∆R, S0) where (s, a, b, s′) ∈
∆R iff (s′, a, b, s) ∈ ∆.
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Theorem 1.3.1 (Reverse theorem). If A is a DFA, then A accepts w iff AR
accepts wR. Moreover, if T is a transducer, then uR is a T R-output over wR
iff u is a T -output over w.

Proof. By definition.





Chapter 2

From LTL to timed automata

In the 60s, Büchi [6], Elgot [12], McNaughton [23] and Rabin [26], among others,
discovered an interesting strategy for reasoning about decision problems in logic.
Their idea was to establish relations among logics and classes of automata. With
the help of such correspondences, it was easier to find reductions from decision
problems in logic to decision problems about automata.

In this chapter, we present a translation from LTL formulas to finite au-
tomata from [14], representing the satisfiability of the formula over time. This
translation serves as a preliminary version of the main construction shown in
Chapter 3 for MITL.

2.1 Linear Temporal Logic
Formulas of propositional Linear Temporal Logic can be defined recursively from
a finite set of propositional variables P = {p1, p2 . . . , pk}, by means of boolean
connectives ¬,∨ and the following future and past modalities: U or until, ⃝ or
next, S or since, ⊖ or previously.

Definition 2.1.1. The set of LTL formulas can be defined recursively by

• for every p ∈ P , p is an LTL formula,

• if φ is an LTL formula, then so is ¬φ,

• if φ,ψ are LTL formulas, then so is φ ∨ ψ,

• if φ,ψ are LTL formulas, then so are φU ψ,⃝φ,φSψ and ⊖φ.

Any formula with temporal modalities should consider unary operators ⃝,⊖
as stronger as ¬. Thus, ⃝pUq should be read as (⃝p)Uq and similarly for ⊖.
When dealing with U ,S,∨ at the same time in formulas such as φ1Uφ2Sφ3∨φ4,
parenthesis should be added to avoid confusion.

From the basic operators, other standard operators can be derived, such as
the remaining propositional connectives and other temporal modalities as

31
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• ♢φ := ⊤Uφ or eventually φ

• □φ := ¬♢¬φ or always φ

To specify the meaning of an LTL formula, one needs to fix a representation
of time, and then a class of objects encoding the truth-values of p1, . . . , pk over
time. In this chapter, we see the timeline as having a starting point (informally,
the present) and being a countable sequence of time instants, either bounded
(represented by [n] = {0, . . . , n−1} for some n ∈ N) or unbounded (represented
by N).

A timed interpretation of P = {p1, . . . , pk} is given by a word w : D →
{0, 1}k, viewed as a function from the time domain D, where D is [n] or N. At
each time instant, w gives an evaluation of each propositional variable p1, . . . , pk
in P . Thus, models of LTL formulas are objects of the form (w, t) where w is
a D-word over {0, 1}k and t ∈ D. During this chapter it will be of interest to
represent, in a simple way, words that only talk about a single propositional
variable p in P , as wp : D → {0, 1} or two propositional variables p, q in P , as
wp,q : D → {0, 1}2, and so on. Moreover, given w, we will refer to the truth
value of p at time t as wp(t).

From now on, we will treat simultaneously the cases of bounded and un-
bounded semantics and simply write w to refer to ω-words or finite words
indistinctly. Nevertheless, comments will be made when there is an essential
difference among the two.

The satisfaction relation ⊨ among pairs (w, t) giving a timed interpretation
of P and LTL formulas can thus be defined as

(w, t) ⊨ p iff wp(t) = 1 for p ∈ P,

(w, t) ⊨ ¬φ iff (w, t) ⊭ φ,
(w, t) ⊨ φ1 ∨ φ2 iff (w, t) ⊨ φ1 or (w, t) ⊨ φ2,

(w, t) ⊨ ⃝φ iff (w, t+ 1) ⊨ φ,

(w, t) ⊨ φ1Uφ2 iff ∃t′ ≥ t s.t. (w, t′) ⊨ φ2 and ∀t′′ ∈ [t, t′) and (w, t′′) ⊨ φ1,

(w, t) ⊨ ⊖φ iff t ̸= 0 and (w, t− 1) ⊨ φ,

(w, t) ⊨ φ1Sφ2 iff ∃t′ ≤ t s.t. (w, t′) ⊨ φ2 and ∀t′′ ∈ (t′, t] and (w, t′′) ⊨ φ1.

Note that we follow the convention that w(0) ⊨ ¬⊖φ for all φ. For w bounded
of length n, the satisfaction relation ⊨ remains the same, except for ⃝φ, where
we have (w, n− 1) ⊨ ¬⃝φ for all φ. We use interval notation in the definitions
for simplicity, but it should be clear that every t ranges over N or [n].

Also note that we choose the non-strict interpretation of the until and since
operator, which other authors replace by the strict ones

(w, t) ⊨ φ1Ustrφ2 iff ∃t′ > t, (w, t′) ⊨ φ2 and ∀t′′ ∈ (t, t′), (w, t′′) ⊨ φ1, and

(w, t) ⊨ φ1Sstrφ2 iff ∃t′ < t, (w, t′) ⊨ φ2 and ∀t′′ ∈ (t′, t), (w, t′′) ⊨ φ1.

However, we believe that our choice results in simplicity of the corresponding
automata.
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Definition 2.1.2. We will say that a bounded or unbounded word w satisfies
the formula φ iff (w, 0) ⊨ φ.

For our purposes, we are interested in viewing satisfaction as a relation
between pairs φ,w and sets {t ∈ N : (w, t) ⊨ φ} of time instants where φ holds
in w.

Definition 2.1.3. For every formula φ, we define the characteristic function
χφ of φ as the map χφ : ({0, 1}k)D → {0, 1}D that takes as argument a word
w : D → {0, 1}k and outputs a word χφ(w) = u : D → {0, 1} such that

u(t) = 1 iff (w, t) ⊨ φ,

where D is N or [n].

The main goal of this section is to define, for every formula φ of LTL, a
transducer Tφ that takes as input a word w and outputs the word χφ(w). At
each time step, the automata reads the value of w(t) and outputs the value
χφ(w)(t) synchronously, performing a guess if needed, thereby yielding non-
determinism.

Since the truth-value of a formula ψ1 ∗ ψ2 for any binary operator ∗ only
depends on the truth-values of ψ1 and ψ2 and not on their forms, then it is
sufficient to construct transducers for formulas p1 ∗ p2 where p1, p2 ∈ P , and
the same argument applies to unary operators. Following this perspective, we
will define the promised construction in various steps. First, we will build the
transducers for the basic formulas p, ¬p, p1 ∨ p2, ⊖p, ⃝p, p1Sp2 and p1Up2
for the case of bounded words, where p, p1, p2 are any propositional variables.
Then, we will present the same transducers but for the case of unbounded
words. Finally, given any LTL formula φ, we obtain the transducer for χφ, by
composing the basic transducers according to the parse tree of the formula φ.

2.2 Temporal testers for LTL basic formulas

The transducers that we want to build have to read words in the alphabet {0, 1}k
and output words in the alphabet {0, 1}. Therefore, the input and output
alphabets of the automata should be Σ = {0, 1}k and O = {0, 1}. Because
we deal with unary and binary operators, we will be interested in the truth-
values of at most two propositional variables, and therefore restrict ourselves to
Σ = {0, 1}k for k = 1, 2.

For an arbitrary transducer T = (S, S0,Σ, O,∆) and an arbitrary element
δ = (s, a, b, s′) ∈ ∆, we call a and b the input and output labels of δ, respectively,
and sometimes denote them by a/b. Our transducers will have edges with input
labels in {0, 1}k and output labels in {0, 1}. For states s, s′ and an output
label b ∈ {0, 1}, we group all the outgoing edges of label x/b into a single
one with label {x′ : (s, x′, b, s′) ∈ ∆}/b. To further enhance readability, we
write a formula over P that can represent in a simple way the set of valuations
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{x′ : (s, x′, b, s′) ∈ ∆}. Moreover, to harmonize the notation we write q or ¬q
for output 1 or 0.

As an illustration, consider a transducer with input alphabet Σ = {0, 1}2
and the following elements in ∆:

(s, (0, 1), 1, s′)

(s, (1, 0), 1, s′)

(s, (1, 1), 1, s′)

(s, (0, 0), 0, s′)

These four edges can be compressed into the following two edges

(s, {(0, 1), (1, 0), (1, 1)}, 1, s′)
(s, {(0, 0)}, 0, s′)

who can be represented using LTL formulas over P = {p1, p2} and Q = {q} as

(s, p1 ∨ p2, q, s′)
(s,¬p1 ∧ ¬p2,¬q, s′)

s0 s1

p/¬q
¬p/¬q

¬p/q

p/q

Figure 2.2.1: Temporal tester Tχ⊖p

Boolean and past basic formulas (p, ¬p, p1 ∨ p2, ⊖p, p1Sp2) are easy to
identify with input-deterministic transducers since the value of its character-
istic function is entirely determined by past and present letters (observations)
recognized by the automaton.

The case of propositional formulas is almost trivial. Every transducer is
formed by a single state that has as many self-loops as evaluations of the vari-
ables that appear in the formula, and acts as a truth table. Formally, for every
basic propositional formula φ, the transducer Tφ is the tuple

({s0}, {s0},Σ, {0, 1},∆, ∅)

where Σ is {0, 1}2 or {0, 1} and elements of ∆ are of the form (s0, a, 1, s0)
if a satisfies the formula and (s0, a, 0, s0) if a doesn’t satisfy φ as in 2.2.2.
We now deal with the construction of temporal testers for past basic formulas
over bounded words. The key is that these transducers need to encode the
information observed in the previous steps to produce an output at the current
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s0

p1 ∨ p2/q

¬(p1 ∨ p2)/¬q
(a) Abbreviated notation

s0

{¬p1 ∧ p2, p1 ∧ ¬p2, p1 ∧ p2}/q

¬p1 ∧ ¬p2/¬q
(b) Extended notation

Figure 2.2.2: Transducer for p1 ∨ p2

step. To this end, we associate a certain informal meaning to each state of the
automaton. Let us illustrate this strategy by looking at the case of the temporal
tester T⊖p.

T⊖p is defined as the tuple (S, S0, P,Q,∆, F ) where S = {s0, s1}, S0 = {s0},
P = {p}, Q = {q}, F = S, and ∆ consists of elements (s0,¬p,¬q, s0),
(s0, p,¬q, s1), (s1, p, q, s1), (s1,¬p, q, s0) as depicted in Figure 2.2.1.

This automaton can be interpreted in a simple way by explaining the mean-
ing of the states. State s0 means “I saw ¬p in the previous time instant” and s1
the opposite, “I saw p in the previous time instant”. This translates into the fact
that every incoming arrow in s0 has read input ¬p and every incoming arrow
in s1 has read input p. When observing ¬p, the automata then moves to (or
stays in) state s0 and when it reads p, it stays or moves to s1. According to the
meaning of ⊖p, after observing ¬p (being in state s0), the output should be ¬q,
and this reflects in the automaton, since each outgoing arrow from s0 has ¬q as
output. In a similar way, after observing p i.e. visiting state s1, the output is
always q.

Furthermore, the condition w ⊨ ¬ ⊖ φ is reflected in the automaton by
putting s0 as the unique initial state.

Proposition 2.2.1 (Correctness of T⊖p). For every bounded w and every t <
|w|, we have (w, t) ⊨ ⊖p iff w ∈ L(T⊖p) and T⊖p(w)(t) = 1.

To understand the construction of the temporal tester for p1Sp2 we study
how the satisfiability of the formula p1Sp2 is at an instant t according to the
truth values of p1 and p2.
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s0 s1

p/¬q
¬p/¬q

¬p/q

p/q

Figure 2.2.3: T unb
⊖ p for unbounded words

Lemma 2.2.1. For every w and every p1, p2 ∈ P , the following holds.

(i) If (w, t) ⊨ ¬p1 ∧ ¬p2 then χp1Sp2(w)(t) = 0.

(ii) If (w, t) ⊨ p2 then χp1Sp2(w)(t) = 1.

(iii) If (w, t) ⊨ p1 ∧ ¬p2 then either χp1Sp2(w)(t) = 1 if p1 has been holding
from the last time p2 held, or χp1Sp2(w)(t) = 0 if no p2 has been observed
before p1 started holding.

Proof. By definition.

We now proceed to define the temporal tester Tp1Sp2 for bounded words.
Let Tp1Sp2 = (S, S0, P,Q,∆, F ) where S = {s0, s1}, S0 = {s0}, P = {p1, p2},

Q = {q}, F = S, and ∆ consists of elements (s0, p2, q, s1), (s0,¬p2,¬q, s0), (s1, p1∨
p2, q, s1), (s1,¬p1 ∧ ¬p2,¬q, s0) as illustrated in Figure 2.2.4.

Conditions (i) and (ii) in Lemma 2.2.1 are reflected by transitions (s1,¬p1 ∧
¬p2,¬q, s0) and (s0, p2, q, s1) respectively. In a state where p1∧¬p2 is observed,
the output for a given w at instant t depends on the previous observations
{w(t′) : t′ ≤ t}, which are encoded by states s0 and s1. Thus, state s1 is
interpreted as “p1Sp2 held at previous step” or, in terms of Lemma 3.2.4, p1
has been continuously holding from the last time p2 was true. State s0 means
exactly the opposite, “p1Sp2 didn’t hold at previous step”, reflecting that no p2
has been observed before a period where p1 started to hold continuously.

Proposition 2.2.2 (Correctness of Tp1Sp2). For every bounded w and every
t < |w|, we have (w, t) ⊨ p1Sp2 iff w ∈ L(Tp1Sp2) and Tp1Sp2(w)(t) = 1.

By looking at the structure of the previous automata we can infer that similar
versions can be used for the case of unbounded words; we show them in Figures
2.2.3 and 2.2.4.

Proposition 2.2.3 (Correctness of T unb
⊖p ). For every unbounded w and every

t ∈ N, we have (w, t) ⊨ ⊖p iff w ∈ L(T unb
⊖p ) and T unb

⊖p (w)(t) = 1.

Proposition 2.2.4 (Correctness of T unb
p1Sp2). For every unbounded w and every

t < |w|, we have (w, t) ⊨ p1Sp2 iff w ∈ L(T unb
p1Sp2) and T unb

p1Sp2(w)(t) = 1.
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s0 s1

p2/q
¬p2/¬q

¬p1 ∧ ¬p2/¬q

p1 ∨ p2/q

(a) Tp1Sp2 for bounded words

s0 s1

p2/q
¬p2/¬q

¬p1 ∧ ¬p2/¬q

p1 ∨ p2/q

(b) T unb
p1Sp2

for unbounded words

Figure 2.2.4: Bounded vs unbounded semantics

Transducers for future basic formulas ⃝p, p1Up2 over bounded semantics
can be build by reversing the previous automata in the sense of Theorem 1.3.1,
as the next proposition shows.

For given w,φ, we denote by χRφ (w) the word (χφ(w))
R.

Proposition 2.2.5. For every bounded word w, and every formula φ, we have

χ⃝φ(w) = χR⊖φ(w
R)

and for every φ1, φ2, we have

χφ1Uφ2
(w) = χRφ1Sφ2

(wR).

Proof. Let w be a bounded word and φ be an arbitrary formula. Then for every
t < |w|−1, we have χ⃝φ(w)(t) = 1 iff (w, t+1) ⊨ φ iff (wR, |w|−(t+1)−1) ⊨ φ
iff (wR, |w| − t − 2) ⊨ φ iff (wR, |w| − t − 1) ⊨ ⊖φ iff χ⊖φ(w

R)(|w| − t − 1) =
1 iff χR⊖φ(w

R)(t) = 1. For the case t = |w| − 1, χ⃝φ(w)(|w| − 1) = 0 by
definition. Hence, we want to show that χR⊖φ(wR)(|w| − 1) = 0. But observe
that χR⊖φ(wR)(|w|−1) = 0 iff χ⊖φ(w

R)(0) = 0 which holds by definition. Hence,
for all t < |w|, χ⃝φ(w)(t) = χR⊖φ(w)(t).

Now let φ1, φ2 be arbitrary formulas. By definition χφ1Uφ2
(w)(t) = 1 iff

∃t′ ≥ t s.t. (w, t′) ⊨ p2 and ∀t′′ s.t. t ≤ t′′ < t′, (w, t′′) ⊨ p1. This is equivalent
to ∃t′ s.t. |w| − t′ − 1 ≤ |w| − t − 1 and (wR, |w| − t′ − 1) ⊨ φ2 and ∀t′′ where
|w|−t′−1 < |w|−t′′−1 ≤ |w|−t−1, we have (wR, |w|−t′′−1) ⊨ φ1. Therefore
χφ1Sφ2

(wR)(|w| − t− 1) = 1, which can be rewritten as χRφ1Sφ2
(wR)(t) = 1.

Therefore we can define T⃝p := T R
⊖p and Tp1Up2 := T R

p1Sp2 . These temporal
testers are illustrated in Figure 2.2.5.
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s0 s1

¬p/¬q

¬p/q

p/¬q
p/q

(a) Temporal tester for ⃝p over bounded words

s0 s1

p2/q
¬p2/¬q

¬p1 ∧ ¬p2/¬q

p1 ∨ p2/q

(b) Temporal tester for p1Up2 over bounded words

Figure 2.2.5: Temporal testers for future operators over bounded words

s0 s1

p2/q
¬p2/¬q

¬p1 ∧ ¬p2/¬q

p2/q

p1/q

Figure 2.2.6: Temporal tester for p1Up2 over unbounded words

Lastly, we deal with the case of Tp1Up2 for unbounded words. This temporal
tester depicted in Figure 2.2.6 is a Büchi automaton. It uses an edge Büchi
condition [15] that includes all edges of the tester except for the self-loop labeled
p1 in state s1. Such a Büchi condition excludes those output words ending in
an infinite suffix of q’s that result from words ending in an infinite suffix of
p1 ∧ ¬p2’s.



Chapter 3

From MITL to timed
automata

In Chapter 2 we have seen a simple translation from every formula of LTL to a
finite transducer representing its satisfiability in a precise way. In this chapter,
we switch to continuous time and discuss a much more interesting translation
for the logic MITL interpreted over real-time semantics into the class of Timed
Automata.

Metric Interval Temporal Logic (MITL) [2], which is both a syntactic re-
striction of MTL [20], and a real-time extension of LTL, is extensively used as a
formalism to specify quantitative real-time properties. Here, MITL (over a set
of propositions P ) is interpreted over a kind of real-time words called boolean
signals. Boolean signals are functions from R+

0 associating a valuation of P to
every time instant t ∈ R+

0 . Furthermore, an additional condition is imposed on
their discontinuities, excluding those with an infinite number of discontinuities
in a bounded interval of the domain.

After explaining a rewriting of every formula into a standard form which
only uses operators U(0,∞),S(0,∞),♢(0,a),♦(0,a), we present the two main ways
of composing timed transducers. Then for a given MITL formula φ, we define
an automaton Tφ taking as input an arbitrary boolean signal w and producing
another boolean signal representing the satisfiability of φ throughout w. The
automaton Tφ is defined in a compositional fashion, from four basic temporal
testers that are combined according to the parse tree of φ.

The strength of this unique translation rests in its clarity and modularity,
providing an effective technique that is easily adaptable to other situations.

3.1 Metric Interval Temporal Logic

The logic MITL is a formalism to specify quantitative (linear) real-time prop-
erties. To do so, two main temporal modalities are employed, UI and SI , where
I is an arbitrary interval of R+

0 with rational end-points. Their intepretation

39
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is simple: a formula pU(a,b)q is true at time t if q is true at some point within
the time frame (t + a, t + b) and p holds from t until q becomes true; cases
[a, b), [a, b], (a, b] have analogous interpretations and S works symmetrically. The
main particularity of MITL consists in avoiding singular intervals in the sub-
scripts. Therefore, in MITL we are not able to express the exact amount of
time between two events but only an approximation, while in return we get
more efficient decision procedures.

Formulas of MITL can be defined recursively from a finite set of proposi-
tional variables P = {p1, p2 . . . , pk}, by means of boolean operators ¬,∨ and
the following future and past modalities

• UI or timed-constrained until,

• SI or timed-constrained since.

If φ,ψ are formulas of MITL and I is an interval over R+
0 with rational end-

points, then φUI ψ and φSI ψ are formulas of MITL as well. Observe that LTL
operators ⃝,⊖ no longer make sense in the presence of dense time, due to the
lack of a unique successor of a real number. However, as in the case of LTL,
other time-constrained operators can be derived from the basic ones

• ♢Iφ := ⊤UIφ or time-constrained eventually

• ♦Iφ := ⊤SIφ or time-constrained once

• □φ := ¬♢¬φ or time-constrained always

• ■φ := ¬♦¬φ or time-constrained historically

As time domain, now we choose the set of nonnegative real numbers, denoted by
R+

0 , and signals as semantic universes. We remind to the reader the definition
of a signal.

Definition 3.1.1. A signal over Σ is a function w : R+
0 → Σ that admits a

compatible point-segment partition I.

Definition 3.1.2. A bounded signal is a function w : [0, r) → Σ for some r > 0
and such that w has finitely many discontinuities over [0, r).

Observe that w is a bounded signal iff it is defined over a bounded interval of
[0, r) and there exists a function w̄ extending w such that w̄ is a signal. Further,
bounded signals can also be decomposed as a concatenation of point and open
signals according to a compatible point-segment partitions of its domain.

In our presentation, the objects that verify or falsify MITL formulas are
pairs (w, t) for w a signal (or bounded signal in I) over {0, 1}k and t ∈ R+

0

(resp. t ∈ I). We refer to these signals as k-boolean signals. Sometimes we
will consider signals that talk about a smaller group of propositional variables
P ′ ⊆ P , and refer to them generally as boolean signals. We will join and separate
signals in the following way:
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Definition 3.1.3. The projection to the variable pi ∈ P of a signal w is the
1-boolean signal w|pi such that w|pi(t) = w(t)(i) for all t. The projection to
{pi, pj} ⊆ P for (pi ̸= pj) of a signal w is the 2-boolean signal w|pi,pj such
that w|pi,pj (t)(0) = w(t)(i) and w|pi,pj (t)(1) = w(t)(j) for all t. Lastly, for a
finite set P ′ = {pi1 , · · · , pin} ⊆ P , the projection of w to P ′ is w|P ′ defined as
w|P ′(t)(j) = w(t)(ij) for all t.

The pairing w||w′ of two 1-boolean signals w,w′ as (w||w′)(t) = (w(t), w′(t)).
If P1, P2 are disjoint subsets of P , then the pairing of a n1-signal w1 over P1

and a n2-signal w2 over P2 is defined as

(w1||w2)(t) = (w1(t)(0), . . . , w1(t)(n1 − 1), w2(t)(0), . . . , w2(t)(n2 − 1)).

We interpret any MITL formula φ with respect to boolean signals as

(w, t) ⊨ p iff w|p(t) = 1,

(w, t) ⊨ ¬φ iff (w, t) ⊭ φ,
(w, t) ⊨ φ1 ∨ φ2 iff (w, t) ⊨ φ1 or (w, t) ⊨ φ2,

(w, t) ⊨ φ1UIφ2 iff ∃t′ ∈ t⊕ I, (w, t′) ⊨ φ2 and ∀t′′ ∈ (t, t′), (w, t′′) ⊨ φ1,

(w, t) ⊨ φ1SIφ2 iff ∃t′ ∈ t⊖ I, (w, t′) ⊨ φ2 and ∀t′′ ∈ (t′, t), (w, t′′) ⊨ φ1.

and with respect to bounded boolean signals of domain D, for t ∈ D, as

(w, t) ⊨ p iff w|p(t) = 1,

(w, t) ⊨ ¬φ iff (w, t) ⊭ φ,
(w, t) ⊨ φ1 ∨ φ2 iff (w, t) ⊨ φ1 or (w, t) ⊨ φ2,

(w, t) ⊨ φ1UIφ2 iff ∃t′ ∈ (t⊕ I) ∩D, (w, t′) ⊨ φ2 and ∀t′′ ∈ (t, t′), (w, t′′) ⊨ φ1,

(w, t) ⊨ φ1SIφ2 iff ∃t′ ∈ t⊖ I, (w, t′) ⊨ φ2 and ∀t′′ ∈ (t′, t), (w, t′′) ⊨ φ1.

where t⊕I := {t+i : i ∈ I} and t⊖I := {t−i : i ∈ I}. We say that a (bounded)
signal w satisfies the formula φ iff (w, 0) ⊨ φ.

Definition 3.1.4. For every formula φ, we define the characteristic function
χφ of φ as the map that takes as argument a (resp. bounded) boolean signal w
and outputs a (resp. bounded) 1-boolean signal χφ(w) such that

χφ(w)(t) = 1 iff (w, t) ⊨ φ.

The remaining of this section is devoted to show that signals are suitable for
interpreting MITL. The following lemma follows clearly from the definition.

Lemma 3.1.1. For every interval I ⊆ R+
0 , a boolean signal is continuous in I

iff it is constant in I.

First, we observe that boolean signals are closed under projection and pair-
ing.

Lemma 3.1.2. If w is a signal over P , then w|P ′ is also a signal for every
P ′ ⊆ P . Moreover, if w1, w2 are two boolean signals over two disjoint subsets
P1, P2 of P respectively, then w1||w2 is a signal.
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Proof. At a given bounded interval, w|P ′ has at most the same discontinuities
as w, hence finitely many. Then Iw|P ′ , the point segment partition induced
by the discontinuities of w|P ′ , is compatible with w|P ′ , whence w|P ′ is a signal.
Similarly, the discontinuities of w1||w2 at a given bounded interval are the union
of the discontinuities of w1, w2 at that interval, and thus finite. Then, Iw1||w2

is compatible with w1||w2 and then it is a signal.

Lemma 3.1.3. Given a bounded interval I and a signal w, there exist i ∈ {1, 2}
such that if χφ1UIφ2 has a discontinuity in t0 then χφi has a discontinuity in
t0 ⊕ I ∪ t0 ⊖ I.

Proof. Let t0 > 0 be a time instant such that χφ1UIφ2 has a discontinuity in t0.
There are four cases

• limt→t−0
χφ1UIφ2

(t) = 0 and χφ1UIφ2
(t0) = 1.

• limt→t−0
χφ1UIφ2(t) = 1 and χφ1UIφ2(t0) = 0.

• limt→t+0
χφ1UIφ2

(t) = 0 and χφ1UIφ2
(t0) = 1.

• limt→t+0
χφ1UIφ2

(t) = 1 and χφ1UIφ2
(t0) = 0.

We only prove the first case, others are analogous. Suppose limt→t−0
χφ1UIφ2(t) =

0 and χφ1UIφ2(t0) = 1. This means there exists some t2 ∈ t0 ⊕ I such that
(w, t2) ⊨ φ2 and for all t1 ∈ (t0, t2), we have (w, t1) ⊨ φ1. If I is right-closed,
then either t2 = sup(I) or t2 < sup(I). If t2 = sup(I) and we assume it is the
first such t2 in t0⊕I, then limt→(t0+sup(I))− χφ2

(t) = 0 but χφ2
(t0+sup(I)) = 1.

Hence, χφ2
has a discontinuity at t0⊕I. Otherwise, t2 < sup(I), and then there

is some positive ε < sup(I)− t2 s.t. for all t ∈ (t0 − ε, t0), t2 ∈ t⊕ I. But since
limt→t−0

χφ1UIφ2(t) = 0, then there has to be some time point t1 ∈ (t, t0) where
φ1 doesn’t hold. At the same time φ1, holds along (t0, t2), and then we can
assure χφ1 has a discontinuity at some t1 ∈ (t, t0). Therefore, χφ1 has a discon-
tinuity at t0 ⊖ I.

If I is right-open, then t2 < sup(I) and by the same argument as above χφ1

has a discontinuity at t0 ⊖ I.

Lemma 3.1.4. Given an interval I and a signal w, there exist i ∈ {1, 2} such
that if χφ1SIφ2

has a discontinuity in t0 then χφi
has a discontinuity in t0⊕ I ∪

t0 ⊖ I.

Proof. Symmetric to Lemma 3.1.3.

Lemma 3.1.5. Let φ1, φ2 be formulas and I be an unbounded interval. Then
for every signal w, the function χφ1UIφ2(w) is a signal.

Proof. For a contradiction, suppose χφ1UIφ2(w) has infinitely many disconti-
nuities in a bounded interval J . Then there exists an increasing converging
sequence (tn)n∈N with limit denoted by a such that φ1UIφ2 is true at (w, t0),
false at (w, t1), true at (w, t2) and so on.
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Since χφ1(w), χφ2(w) have a finite number of discontinuities in J , then there
is some m ∈ N such that χφ1(w) is constant over (tm, a). But then it has to be
constantly 1 because for all even indexes n there is some t′ > tn such that φ1

holds true at (tn, t
′).

Now let n ≥ m be odd. Then φ1UIφ2 is false at (w, tn). This can be for
two reasons. One possibility is that there is no t′ ∈ tn ⊕ I where φ2 holds. But
this is a contradiction because φ1UIφ2 holds at tn+1 and tn ⊕ I ⊆ tn+1 ⊕ I.
Then it must be because there is some t′′n ∈ (tn, tn+1) where φ1 doesn’t hold i.e.
χφ1

(w)(t) = 0. Contradiction.

Lemma 3.1.6. Let φ1, φ2 be formulas and I be an unbounded interval. Then
for every signal w, the function χφ1SIφ2

(w) is a signal.

Proof. Analogous to 3.1.5.

The next theorem shows that MITL is interpretable over (bounded) boolean
signals.

Theorem 3.1.1. For every MITL formula φ and every (bounded) boolean signal
w over P , χφ(w) is a (bounded) 1-boolean signal.

Proof. Given a signal w, we proceed by induction on the complexity of φ. If
φ = p, then χp(w) is the projection w|p. If φ = ¬ψ, then χ¬ψ(w) = 1 −
χψ(w), whence χ¬ψ(w) has a discontinuity in t iff χψ(w) has a discontinuity in
t. Then, by induction hypothesis, χ¬ψ(w) is a 1-boolean signal. If φ = φ1 ∨φ2,
then χφ(w) = max{χφ1

(w), χφ2
(w)} and it’s easy to see that if χφ(w) has a

discontinuity in t then some χφi(w) has a discontinuity in t for i = 1, 2. Then,
again by induction hypothesis, χφ1∨φ2(w) is a 1-boolean signal. If φ = φ1UIφ2,
apply Lemma 3.1.3 for I bounded, and Lemma 3.1.5 for I unbounded. We infer
that χφ1∨φ2

(w) has finitely many discontinuities at every bounded interval and
then it is a signal. Similar for φ = φ1SIφ2.

3.2 Standard form
The main goal of this section is to show that the language of MITL can be
restricted to the propositional connectives and to temporal operators that talk
about immediate future and immediate past with a bounding parameter a > 0.
In particular, we are interested in the following standard operators

U(0,∞),S(0,∞),♢(0,a),♦(0,a)

where a ∈ Q+. Moreover, we shall measure what is the complexity cost when
a formula is rewritten into another formula only containing standard operators.
To this end, we introduce two parameters that measure the complexity of a
MITL formula, the size, and the resolution. The first counts the number of its
subformulas, while the second has to do with the relation among length and
distance to the origin of the intervals appearing at subscripts in the formula.

What we want to prove exactly is stated in the following theorem.
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Theorem 3.2.1. Any MITL formula φ is equivalent to some formula φ′ that
only contains the temporal operators U ,S,♢(0,a),♦(0,a), where a is a positive
rational number. Moreover, s(φ′) ∈ O[s(φ) · r(φ)] and r(φ′) ≤ 1 where s is the
size and r is the resolution.

Suppose φ is a MITL formula containing propositional connectives and op-
erators UI ,SI for I ⊆ R+

0 an arbitrary interval with rational endpoints. To find
φ′ as in the theorem, we divide the elimination of the non-standard operators
into four main steps, and use equivalences in MITL that behave nicely with
respect to our complexity parameters. To give the reader an overview of the
whole strategy, we summarize the steps that shall be taken:

1. Rewrite bounded U (resp. S) in terms of unbounded U (resp. S) and
bounded ♢ (resp. ♦).

2. Rewrite unbounded U (resp. S) in terms of U(0,∞) (resp. S(0,∞) and
bounded ♢ (resp. ♦).

3. Rewrite bounded ♢ (resp. ♦) in terms of ♢I (resp. ♦I) where inf I = 0.

4. Rewrite right-closed or open-closed ♢(0,a],♢[0,a),♢[0,a] (resp. ♦) in terms
of ♢(0,a) (resp. ♦(0,a)) and U(0,∞) (resp. S(0,∞)).

Definition 3.2.1. A formula φ is in standard form iff it only contains propo-
sitional connectives and standard operators U(0,∞),S(0,∞),♢(0,a),♦(0,a) where a
is a positive rational number.

For two arbitrary formulas φ1, φ2, we say that φ1 ≡ φ2 iff for every signal w
and t ∈ R+

0 , we have that (w, t) ⊨ φ1 ⇔ (w, t) ⊨ φ2.

Lemma 3.2.1. For all formulas φ1, φ2,

• (w, t) ⊨ φ1U(0,∞)φ2 iff ∃t′ > t s.t. (w, t′) ⊨ φ2 and for all t′′ ∈ (t, t′) we
have (w, t′′) ⊨ φ1,

• (w, t) ⊨ φ1S(0,∞)φ2 iff ∃t′ < t s.t. (w, t′) ⊨ φ2 and for all t′′ ∈ (t′, t) we
have (w, t′′) ⊨ φ1.

Proof. For the first, it suffices to observe that, for any t, t′ ∈ R+
0 , t′ > t iff

t′ ∈ t⊕ (0,∞). The second is proven symetrically.

The equivalences shown above make sense of the notation φ1Uφ2 := φ1U(0,∞)φ2

and φ1Sφ2 := φ1S(0,∞)φ2, where U is the symbol for LTL strict until interpreted
in MITL. The non-strict until can also be recovered as we show below.

Lemma 3.2.2. For all formulas φ1, φ2,

• φ2 ∨ (φ1 ∧ (φ1 U φ2)) iff ∃t′ ≥ t s.t. (w, t′) ⊨ φ2 and for all t′′ ∈ [t, t′) we
have (w, t′′) ⊨ φ1,

• φ2 ∨ (φ1 ∧ (φ1 S φ2)) iff ∃t′ ≥ t s.t. (w, t′) ⊨ φ2 and for all t′′ ∈ (t′, t] we
have (w, t′′) ⊨ φ1.
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Proof. For the first equivalence, pick some w, t such that (w, t) ⊨ φ1 Uφ2. This
means that there is some t′ ≥ t such that (w, t′) ⊨ φ2 and for all t′′ ∈ [t, t′),
(w, t′′) ⊨ φ1. Then either t′ = t and (w, t) ⊨ φ2 or t′ > t and (w, t) ⊨ φ1

together with (w, t′′) ⊨ φ2 for all t′′ ∈ (t, t′) and (w, t′) ⊨ φ2, but this is
equivalent to (w, t) ⊨ φ2 ∨ (φ1 ∧ (φ1 U φ2)). Conversely, if (w, t) ⊨ ¬(φ1 Uφ2),
then (w, t) ⊨ ¬φ2 and if (w, t) ⊨ φ1, then (w, t) ⊨ ¬(φ1Uφ2). The second is
proven symetrically.

Thus, we use the notation φ1Uφ2 := φ2∨(φ1∧(φ1 U φ2)) and φ1Sφ2 := φ2∨
(φ1 ∧ (φ1 S φ2)), where U is the symbol for the LTL non-strict until interpreted
in MITL.

The previous observations show that, in a certain way, MITL is an extension
of LTL. From now on, we write the standard operators as

U ,S,♢(0,a),♦(0,a)

where a ∈ Q+.
Next, we see how to define a notion of succession that is suitable in the

dense-time context.

Definition 3.2.2. Define the operators ⃝Rφ := φU φ and ⊖Rφ := φS φ. In
other words,

• (w, t) ⊨ ⃝Rφ iff ∃t′ > t s.t. (w, t′) ⊨ φ and for all t′′ ∈ (t, t′) we have
(w, t′′) ⊨ φ,

• (w, t) ⊨ ⊖Rφ iff ∃t′ < t s.t. (w, t′) ⊨ φ and for all t′′ ∈ (t′, t) we have
(w, t′′) ⊨ φ.

Remark. Observe that in discrete-time semantics, ⃝Rφ ≡ ⃝φ and ⊖Rφ ≡ ⊖φ
for each formula φ. If (w, t) ⊨ ⃝Rφ, then there is some t′ > t such that
(w, t′) ⊨ φ and for all t < t′′ < t′(t′′ ∈ N) we have that (w, t′′) ⊨ φ. Then
(w, t + 1) ⊨ φ which is (w, t) ⊨ ⃝φ. Conversely, if (w, t) ⊨ ⃝φ, then there is
t′ > t (t′ = t + 1) such that (w, t′) ⊨ φ and for all t′′ between t and t′ (none),
then (w, t′′) ⊨ φ. Hence (w, t) ⊨ ⃝Rφ. Symetrically for ⊖R.

For the sake of readibility, throughout this Chapter we simply write ⃝,⊖.
We propose two ways of measuring the degree of complexity of a MITL formula.

Definition 3.2.3. We define the set of subformulas Sb(φ) of a formula φ re-
cursively as

Sb(p) = {p}
Sb(¬φ) = Sb(φ) ∪ {¬φ}

Sb(φ ∨ ψ) = Sb(φ) ∪ Sb(ψ) ∪ {φ ∨ ψ}
Sb(φUIψ) = Sb(φ) ∪ Sb(ψ) ∪ {φUIψ}
Sb(φSIψ) = Sb(φ) ∪ Sb(ψ) ∪ {φSIψ}

We define the size s(φ) of a formula recursively as the cardinality of Sb(φ).
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Further, we define the resolution r(φ) of a formula recursively, as

r(p) = 0

r(φ ∨ ψ) = max{r(φ), r(ψ)}
r(¬φ) = r(φ)

r(φUIψ) = r(φSIψ) = max{r(φ), r(ψ), r̄(I)}

where r̄(I) = 2⌈ inf I
sup I−inf I ⌉+ 1 if sup I <∞ and r̄(I) = 1 otherwise.

Even though the role of r̄ in our analysis will become clear in Lemmas 3.2.9
and 3.2.10, we compute the size and resolution of the following formulas as an
illustration of the definitions above.
Example. 1. If φ = p ∧ p ∧ p ∧ p, then s(φ) = 4 and r(φ) = 0.

2. If φ = p∧pU(100,101)q, then s(φ) = 4 and r(φ) = max{r(p), r(pU(100,101)q)} =

max{r(p), r(q), r̄((100, 101))} = r̄((100, 101)) = 2⌈ 100
101−100⌉+ 1 = 201.

3. If φ = ♢(50,51]p, then s(φ) = 2 and r(φ) = r̄((50, 51]) = 2 · 50 + 1 = 101.

4. If φ = ♢[100,150)p, then s(φ) = 2 and r(φ) = r̄([100, 150)) = 2 · 2 + 1 = 5.

5. If φ = ♦(0,5)p ∧ pU(0,100)q, then s(φ) = 5 and r(φ) = 1.
In the remaining of this section, we justify that the eliminations announced

in steps 1-4 can be performed and how they affect our complexity parameters.
In steps 1 and 2, we shall use the following lemmas. We obtain a way to express
the timed until by a combination of untimed until and bounded eventually in
the following lemma.

Lemma 3.2.3. For any rational numbers a, b, c such that 0 ≤ a < b < ∞ and
0 < c <∞, and formulas φ1, φ2 we have

φ1U(a,b)φ2 ≡ φ1U(a,∞)φ2 ∧ ♢(a,b)φ2

φ1U(a,b]φ2 ≡ φ1U(a,∞)φ2 ∧ ♢(a,b]φ2

φ1U[a,b)φ2 ≡ φ1U[a,∞)φ2 ∧ ♢[a,b)φ2

φ1U[a,b]φ2 ≡ φ1U(a,∞)φ2 ∧ ♢[a,b]φ2

φ1U(c,∞)φ2 ≡ □(0,c](φ1 ∧ φ1Uφ2)

φ1U[c,∞)φ2 ≡ □(0,c)φ1 ∧□(0,c](φ1Uφ2)

Proof. We prove the first and fifth equivalences as the rest can be proved in a
similar way. To show the first equivalence we let w be a signal and t ∈ R+

0 . We
will show that (w, t) ⊨ φ1U(a,b)φ2 iff (w, t) ⊨ φ1U(a,∞)φ2∧♢(a,b)φ2. The left-to-
right implication holds since the existence of a point t′ ∈ (t+ a, t+ b) such that
(w, t′) ⊨ φ2 and for all t′′ ∈ (t, t′), (w, t′′) ⊨ φ1, implies that t′ ∈ (t+ a,∞) and
(w, t) ⊨ φ1U(a,∞)φ2∧♢(a,b)φ2. To show the right-to-left implication, we assume
that (w, t) ⊨ φ1U(a,∞)φ2∧♢(a,b)φ2. This means that there exists t1 ∈ (t+a,∞)
such that (w, t1) ⊨ φ2 and for all φ1 holds along the interval (t, t1). Moreover,
there is some t2 ∈ (t+a, t+ b) such that (w, t2) ⊨ φ2. We distinguish two cases:
if t1 ≤ t2 then t1 ∈ (t + a, t + b) and t1 is a witness for φ1U(a,b)φ2; if t1 > t2,
then φ1 holds along (t, t2) and t2 is a witness of φ1U(a,b)φ2.
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Similarly, in the case of the fifth equivalence, the left-to-right direction holds
because if (w, t) ⊨ φ1U(c,∞)φ2 with witness t1 ∈ (t + c,∞), then for every
t2 ∈ (t, t + c] we have t < t2 ≤ t + c < t1, whence (w, t2) ⊨ φ2 and (w, t2) ⊨
φ1Uφ2. Therefore (w, t) ⊨ □(0,c](φ1 ∧ φ1Uφ2). For the right-to-left implication
we assume (w, t) ⊨ □(0,c](φ1∧φ1Uφ2). This means that φ1∧φ1Uφ2 holds along
(t, t+ c]. In particular, (w, t+ c) ⊨ φ1Uφ2, whence there is t1 ∈ (t+ c,∞) where
φ2 holds and φ1 holds along (t+c, t1). Then φ1 holds along (t, t1) and therefore
t1 is a witness for (w, t) ⊨ φ1U(c,∞)φ2.

A way to express the timed since by a combination of untimed since and
bounded historically is shown in the following lemma.

Lemma 3.2.4. For any rational numbers a, b, c such that 0 ≤ a < b < ∞ and
0 < c <∞, and formulas φ1, φ2, we have

φ1S(a,b)φ2 ≡ φ1S(a,∞)φ2 ∧ ♦(a,b)φ2

φ1S(a,b]φ2 ≡ φ1S(a,∞)φ2 ∧ ♦(a,b]φ2

φ1S[a,b)φ2 ≡ φ1S[a,∞)φ2 ∧ ♦[a,b)φ2

φ1S[a,b]φ2 ≡ φ1S(a,∞)φ2 ∧ ♦[a,b]φ2

φ1S(c,∞)φ2 ≡ ■(0,c](φ1 ∧ φ1Sφ2)

φ1S[c,∞)φ2 ≡ ■(0,c)φ1 ∧■(0,c](φ1Sφ2)

Proof. Symmetric to Lemma 3.2.3.

In terms of complexity, the increase in the size under these equivalences is
of an additive constant. Consider, for example, the equivalence φ1U(a,b)φ2 ≡
φ1U(a,∞)φ2∧♢(a,b)φ2. We observe that s(φ1U(a,∞)φ2∧♢(a,b)φ2) = s(φ1U(a,b)φ2)+
2. Now take the equivalence φ1S(c,∞)φ2 ≡ ■(0,c](φ1∧φ1Sφ2). Then s(■(0,c](φ1∧
φ1Sφ2)) = s(φ1S(c,∞)φ2) + 2. Other cases are clearly similar. Observe that in
both lemmas the resolution of the formula in the right-hand side of the equiva-
lences is not affected by any of these rewritings.

The following lemmas cover the eliminations from step 3, showing that we
are able to move bounded intervals in the subscripts of ♢I ,♦I , towards the
origin, an amount equal to its length or to its distance to the origin.

Lemma 3.2.5. For any rational numbers a, b such that 0 < a < b and a ≥ b−a
and every formula φ, if we put c = b− a, then

♢(a+c,b+c)φ ≡ ♢(0,c)□(0,c)♢(a,b)φ

♢(a+c,b+c]φ ≡ ♢(0,c]□[0,c)♢(a,b]φ

♢[a+c,b+c)φ ≡ ♢[0,c)□(0,c]♢[a,b)φ

♢[a+c,b+c]φ ≡ ♢[0,c]□[0,c]♢[a,b]φ

Proof. All proofs are similar, so we only show the first equivalence.
First, assume that (w, t) ⊨ ♢(a+c,b+c)φ. This means there is some t′ ∈

(t+ a+ c, t+ b+ c) such that (w, t′) ⊨ φ. Then, for every t′′ ∈ (t′ − b, t′ − a), we
have that t′ ∈ (t′′+a, t′′+b), whence (w, t′′) ⊨ ♢(a,b)φ. Since |(t′−b, t′−a)| = c,
then (w, t′ − b) ⊨ □(0,c)♢(a,b)φ. But t′ − b ∈ (t, t+ c). Hence, we conclude that
(w, t) ⊨ ♢(0,c)□(0,c)♢(a,b)φ.

The converse is proven by contraposition. Assume that φ is false over (t +
a+ c, t+ b+ c). Then ♢(a,b)φ is false at time t+ c, and □(0,c)♢(a,b)φ is false over
(t, t+ c), so that the right-hand side of the equivalence is false at time t.
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Lemma 3.2.6. For any rational numbers a, b such that 0 < a < b and a > b−a
and every formula φ, if we put c = b− a, then

♦(a+c,b+c)φ ≡ ♦(0,c)■(0,c)♦(a,b)φ

♦(a+c,b+c]φ ≡ ♦(0,c]■[0,c)♦(a,b]φ

♦[a+c,b+c)φ ≡ ♦[0,c)■(0,c]♦[a,b)φ

♦[a+c,b+c]φ ≡ ♦[0,c]■[0,c]♦[a,b]φ

Proof. Symmetric to Lemma 3.2.5.

Lemma 3.2.7. For any rational numbers a, b such that 0 < a < b and a ≤ b−a
and every formula φ, we have

♢(a,b)φ ≡ ♢(0,b−a)□(0,a)♢(0,a)φ

♢(a,b]φ ≡ ♢(0,b−a]□[0,a)♢(0,a]φ

♢[a,b)φ ≡ ♢[0,b−a)□(0,a]♢[0,a)φ

♢[a,b]φ ≡ ♢[0,b−a]□[0,a]♢[0,a]φ

Proof. We only show the first equivalence.
First, assume that (w, t) ⊨ ♢(a,b)φ. This means there is some t′ ∈ (t+a, t+b)

such that (w, t′) ⊨ φ. Then, for every t′′ ∈ (t′ − a, t′), we have that t′ ∈
(t′′, t′′ + a), whence (w, t′′) ⊨ ♢(0,a)φ. Since |(t′ − a, t′)| = a, then (w, t′ − a) ⊨
□(0,a)♢(0,a)φ. But t′ − a ∈ (t, t + b − a). Hence, we conclude that (w, t) ⊨
♢(0,b−a)□(0,a)♢(0,a)φ.

The converse is proven by contraposition. Assume that φ is false over (t +
a, t+ b). Then ♢(0,b−a)φ is false at time t+ a, and □(0,a)♢(0,b−a)φ is false over
(t, t+ a), so that the right-hand side of the equivalence is false at time t.

Lemma 3.2.8. For any rational numbers a, b such that 0 < a < b and a ≤ b−a
and every formula φ, we have

♦(a,b)φ ≡ ♦(0,b−a)■(0,a)♦(0,a)φ

♦(a,b]φ ≡ ♦(0,b−a]■[0,a)♦(0,a]φ

♦[a,b)φ ≡ ♦[0,b−a)■(0,a]♦[0,a)φ

♦[a,b]φ ≡ ♦[0,b−a]■[0,a]♦[0,a]φ

Proof. Symmetric to Lemma 3.2.7.

Let us explain how these lemmas work with an example. Consider a formula
of the form ♢(5,6)φ where we want to eliminate the occurrence of ♢(5,6). This
operator will be replaced by a sequence of ♢I□J where inf I = inf J = 0 to

obtain an equivalent formula. We perform the division
5

6− 5
and obtain the

quotient 5 and residuum 0. Then, we apply 5 iterations of Lemma 3.2.5 to
obtain ♢(5,6)φ ≡ ♢(0,1)□(0,1)♢(4,5)φ ≡ ♢(0,1)□(0,1)♢(0,1)□(0,1)♢(3,4)φ ≡ · · · ≡
(♢(0,1)□(0,1))

5φ. Now consider a different formula ♢(5,8)φ. We perform the

division
5

8− 5
and obtain the quotient 1 and positive residuum. In this case,

we apply one iteration of Lemma 3.2.5 to obtain ♢(5,8)φ ≡ ♢(0,3)□(0,3)♢(2,5)φ
and one of Lemma 3.2.7 to obtain ♢(2,5)φ ≡ ♢(0,3)□(0,2)♢(0,2)φ. Joining the
two expresions, we obtain ♢(5,8)φ ≡ ♢(0,3)□(0,3)♢(0,3)□(0,2)♢(0,2)φ. Thus, the
previous lemmas can be joined to obtain compact expressions.

Lemma 3.2.9. For every formula φ and rational numbers 0 < a < b < ∞, we
have ♢Iφ ≡ φ′ where φ′ is
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1.
(
♢(0,c)□(0,c)

)⌊ a
c ⌋(♢(0,c)□(0,a)

)⌈ r
c ⌉♢(0,a)φ if I = (a, b),

2.
(
♢[0,c)□(0,c]

)⌊ a
c ⌋(♢[0,c)□(0,a]

)⌈ r
c ⌉♢[0,a)φ if I = [a, b),

3.
(
♢(0,c]□[0,c)

)⌊ a
c ⌋(♢(0,c]□[0,a)

)⌈ r
c ⌉♢(0,a]φ if I = (a, b],

4.
(
♢[0,c]□[0,c]

)⌊ a
c ⌋(♢[0,c]□[0,a]

)⌈ r
c ⌉♢(0,a)φ if I = [a, b].

where, c = b − a, and r = a − ⌊ac ⌋ · a. Moreover, s(φ′) = s(φ) + r̄(I) and
r(φ′) = r(φ).

Proof. Observe that a = c · ⌊ac ⌋ + r, this is, ⌊ac ⌋ is the quotient of the integer
division

a

b− a
and ⌈ rc ⌉ is 1 if is the residuum is positive or 0 if the division

a

b− a
is exact. To obtain the expressions above, we apply Lemma 3.2.5 ⌊ac ⌋ times and
Lemma 3.2.7 only one time if r > 0 i.e. ⌈ rc ⌉ times. Moreover, the size of φ′ is
2 · ⌊ac ⌋+ 2 · ⌈ rc ⌉+ 1+ s(φ) = 2 · ⌈ac ⌉+ 1+ s(φ) = r̄(I) + s(φ) and the resolution
of φ′ is equal to the resolution of φ because the new operators that appear in
φ′ have subscripts whose infimum is zero.

Lemma 3.2.10. For every formula φ and rational numbers 0 < a < b < ∞,
we have ♦Iφ ≡ φ′ where φ′ is

1.
(
♦(0,c)■(0,c)

)⌊ a
c ⌋(♦(0,c)■(0,a)

)⌈ r
c ⌉♦(0,a)φ if I = (a, b),

2.
(
♦[0,c)■(0,c]

)⌊ a
c ⌋(♦[0,c)■(0,a]

)⌈ r
c ⌉♦[0,a)φ if I = [a, b),

3.
(
♦(0,c]■[0,c)

)⌊ a
c ⌋(♦(0,c]■[0,a)

)⌈ r
c ⌉♦(0,a]φ if I = (a, b],

4.
(
♦[0,c]■[0,c]

)⌊ a
c ⌋(♦[0,c]■[0,a]

)⌈ r
c ⌉♦(0,a)φ if I = [a, b].

where, c = b − a, and r = a − ⌊ac ⌋ · a. Moreover, s(φ′) = s(φ) + r̄(I) and
r(φ′) = r(φ).

Proof. Symmetric using Lemmas 3.2.6 and 3.2.8.

Lastly, we arrive to the lemma that allows to perform step 4, eliminating
subscripts I of the form (0, a], [0, a), [0, a] from ♢I using the following equiva-
lences.

Lemma 3.2.11. For every formula φ,

♢(0,a]φ ≡ ♢(0,a)φ ∨ (⃝♢(0,a)φ ∧ ¬φUφ)
♢[0,a)φ ≡ φ ∨ ♢(0,a)φ

♢[0,a]φ ≡ φ ∨ ♢(0,a]φ

♦(0,a]φ ≡ ♦(0,a)φ ∨ (⃝♦(0,a)φ ∧ ¬φUφ)
♦[0,a)φ ≡ φ ∨ ♦(0,a)φ

♦[0,a]φ ≡ φ ∨ ♦(0,a]φ
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Proof. We show the first equivalence: the second and third are easy, and the
rest are proven symetrically. First, assume that (w, t) ⊨ ♢(0,a]φ. Then φ holds
at some t′ ∈ (t, t + a]. If t′ ∈ (t, t + a), then (w, t) ⊨ ♢(0,a)φ, and if t′ = t + a,
then (w, t) ⊨ (⃝♢(0,a)φ∧¬φUφ) as for every t′′ ∈ (t, t+a), (w, t′′) ⊨ ♢(0,a)φ and
(w, t) ⊨ ¬φUφ as φ is true at t+a and false between t and t+a. For the converse
implication, assume (w, t) ⊨ ♢(0,a)φ ∨ (⃝♢(0,a)φ ∧ ¬φUφ). If (w, t) ⊨ ♢(0,a)φ
then clearly (w, t) ⊨ ♢(0,a]φ. Otherwise (⃝♢(0,a)φ ∧ ¬φUφ) holds at t. Then
we know there is some first t′ > t where φ holds and φ is false between t and
t′. We want to show that there is some t′ ∈ (t, t + a] where φ holds so we
assume t′ > t + a to get a contradiction. But on the other hand ♢(0,a)φ holds
immediately after t, whence there is some t′′ > t such that t′′ + a < t′ and then
φ is true at some point between t′′ and t′′+a, contradicting that φ is false along
(t, t′).

Observe that the size of after the rewritings above increases by an additive
constant. For example, the size of ♢(0,a)φ ∨ (⃝♢(0,a)φ ∧ ¬φUφ) equals to the
size of ♢(0,a]φ+5, and the size of φ ∨ ♢(0,a)φ is the size of ♢[0,a)φ+1. On the
other hand, the resolution after the rewriting remains the same.

Theorem 3.2.2. Any MITL formula φ is equivalent to some formula φ′ that
only contains the temporal operators U ,S,♢(0,a),♦(0,a), where a is a positive
rational number. Moreover, s(φ′) ∈ O[s(φ) · r(φ)] and r(φ′) ≤ 1.

Proof. Let φ be an arbitrary formula. Let us denote by k the maximum additive
constant of size increase in all previous lemmas. Then apply the following
procedure:

1. For every occurrence of bounded U (resp. S) in φ, apply one iteration of
Lemmas 3.2.3 and 3.2.4 to write a new formula φ1 using unbounded U
(resp. S) and bounded ♢ (resp. ♦). The number of occurrences of these
operators is bounded by s(φ). Moreover, after every application, the size
of the formula grows by a constant additive factor and the resolution
remains the same. Hence, s(φ1) = k · s(φ) for some natural number k and
r(φ1) = r(φ).

2. For every occurrence of unbounded U (resp. S) in φ1, apply one iteration
of Lemmas 3.2.3 and 3.2.4 to write a new formula φ2 using U(0,∞) (resp.
S(0,∞) and bounded ♢ (resp. ♦). The number of occurrences of these
operators is bounded by s(φ1). Moreover, after every application, the
size of the formula grows by a constant additive factor and the resolution
remains the same. Hence, s(φ2) = k · s(φ1) for some natural number k
and r(φ2) = r(φ1).

3. For every occurrence of bounded ♢ (resp. ♦) in φ2, apply one iteration of
Lemmas 3.2.5 and 3.2.7 to obtain a new formula φ3 using ♢I (resp. ♦I)
where inf I = 0. The number of occurrences of these operators is bounded
by s(φ). Moreover, after every application, the size of the formula grows
by an additive factor bounded by r(φ) and the resolution is reduced to 1
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because once all bounded ♢,♦ are eliminated, all operators have subscripts
with infimum zero or unbounded. Hence, s(φ3) = r(φ) · s(φ2) for some
natural number k and r(φ3) ≤ 1.

4. For every occurrence of ♢(0,a],♢[0,a),♢[0,a] (resp. ♦) in φ3 use at most
two iterations of Lemma 3.2.11 to obtain a formula φ4 using ♢(0,a) (resp.
♦(0,a)) and U(0,∞) (resp. S(0,∞)). The number of occurrences of these
operators is bounded by s(φ3). Moreover, after every application, the
size of the formula grows by a constant additive factor and the resolution
remains the same. Hence, s(φ4) = k · s(φ3) for some natural number k
and r(φ4) = r(φ3).

Then put φ′ = φ4. The formula φ′ satisfies φ ≡ φ′ and only contains standard
operators. Furthermore, the size of ψ′ is bounded by k3 · s(φ) · r(φ) where k is
the maximum additive constant of size increase among Lemmas 3.2.3, 3.2.4 and
3.2.11. Hence, s(φ′) ∈ O(s(φ) · r(φ)) Finally, r(φ′) ≤ 1.

3.3 Timed signal-based transducers

In this section we define a variant of timed transducers that accept and output
signals. To describe the computations of such automata with respect to a sig-
nal, we will be interested in decomposing signals into a concatenation of point
segments ẇ : {0} → Σ and open segments of bounded length wr : (0, r) → Σ
for some r > 0 or infinite length w∞ : (0,+∞) → Σ. We define several kinds of
concatenation

• The concatenation of two functions ẇ, wr is defined as ẇ · wr : [0, r) → Σ
such that (ẇ · wr)(0) = ẇ(0) and (ẇ · wr)(t) = wr(t) for t ∈ (0, r).

• The concatenation of two functions ẇ, w∞ is defined as ẇ·w∞ : [0,+∞) →
Σ such that (ẇ ·w∞)(0) = ẇ(0) and (ẇ ·w∞)(t) = w∞(t) for t ∈ (0,+∞).

• The concatenation of two functions w1 : [0, r1) → Σ and w2 : [0, r2) → Σ
for r1, r2 > 0 is defined as w1 ·w2 : [0, r1+r2) → Σ such that (w1 ·w2)(t) =
w1(t) if t ∈ [0, r1) and (w1 · w2)(t) = w2(t− r1) if t ∈ [r1, r1 + r2).

• The concatenation of two functions w1 : [0, r) → Σ and w2 : [0,+∞) → Σ
for r > 0 is defined as w1 ·w2 : [0,+∞) → Σ such that (w1 ·w2)(t) = w1(t)
if t ∈ [0, r) and (w1 · w2)(t) = w2(t− r) if t ∈ [r,+∞).

Let w be a signal w and I = {0}(0, t0){t0}(t0, t1){t1} · · · a point-segment par-
tition witnessing this. Then if I is infinite, for every i ≥ 0 there exist point
and open segments ẇi, w

ti−ti−1

i satisfying ẇi(0) = w(ti) and w
ti−ti−1

i (t) =
w(t + t0 + · · · + ti−1) for all t ∈ (0, ti − ti−1). If I is finite, let (tM ,+∞)
be the last open segment. Then for every 0 ≤ i < M there exist point and open
segments ẇi, w

ti−ti−1

i as above, and for i = M there exist ẇM , w∞
M such that
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ẇM (0) = w(tM ) and w∞
M (t) = w(t+ t0 + t1 + · · ·+ tM ) for all t ∈ (0,+∞). We

define

w0 = (ẇ0 · wt00 )

w1 = (ẇ0 · wt00 ) · (ẇ1 · wt1−t01 )

...

wi = (ẇ0 · wt00 ) · (ẇ1 · wt1−t01 ) · · · (ẇi · wti−ti−1

i )

...

and then w =
⋃
i≥0 wi. We will usually describe the decomposition of a signal

w with respect to a point-segment partition I = {0}(0, t0){t0}(t0, t1){t1} · · · as

w = (ẇ0 · wt00 ) · (ẇ1 · wt1−t01 ) · (ẇ2 · wt2−t12 ) · · · ,

or similarly, for r0 = t0 and ri = ti − ti−1, as

w = (ẇ0 · wr00 ) · (ẇ1 · wr11 ) · (ẇ2 · wr22 ) · · · .

Definition 3.3.1. A timed transducer is a tuple T = (S, s, C, P,Q,∆, λ, γ, Inv,F)
where

• S is a finite set of states and s /∈ S is the initial state,

• P is a finite set of input variables,

• Q is a finite set of output variables,

• C is a finite set of clock variables,

• Inv is the invariance map Inv : S → Φ(C) assigning some clock constraint
to every state,

• ∆ is the transition relation consisting of elements of the form δ = (s, g, R, s′)
where s ∈ S∪{s} and s′ ∈ S, the guard g ∈ Φ(C), and the reset instruction
R ⊆ C,

• λ is a map λ : S ∪∆ → BC(P ) called the input labeling,

• γ is a map γ : S ∪∆ → BC(Q) called the output labeling,

• F ⊆ P(S ∪∆) is a generalized Büchi acceptance condition.

The configuration of a timed transducer is determined by a pair (s, v) where
s is a state and v is a clock valuation. Informally, a run of the timed transducer
is an alternating sequence of time and discrete transitions. The transducer can
either stay in a state for some time, provided that the invariance condition holds,
or take a transition to a different state whose guard is satisfied. Moreover, during
a time step of duration r in a state s, the transducer reads an open segment
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wr of the input w of length r, whose values are required to satisfy λ(s), and
outputs an open fragment ur of the output u according to γ(s). While taking a
transition δ, a point segment ẇ from w is read, whose value must satisfy λ(δ),
and then a point segment u̇ of the output u is written according to γ(s).

Definition 3.3.2. For a timed transducer T and a given signal w, two kinds
of relations among configurations of T are defined

• A time transition is a tuple ((s, v), wr, ur, (s, v + r)), denoted by

(s, v)
wr/ur

−−−−→ (s, v + r)

where wr, ur are open segments of length r of w such that (wr, t) ⊨ λ(s),
(ur, t) ⊨ γ(s), and v + t satisfies Inv(s) for all t ∈ (0, r).

• A discrete transition is a tuple ((s, v), ẇ, u̇, (s′, R[v])), denoted by

(s, v)
ẇ/u̇−−−→ (s′, R[v]),

for some transition δ = (s, g, R, s′) ∈ ∆ such that (ẇ, 0) ⊨ λ(δ), and
(u̇, 0) ⊨ γ(δ), and v satisfies g.

Thus, a run of the automaton starting at configuration (s, v) for an arbitrary
clock valuation v over the signal w is a finite or infinite alternating sequence of
time and discrete transitions

(s, v)
ẇ0/u̇0−−−−→ (s0, v0)

w
r0
0 /u

r0
0−−−−−→ (s0, v0 + r0)

ẇ1/u̇1−−−−→ (s1, v1) −→ · · · ,

such that w can be decomposed as ẇ0 · wr00 · ẇ1 · wr11 · · · . Then w is called the
input signal, and u = u̇0 · ur00 · u̇1 · ur11 · · · is the output signal. We say that a
run r over an input signal w induces an output signal u. In particular, a finite
run over w is of the form

(s, v)
ẇ0/u̇0−−−−→ (s0, v0)

w
r0
0 /u

r0
0−−−−−→ (s0, v0 + r0) −→ · · · ẇi/u̇i−−−−→ (s, v)w

∞
i /u∞

i ,

where w = ẇ0 · wr00 · · ·wri−1

i−1 · ẇi · w∞
i , inducing the output signal u = u̇0 ·

ur00 · · ·uri−1

i−1 · u̇i · u∞i such that w∞
i ⊨ λ(s), u∞i ⊨ γ(s), and v+ t satisfies Inv(s)

for all t > 0.

To introduce the notion of accepting run, we explain how external time
operates in the context of a run of a timed transducer.

Definition 3.3.3. Given an infinite run of a timed transducer T over a signal
w of the form

(s, v)
ẇ0/u̇0−−−−→ (s0, v0)

w
r0
0 /u

r0
0−−−−−→ (s0, v0 + r0)

ẇ1/u̇1−−−−→ (s1, v1) −→ · · · ,

and a point of time t ≥ 0, we say that T is at state s if t = 0, and at state sj at
time t > 0 iff

∑j
k=0 rk ≤ t <

∑j+1
k=0 rk. Further, we say that T is at transition

δ0 if t = 0 and at transition δj iff t =
∑j
k=0 rk.
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Similarly, given a finite run of a timed transducer T over a signal w of the
form

(s, v)
ẇ0/u̇0−−−−→ (s0, v0)

w
r0
0 /u

r0
0−−−−−→ (s0, v0 + r0) −→ · · · ẇi/u̇i−−−−→ (si, vi)

w∞
i /u∞

i ,

we say that the automaton T is at state si at time t iff
∑i−1
k=0 rk ≤ t.

Definition 3.3.4. A a run of T over the input signal w is accepting if it starts
at the initial configuration (s, 0) and satisfies the generalized Büchi condition:
for all F ∈ F and t ≥ 0 there exists t′ > t and a state or transition α ∈ F
such that T is at α at time t′. Hence, u is a T -output over w iff there exists an
accepting run over w of inducing u.

For a timed transducer T , we say T is Q-functional iff for every signal w
there exists a T -output over w which is unique with respect to the assignments
of the variables in Q. In this case, we denote by T the map associated to it,
and we say that u = T (w) is the output of the transducer over the signal w.

3.4 Composing timed signal-based transducers
We present the main way of composing timed transducers.

Definition 3.4.1. Let T1, T2 be two timed transducers whose components are
(Si, si, Pi, Qi, Ci, Invi,∆i, λi, γi,Fi) for i = 1, 2. Assume that C1 ∩ C2 = P1 ∩
P2 = Q1 ∩Q2 = ∅. The parallel composition of T1 and T2, denoted by T1||T2, is
the timed transducer (S, s, P,Q,X, Inv,∆, λ, γ,F) such that

• S = S1 × S2

• s = (s1, s2)

• P = P1 ∪ P2

• Q = Q1 ∪Q2

• C = C1 ∪ C2

• Inv((s1, s2)) = Inv1(s1) ∧ Inv2(s2)

• The transition relation ∆ consists of three kinds of transitions:

– Simultaneous transitions δ = ((s1, s2), g, R, (s
′
1, s

′
2)), where δ1 =

(s1, g1, R1, s
′
1) ∈ ∆1, δ2 = (s2, g2, R2, s

′
2) ∈ ∆2, g = g1 ∧ g2 and

R = R1 ∪R2. We say that δ is built from δ1 and δ2.

– Left-sided transitions δ = ((s1, s2), g ∧ Inv2(s2), R, (s′1, s2)) where
δ1 = (s1, g, R, s

′
1) ∈ ∆1. We say that δ is built from δ1.

– Right-sided transitions δ = ((s1, s2), Inv1(s1) ∧ g,R, (s1, s′2)) where
δ = (s2, g, R, s

′
2) ∈ ∆2. We say that δ is built from δ2.
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• The input labeling λ : S ∪∆ → BC(P ) is defined similarly as λ,

– for a state (s1, s2), put λ((s1, s2)) = λ1(s1) ∧ λ2(s2)
– for a simultaneous transition δ = ((s1, s2), g, R, (s

′
1, s

′
2)), put

λ(δ) = λ1((s1, g1, R1, s
′
1)) ∧ λ2((s2, g2, R2, s

′
2))

– for a left-sided transition δ = ((s1, s2), g ∧ Inv2(s2), R, (s′1, s2)), put

λ(δ) = λ1((s1, g, R, s
′
1)) ∧ λ2(s2)

– for a right-sided transition δ = ((s1, s2), Inv1(s1)∧ g,R, (s1, s′2)) put

λ(δ) = λ1(s1) ∧ λ2(s2, g, R, s′2)

• The output labeling γ : S ∪∆ → BC(Q) is defined as follows

– for a state (s1, s2), put γ((s1, s2)) = γ1(s1) ∧ γ2(s2)
– for a simultaneous transition δ = ((s1, s2), g, R, (s

′
1, s

′
2)), put

γ(δ) = γ1((s1, g1, R1, s
′
1)) ∧ γ2((s2, g2, R2, s

′
2))

– for a left-sided transition δ = ((s1, s2), g ∧ Inv2(s2), R, (s′1, s2)), put

γ(δ) = γ1((s1, g, R, s
′
1)) ∧ γ2(s2)

– for a right-sided transition δ = ((s1, s2), Inv1(s1)∧ g,R, (s1, s′2)) put

γ(δ) = γ1(s1) ∧ γ2(s2, g, R, s′2)

• The generalized Büchi condition F contains the following sets:

– For every F2 ∈ F2, it contains the set S1 × (F2 ∩ S2) ∪
{δ ∈ ∆ : δ is simultaneous or right-sided built from a transition δ2 ∈
F2}.

– For every F1 ∈ F1, it contains the set (F1 ∩ S1)× S2 ∪
{δ ∈ ∆ : δ is simultaneous or left-sided built from a transition δ1 ∈
F1}.

In the following lemmas we describe the relation among the runs of T1, T2
and the runs of T1||T2.

Definition 3.4.2. A partial run ri with duration t over a signal w is a finite
sequence of alternating time and discrete steps

(s, v)
ẇ0/u̇0−−−−→ (s0, v0)

w
r0
0 /u

r0
0−−−−−→ (s0, v0 + r0)

ẇ1/u̇1−−−−→ · · · ẇi/u̇i−−−−→ (si, vi),

whose last step is a discrete transition, such that t = r0 + r1 + · · · + ri−1 and
w|[0,t] = ẇ0 · wr00 · · · ẇi.
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Lemma 3.4.1. Let T1, T2 be two timed transducers with input and output vari-
ables P1, P2 and Q1, Q2 respectively. Then for every signal w over P1∪P2, if r1
is a run of T1 over w|P1

inducing u1 and r2 is a run of T2 over w|P2
inducing

u2, then there exists a run r of T1||T2 over w inducing u1||u2. If both r1, r2 are
accepting, then r is accepting.

Proof. Let T1, T2 be arbitrary and let w be a signal over P1 ∪ P2. Let r1, r2 be
runs of T1, T2 over w. We suppose that both runs are infinite; other cases are
similar and left to the reader. We construct the run r of T1||T2 inductively. Since
C1 ∩ C2 = ∅, for any valuations v1, v2 over C1, C2 respectively, the evaluation
v1 ∪ v2 over C is well-defined.

Suppose the run r1 starts at configuration (s1, v1) and then takes a transition

of the form (s1, v1)
ẇ0/u̇

1
0−−−−→ (s10, v

1
0) and the run r2 starts at configuration (s2, v2)

and then takes a transition of the form (s2, v2)
ẇ0/u̇

2
0−−−−→ (s20, v

2
0). Thus, define the

partial run r0 (of duration 0) as ((s1, s2), v1 ∪ v2)
ẇ0/u̇

1
0||u̇

2
0−−−−−−→ ((s10, s

2
0), v

1
0 ∪ v20).

Now assume that we have constructed the partial run ri

((s1, s2), v1 ∪ v2)
ẇ0/u̇

1
0||u̇

2
0−−−−−−→ ((s10, s

2
0), v

1
0 ∪ v20) → · · · ẇi/u̇

1
i ||u̇

2
i−−−−−−→ ((s1i , s

2
i ), v

1
i ∪ v2i )

of duration t = r0 + r1 + · · · + ri−1 containing at least i discrete steps, where
i is the number of discrete transitions until time t performed in r1 or r2.
Then time point t determines two indexes j1, j2 (steps of r1, r2) such that
j1 = maxi{

∑i−1
j=0 r

1
j ≤ t} and j2 = maxi{

∑i−1
j=0 r

2
j ≤ t}. We shall maintain

the inductive assumption that at least one of the transducers is at a discrete
transition at time t. Note this is true for the partial run of duration 0 con-
structed above. Let us suppose without loss of generality that it is T1 and that
T2 is in the middle of a time step. Then d1 := r1j1 is the duration of the time
step taken after δ1j1 occurs in r1 at time t, and let d2 := (r20 + r21 + · · ·+ r2j2)− t

be the remaining duration of the time step from t until the next transition δ2j2+1

in r2. Then we compare d1, d2 and distinguish three cases:

• Case d1 < d2: the partial run ri+1 of duration t+d1 is obtained by adding
to ri a time step of duration d1 followed by a left-sided transition. During
the time step, the automaton reads the open segment (wd1j1 )|P1

||(w̃d1j2 )|P2
,

where w̃d1j2 has domain (0, d1) and evaluates as w̃d1j2 (x) = wd2j2 (x + t −
(r20 + r21 + · · ·+ r2j2−1)) for all x ∈ (0, d1). Further, it outputs the segment
ud1j1 ||ũ

d1
j2

where ũd1j2 has domain (0, d1) and it is defined as ũd1j2 (x) = ud2j2 (x+

t− (r20 + r
2
1 + · · ·+ r2j2−1)) for all x ∈ (0, d1). The left-sided transition δi+1

is built from δ1j1 while the automaton reads (ẇ1
j1+1)|P1

||ẇ2
d1

and outputs
u̇1j1+1||u̇2d1 where ẇ2

d1
, u̇2d1 are the point segments defined at 0 with values

wd22 (d1+t−(r20+r
2
1+· · ·+r2j2−1)) and ud22 (d1+x+t−(r20+r

2
1+· · ·+r2j2−1)).

• Case d1 = d2: we define the partial run ri+1 from ri by adding a time
transition of duration d1 followed by a simultaneous transition built from
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δ1j1+1, δ
2
j2+2. During the time transition, T1||T2 reads the open segment

(wd1j1 )|P1
||(w̃d2j2 )|P2

and outputs ud11 ||ũd2j2 , where w̃d2j2 (x) = wd2j2 (x+ t− (r20 +

r21 + · · · + r2j2−1)) for all x ∈ (0, d2) and ũd2j2 (x) = ud2j2 (x + t − (r20 + r21 +

· · · + r2j2−1)) for all x ∈ (0, d2). During the simultaneous transition the
automaton reads (ẇ1

j1+1)|P1
||ẇ2

j2+1 and outputs u̇1j1+1||u̇2j2+1.

• Case d1 > d2: we apply symmetrically the process shown for d1 < d2.

Observe that all constructed transitions are allowed by T1||T2 by definition.
Moreover, the partial run ri+1 has duration t + min{d1, d2} and has at least
i+ 1 discrete steps. We define the run r as

⋃
i ri and it is clear to see that it is

accepting if both r1, r2 are accepting. See that if ri visits state si at time t for
i = 1, 2, then r visits state (s1, s2) at time t. Similar for transitions. Then let t
be a point of time. We want to see that for every F ∈ F , there is some t′ > t
s.t. r is visiting some element of F at time t′. For every F ∈ F there is some
Fi ∈ Fi from which it is constructed. Suppose F = (F1 ∩ S1)× S2 ∪
{δ ∈ ∆ : δ is simultaneous or left-sided built from a transition δ1 ∈ F1}; the
other case is symmetric. Then since r1 is accepting there is some s1 or δ1 in
F1 ∈ F1 visited by r1 at some time t′ > t. If it is a state s1, then r is visiting
(s1, s2) at time t′ > t for some s2 ∈ S2, but then (s1, s2) ∈ F . Otherwise it
is a transition δ1, and then the left-sided transition δ built from δ1 belongs to
F .

Lemma 3.4.2. Let T1, T2 be two timed transducers with input and output vari-
ables P1, P2 and Q1, Q2 respectively. Then for every signal w over P1 ∪ P2, if
r is a run of T1||T2 over w inducing u, then there exist runs r1, r2 of T1, T2
over w|P1

, w|P2
inducing u|Q1

, u|Q2
respectively. Moreover, if r is accepting then

r1, r2 are accepting.

Proof. Let r be an infinite arbitrary run of T1||T2 over w inducing u. For every
valuation v over C1∪C2 we define v1, v2 over C1, C2 as v1 = v|C1

and v2 = v|C2
.

We define a pseudorun as a sequence of time and discrete transitions such that
it satisfies all the properties of a run except that several time steps can be
taken subsequently without any discrete transition in between. We construct
the pseudoruns r1, r2 as a union of partial pseudoruns

⋃
i r

1
i and

⋃
i r

2
i build

recursively on i, where i indexes the i-th time step of r. For all index i ≥ 0, the
partial pseudoruns r1i , r2i have duration t =

∑i
j=0 rj where rj is the length of

the j-th time step in r, having at most i discrete steps.
Suppose r starts at configuration ((s1, s2), v). Then the partial pseudoruns

r10, r
2
0 start at configurations (s1, v1), (s2, v2) respectively.
For all i ≥ 0, suppose we have constructed the partial pseudo runs r1i , r2i of

duration t. Then one of the following discrete transitions appears in r at time
t:

• a simultaneous transition δi+1 = ((s1i , s
2
i ), g, R, (s

1
i+1, s

2
i+1)) by reading

ẇi+1 and outputing u̇i+1 where g = g1 ∧ g2 and R = R1 ∪R2, followed by
a time step of duration di+1 by reading wdi+1

i+1 and outputing udi+1

i+1 .
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Then add to r1i , r
2
i discrete transitions δ1i+1 = ((s1i , g1, R1, s

1
i+1)) and

δ2i+1 = ((s2i , g2, R2, s
2
i+1)) by reading (ẇi+1)|P1

, (ẇi+1)|P2
and outputing

(u̇i+1)|Q1
, (u̇i+1)|Q2

respectively, followed by a time step of duration di+1

by reading (w
di+1

i+1 )|P1
, (w

di+1

i+1 )|P2
, and outputing (u

di+1

i+1 )|Q1
, (u

di+1

i+1 )|Q2
re-

spectively.

• a left-sided transition δi+1 = ((s1i , s
2
i ), g ∧ Inv2(s2i ), R, (s1i+1, s

2
i )) by read-

ing ẇi+1 and outputing u̇i+1, followed by a time step of duration di+1 by
reading wdi+1

i+1 and outputing udi+1

i+1 .

Then put the discrete transition (s1i , g, R, s
1
i+1) in r1i , reading (ẇi+1)|P1

,
and outputing (u̇i+1)|Q1

. After this, put a time step of duration di+1 both
in r2i , and in r1i after the discrete transition constructed above. During this
time step, T1 reads the open segment (w

ri+1

i+1 )|P1
and outputs (u

ri+1

i+1 )|Q1
,

while T2 reads the open segment (w
ri+1

i+1 )|P2
and outputs (u

ri+1

i+1 )|Q2
.

• for a right-sided transition proceed symmetrically.

Observe that all constructed transitions are allowed by T1 and T2 by definition.
Moreover, the partial runs r1i+1, r

2
i+1 have duration t + di+1 and at most i + 1

discrete steps. It only remains to prove that if r is accepting then so are r1 =⋃
i r

1
i and r2 =

⋃
i r

2
i .

In fact, if T1||T2 is at state s = (s1, s2) at time t′, then T1 is at state s1 and
T1 is at state s2 at time t′. If T1||T2 is at transition δ built from δ1, δ2, then T1
is at transition δ1 and T2 is at transition δ2 at time t′.

To see that r1 is accepting, let t ≥ 0 and F1 ∈ F1. Then there is some F ∈ F
constructed from F1 and some element x ∈ F1 and some t′ > t s.t. T1||T2 is at
x at time t′. By definition of F , then x is a state s = (s1, s2) where s1 ∈ F1

or a left-sided transition δ built from some δ1 ∈ F1. But if T1||T2 is at state
s = (s1, s2) at time t′, then T1 is at state s1 at time t′. If T1||T2 is at transition
δ built from δ1, then T1 is at transition δ1 at time t′. Hence r1 is accepting. By
a symmetric argument, so is r2.

As a consequence, for all parallel-composable timed transducers T1 and T2
with input variables P1, P2, if w is a signal over P1 ∪ P2, then w ∈ L(T1||T2) iff
w ∈ L(T1) ∩ L(T2).

Proposition 3.4.1. For all timed functional transducers T1 and T2 with input
variables P1 and P2 respectively, if T1 and T2 are parallel-composable, then T1||T2
is functional, and for any signal w over P1 ∪ P2 we have

T1||T2(w) = T1(w|P1
)||T2(w|P2

).

Proof. Let T1, T2 be two functional timed transducers with input and output
variables P1, P2 and Q1, Q2 respectively. Also let w be a signal over P1 ∪ P2.
Denote by ui = Ti(w|Pi

) for i = 1, 2. This means that there exist runs r1, r2
of T1, T2 over w|P1

, w|P2
inducing u1, u2. Then by Lemma 3.4.1 there exists

a run r of T1||T2 over w inducing u1||u2 which is exactly T1(w|P1
)||T2(w|P2

).



3.4. COMPOSING TIMED SIGNAL-BASED TRANSDUCERS 59

Now suppose there exists another T1||T2-output over w, and denote it u′. But
then, from the run r inducing it, by Lemma 3.4.2 we can find two runs r′1, r′2 of
T1, T2 over w|P1

, w|P2
inducing u′|Q1

, u′|Q2
. But since T1, T2 are functional, then

u′|Q1
= u1 and u2 = u′|Q2

. Hence u′ = u.

Definition 3.4.3. We say that two timed transducers T1 and T2 with input
and output variables P1, P2 and Q1, Q2 respectively are sequential-composable
if C1 ∩ C2 = P1 ∩ P2 = Q1 ∩ Q2 = ∅ and Q1 = P2. In this case, for i = 1, 2
and Ti = (Si, si, Pi, Qi, Ci, Invi,∆i, λi, γi,Fi), we can define their sequential
composition.

The sequential composition of T1 and T2, denoted by T1; T2, is the timed
transducer (S, s, P,Q,X, Inv,∆, λ, γ,F) such that

• S = S1 × S2

• s = (s1, s2)

• P = P1

• Q = Q2

• C = C1 ∪ C2

• Inv((s1, s2)) = Inv1(s1) ∧ Inv2(s2)

• The transition relation ∆ consists of three kinds of transitions:

– Simultaneous transitions δ = ((s1, s2), g, R, (s
′
1, s

′
2)), where δ1 =

(s1, g1, R1, s
′
1) ∈ ∆1, δ2 = (s2, g2, R2, s

′
2) ∈ ∆2, g = g1 ∧ g2 and

R = R1 ∪R2. We say that δ is built from δ1 and δ2.

– Left-sided transitions δ = ((s1, s2), g ∧ Inv2(s2), R, (s′1, s2)) where
δ1 = (s1, g, R, s

′
1) ∈ ∆1. We say that δ is built from δ1.

– Right-sided transitions δ = ((s1, s2), Inv1(s1) ∧ g,R, (s1, s′2)) where
δ = (s2, g, R, s

′
2) ∈ ∆2. We say that δ is built from δ2.

• The input labeling λ : S ∪∆ → BC(P ) is defined as follows

– for a state (s1, s2), put λ((s1, s2)) = λ1(s1) if γ1(s1) ∧ λ2(s2) is sat-
isfiable; otherwise put λ((s1, s2)) = ⊥

– for a simultaneous transition δ built from δ1, δ2, put λ(δ) = λ1(δ1) if
γ1(δ1) ∧ λ2(δ2) is satisfiable; otherwise put λ(δ) = ⊥.

– for a left-sided transition δ = ((s1, s2), g ∧ Inv2(s2), R, (s′1, s2)), put
λ(δ) = λ1((s1, g, R, s

′
1)) if γ1((s1, g, R, s′1)) ∧ λ2(s2)) is satisfiable;

otherwise put λ(δ) = ⊥.

– for a right-sided transition δ = ((s1, s2), Inv1(s1)∧ g,R, (s1, s′2)) put
λ(δ) = λ1(s1) if γ1(s1)∧λ2((s2, g, R, s′2)) is satisfiable; otherwise put
λ(δ) = ⊥.
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• The output labeling γ : S ∪∆ → BC(Q) is defined as follows

– for a state (s1, s2), put γ((s1, s2)) = γ2(s2)

– for a simultaneous transition δ built from δ1, δ2, put γ(δ) = γ2(δ2)

– for a left-sided transition δ = ((s1, s2), g ∧ Inv2(s2), R, (s′1, s2)), put
γ(δ) = γ2(s2)

– for a right-sided transition δ = ((s1, s2), Inv1(s1)∧ g,R, (s1, s′2)) put
γ(δ) = γ2(s2, g, R, s

′
2)

• The generalized Büchi condition F contains the following sets:

– For every F2 ∈ F2, it contains the set S1 × (F2 ∩ S2) ∪
{δ ∈ ∆ : δ is simultaneous or right-sided built from a transition δ2 ∈
F2}.

– For every F1 ∈ F1, it contains the set (F1 ∩ S1)× S2 ∪
{δ ∈ ∆ : δ is simultaneous or left-sided built from a transition δ1 ∈
F1}.

In the following lemmas we show what is the relation among the runs of
T1, T2 and the runs of T1; T2.

Lemma 3.4.3. Let T1, T2 be two sequential-composable timed transducers with
input and output variables P1, P2 and P2, Q2 respectively. Then for every signal
w over P1, if r1 is a run of T1 over w inducing u′ and r2 is a run of T2 over u′
inducing u, then there exists a run r of T1; T2 over w inducing u. Moreover, if
r1, r2 are accepting, then r is accepting.

Proof. Let w be an arbitrary signal over P1. We construct the run r of T1; T2
over w inductively.

Suppose the run r1 starts at configuration (s1, v1) and then takes a transition

of the form (s1, v1)
ẇ0/u̇

′
0−−−−→

δ10

(s10, v
1
0) while r2 starts at configuration (s2, v2) and

then takes a transition of the form (s2, v2)
u̇′
0/u̇0−−−−→
δ20

(s20, v
2
0). By definition, this

is equivalent to ẇ0 ⊨ λ1(δ
1
0), u̇′0 ⊨ γ1(δ

1
0) ∧ λ2(δ

2
0) and u̇0 ⊨ γ2(δ

2
0). Then

γ1(δ
1
0) ∧ λ2(δ20) is satisfiable and then the simultaneous transition δ0 built from

δ10 , δ
2
0 satisfies λ(δ0) = λ1(δ

1
0). And γ(δ0) = γ2(δ2).

Thus, define the partial run r0 (of duration 0) as ((s1, s2), v1 ∪ v2)
ẇ0/u̇0−−−−→

((s10, s
2
0), v

1
0 ∪ v20).

Now assume that we have constructed the partial run ri

((s1, s2), v1 ∪ v2)
ẇ0/u̇0−−−−→ ((s10, s

2
0), v

1
0 ∪ v20) → · · · ẇi/u̇i−−−−→ ((s1i , s

2
i ), v

1
i ∪ v2i )

of duration t = r0 + r1 + · · · + ri−1 containing at least i discrete steps, where
i is the number of discrete transitions until time t performed in r1 or r2.
Then time point t determines two indexes j1, j2 (steps of r1, r2) such that
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j1 = maxi{
∑i−1
j=0 r

1
j ≤ t} and j2 = maxi{

∑i−1
j=0 r

2
j ≤ t}. We shall maintain

the inductive assumption that at least one of the transducers is at a discrete
transition at time t. Note this is true for the partial run of duration 0 con-
structed above. Let us suppose without loss of generality that T1 is at a discrete
transition (from s1i ) and that T2 is in the middle of a time step (at s2i ). Then
d1 := r1j1 is the duration of the time step taken after δ1j1 occurs in r1 at time
t, and let d2 := (r20 + r21 + · · · + r2j2) − t be the remaining duration of the time
step from t until the next transition δ2j2+1 in r2. Then we compare d1, d2 and
distinguish three cases:

• Case d1 < d2: the partial run ri+1 of duration t+d1 is obtained by adding
to ri a time step of duration d1 followed by a left-sided transition. During
the time step, the automaton reads the open segment wd1j1 . Further, it
outputs the segment ũd1j2 where ũd1j2 has domain (0, d1) and it is defined
as ũd1j2 (x) = ud2j2 (x + t − (r20 + r21 + · · · + r2j2−1)) for all x ∈ (0, d1). The
left-sided transition δi+1 is built from δ1j1 while the automaton reads ẇ1

j1+1

and outputs u̇2d1 where u̇2d1 is the point segment defined at 0 with value
ud22 (d1 + x+ t− (r20 + r21 + · · ·+ r2j2−1)).

• Case d1 = d2: we define the partial run ri+1 from ri by adding a time
transition of duration d1 followed by a simultaneous transition built from
δ1j1+1, δ

2
j2+2. During the time transition, T1; T2 reads the open segment

wd1j1 and outputs ũd2j2 , where ũd2j2 (x) = ud2j2 (x+ t−(r20+r
2
1+ · · ·+r2j2−1)) for

all x ∈ (0, d2). During the simultaneous transition the automaton reads
ẇ1
j1+1 and outputs u̇2j2+1.

• Case d1 > d2: we apply symmetrically the process shown for d1 < d2.

Observe that all constructed transitions are allowed by T1; T2 by definition.
Moreover, the partial run ri+1 has duration t + min{d1, d2} and has at least
i+ 1 discrete steps. We define the run r as

⋃
i ri and it is clear to see that it is

accepting if both r1, r2 are accepting by the same argument as in the proof of
Lemma 3.4.1.

Lemma 3.4.4. Let T1, T2 be two sequential-composable timed transducers with
input and output variables P1, P2 and P2, Q2 respectively. Then for every signal
w over P1, if r is a run of T1; T2 over w inducing u, then there exist runs r1, r2
of T1, T2 such that r1 is over w and r2 induces u. Moreover, if r is accepting,
then r1, r2 are accepting.

Proof. Let r be an infinite arbitrary run of T1; T2 over w inducing u. For every
valuation v over C1∪C2 we define v1, v2 over C1, C2 as v1 = v|C1

and v2 = v|C2
.

We construct the pseudoruns r1, r2 as a union of partial pseudoruns
⋃
i r

1
i and⋃

i r
2
i build recursively on i, where i indexes the i-th time step of r. For all

index i ≥ 0, the partial pseudoruns r1i , r2i have duration t =
∑i
j=0 rj where rj

is the length of the j-th time step in r, having at most i discrete steps.
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Suppose r starts at configuration ((s1, s2), v). Then the partial pseudoruns
r10, r

2
0 start at configurations (s1, v1), (s2, v2) respectively.
For all i ≥ 0, suppose we have constructed the partial pseudoruns r1i , r2i of

duration t. Then one of the following discrete transitions appears in r at time
t:

• a simultaneous transition δi+1 = ((s1i , s
2
i ), g, R, (s

1
i+1, s

2
i+1)) by reading

ẇi+1 and outputing u̇i+1 where g = g1 ∧ g2 and R = R1 ∪ R2, followed
by a time step of duration di+1 by reading wdi+1

i+1 and outputing udi+1

i+1 , at
state (s1i+1, s

2
i+1).

Then add to r1i , r
2
i discrete transitions δ1i+1 = ((s1i , g1, R1, s

1
i+1)) and

δ2i+1 = ((s2i , g2, R2, s
2
i+1)) by reading ẇi+1, u̇

′
i+1 and outputing u̇′i+1, u̇i+1

respectively. The point segment u̇′i+1 is such that u̇′i+1 ⊨ γ1(δ
1
i+1) ∧

λ2(δ
2
i+1) and its existance is by definition of λ.

After the discrete transitions, add a time step of duration di+1 by reading
w
di+1

i , u′i
di+1 and outputing u′idi+1 , u

di+1

i respectively. The open segment
u′i+1

di+1 is such that u′dii ⊨ γ1(s
1
i+1) ∧ λ2(s

2
i+1) and its existance is by

definition of λ.

• a left-sided transition δi+1 = ((s1i , s
2
i ), g ∧ Inv2(s2i ), R, (s1i+1, s

2
i )) by read-

ing ẇi+1 and outputing u̇i+1, followed by a time step of duration di+1 by
reading wdi+1

i+1 and outputing udi+1

i+1 , at state (s1i+1, s
2
i+1).

Then put discrete transition (s1i , g, R, s
1
i+1) in r1i by reading ẇi+1 and

outputing u̇′i+1 where u̇′i+1 ⊨ γ1((s1i , g, R, s
1
i+1))∧λ2(s2i ). Such u̇′i+1 exists

by definition of λ.

After put a time step both in r2i and in r1i after the transition con-
structed above, of duration di+1, by reading wdi+1

i+1 , u
′
i+1

di+1 and output-
ing u′i+1

di+1 , u
di+1

i+1 respectively. The open segment u′i+1
di+1 is such that

u′dii ⊨ γ1(s1i+1) ∧ λ2(s2i+1) and its existance is by definition of λ.

• for a right-sided transition proceed symmetrically.

Observe that all constructed transitions are allowed by T1 and T2 by definition.
Moreover, the partial pseudoruns r1i+1, r

2
i+1 have duration t+ di+1 and at most

i + 1 discrete steps. From the pseudoruns r1, r2 it is easy to obtains the final
runs r1, r2 with alternating time and discrete steps. It only remains to prove
that if r is accepting then so are r1 =

⋃
i r

1
i and r2 =

⋃
i r

2
i .

In fact, if T1; T2 is at state s = (s1, s2) at time t′, then T1 is at state s1 and
T1 is at state s2 at time t′. If T1; T2 is at transition δ built from δ1, δ2, then T1
is at transition δ1 and T2 is at transition δ2 at time t′.

To see that r1 is accepting, let t ≥ 0 and F1 ∈ F1. Then there is some F ∈ F
constructed from F1 and some element x ∈ F1 and some t′ > t s.t. T1; T2 is at
x at time t′. By definition of F , then x is a state s = (s1, s2) where s1 ∈ F1

or a left-sided transition δ built from some δ1 ∈ F1. But if T1; T2 is at state
s = (s1, s2) at time t′, then T1 is at state s1 at time t′. If T1; T2 is at transition
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δ built from δ1, then T1 is at transition δ1 at time t′. Hence r1 is accepting. By
a symmetric argument, so is r2.

Proposition 3.4.2. For all timed functional transducers T1 and T2 with input
variables P1 and P2 respectively, if T1 and T2 are sequential-composable, then
T1; T2 is functional, and for any signal w over P1 we have

T1; T2(w) = T2(T1(w)).

Proof. Let T1, T2 be two functional sequential-composable timed transducers
with input and output variables P1, P2 and P2, Q2 respectively. Also let w be
a signal over P1. Denote by u′ = T1(w) and by u = T2(u′). This means that
there exist accepting runs r1, r2 of T1, T2 over w, u′ inducing u′, u respectively.
Then by Lemma 3.4.3 there exists an accepting run r of T1; T2 over w inducing
u which is exactly T2(T1(w)). Now suppose there exists another T1; T2-output
over w, and denote it by ũ. But then, from the accepting run r̃ inducing it, by
Lemma 3.4.4 we can find accepting runs r̃1 of T1 over w inducing u′, and r̃2 of
T2 over u′ inducing ũ. But then ũ = u.

3.5 Temporal testers for basic formulas

3.5.1 Strict Since
To construct a temporal tester for p1Sp2 for arbitrary different propositions
p1, p2, we analize the semantics of S and describe some of its properties. We
know that for a signal w and time instant t, (w, t) ⊨ p1Sp2 if and only if there
is some t′ < t such that (w, t′) ⊨ p2 and for all t′′ ∈ (t′, t), (w, t′′) ⊨ p1. As a
consequence of the definition, (w, t) ⊨ p1Sp2 if and only if (w|[0,t], t) ⊨ p1Sp2.

Let us begin by pointing out that the characteristic function for since is
left-continuous.

Lemma 3.5.1. For every signal and time w, t, if (w, t) ⊨ φ1Sφ2, then either
t = 0 or there exists t′ < t such that for all t′′ ∈ (t′, t), (w, t′′) ⊨ φ1Sφ2. In
other words, for all formulas φ1, φ2 and signal w, the function χφ1Sφ2(w) is
left-continuous.

Proof. Let w be an arbitrary signal and u = χφ1Sφ2(w). Then u can be de-
composed as a concatenation of the form u̇0 · ur00 · u̇1 · ur11 · · · . In this sense,
left-continuity is equivalent to showing for every i ≥ 1 that u̇i(0) = u

ri−1

i−1 (t) for
all t ∈ (0, ri−1). First, assume that u̇i(0) = 1. Then there exists t < ti such
that φ2 is satisfied at t and φ1 holds continuously throughout the interval (t, ti).
As a consequence p1Sp2 holds along (t, ti), whence uri−1

i−1 (t) = 1 = u̇i(0) for all
t ∈ (0, ri−1). If u̇i(0) = 0, then we have two possibilities, (i) either φ2 never be-
comes true at any t ∈ [0, ti) and then u(t) = 0 for every t ∈ [0, ti), or (ii) for any
t ∈ [0, ti) where φ2 is true, there is some t′ between t and ti where φ1 is false,
which implies that φ1Sφ2 is false over (t′, ti), and then uri−1

i−1 (t) = 0 = u̇i(0) for
all t ∈ (0, ri−1).
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If ẇ0 ·wr00 · ẇ1 ·wr11 · · · is a compatible point-segment partition of a signal w,
from now on we use the notation wi for the constant value wrii (t) with t ∈ (0, ri)
and also use wi to refer to wrii as an open segment. Similarly, by ẇi we mean
the point segment as well as the value ẇi(0). Thus, we write wi ⊨ φ instead of
(wrii , t) ⊨ φ as well as ẇi ⊨ φ instead of (ẇi, 0) ⊨ φ.

In the next theorem, we characterise the semantics of since.

Theorem 3.5.1. For every boolean signal w over p1, p2 and every boolean signal
u over q, we have

u = χp1Sp2(w)

if and only if there exists a point-segment partition I = {t0}(t0, t1){t1}(t1, t2) · · ·
compatible with w, u such that w = ẇ0 ·wr00 ·ẇ1 ·wr11 · · · and u = u̇0 ·ur00 ·u̇1 ·ur11 · · ·
such that for all i ≥ 0,

1. u̇0 = 0,

2. ui = u̇i+1,

3. if wi ⊨ ¬p1, then ui = 0,

4. if wi ⊨ p1 ∧ p2, then ui = 1,

5. if wi ⊨ p1 ∧ ¬p2, there are three possibilities

(a) if ẇi ⊨ ¬p1 ∧ ¬p2, then ui = 0,

(b) if ẇi ⊨ p2, then ui = 1,

(c) if ẇi ⊨ p1 ∧ ¬p2, then ui = u̇i.

Proof. (⇒) Let w be an arbitrary signal. If u = χp1Sp2(w), then u is a signal and
satisfies these properties by definition. Consider the point-segment partition I
induced by the discontinuities of w and u. Then u and w can be decomposed
with respect to I. By following the semantics of p1Sp2 we have (w, 0) ⊭ p1Sp2
as there is no t′ < 0. Hence u̇0 = 0. Now if i ≥ 1 we can see that ui−1 = u̇i.
If ẇi ⊨ p1Sp2 then by left-continuity there exists some t′ < ti such that ∀t′′ ∈
(t′, ti), (w, t′′) ⊨ p1Sp2. Hence, since (t′, ti) ∩ (ti−1, ti) ̸= ∅, then we obtain
wi−1 ⊨ p1Sp2. Conversely, if wi−1 ⊭ p1Sp2, then there is no t′ < ti, such that
p1Sp2 holds along (t′, ti), whence by left-continuity, ẇi ⊭ p1Sp2.

Moreover, for all i ≥ 0,

1. If wi ⊨ ¬p1, then ∀t′ < ti, there exists t′′ ∈ (t′, ti) such that (w, t′′) ⊨ ¬p1,
and then wi ⊭ p1Sp2. Hence, ui = 0.

2. If wi ⊨ p1 ∧ p2, then ∀t ∈ (ti, ti+1), there is some t′ between ti and t such
that (w, t′) ⊨ p2 and ∀t′′ ∈ (t′, t), (w, t′′) ⊨ p1. Hence (w, t) ⊨ p1Sp2, or
equivalently, ui = 1.

3. If wi ⊨ p1 ∧ ¬p2, then
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(a) if ẇi ⊨ ¬p1 ∧ ¬p2, then pick some t ∈ (ti, ti+1). For all t′ < ti such
that (w, t′) ⊨ p2, there exists some t′′, exactly ti, between t′ and t
such that (w, t′′) ⊭ p1, and then wi ⊭ p1Sp2, whence ui = 0.

(b) if ẇi ⊨ p2, then for every t ∈ (ti, ti+1), we have that there exists
t′ = ti < t satisfying p2 and for every t′ < t′′ < t, p1 holds true.
Then (w, t) ⊨ p1Sp2, whence ui = 1.

(c) if ẇi ⊨ p1 ∧ ¬p2, either (w, t) ⊨ p1 ∧ ¬p2 for all t < ti, in which
case u̇0 = u0 = · · · = u̇i = ui = 0. Otherwise, we consider the
point or open segment of w with maximum index, less than i, where
p1 ∧ ¬p2 doesn’t hold. If it is a point segment where p2 holds, then
ui = u̇i = 1; if ¬p1 ∧ ¬p2 holds, then ui = u̇i = 0. If it is an open
segment where p1∧p2 holds, then ui = u̇i = 1, but if ¬p1 holds, then
ui = u̇i = 0.

(⇐) Suppose that there exists such an u. We have to prove that u = χp1Sp2(w)
i.e. that for all t ≥ 0, (u, t) ⊨ 1 iff (w, t) ⊨ p1Sp2. Let t ≥ 0, and let us show both
directions of the equivalence, one directly and the second by contraposition. We
have two cases, t ∈ (ti, ti+1) or t = ti for some i ≥ 0.
Case t ∈ (ti, ti+1).

• If (w, t) ⊨ p1Sp2, then by definition either
(a) (w, t) ⊨ p1 ∧ p2, and then by 4, ui = 1, or
(b) (w, t) ⊨ p1 ∧ ¬p2, and either the point or open segment of w with
maximum index, less than i, where p1 ∧¬p2 doesn’t hold satisfies (i) p2 if
it is a point segment, and then by 5(b), 5(c) and 2, ui = 1, or (ii) p1 ∧ p2
if it is an open segment, and then by 4, 2 and 5(c), ui = 1.

• If w(t) ⊭ p1Sp2, then by definition either
(a) (w, t) ⊨ ¬p1, and then by 3, ui = 0, or
(b) (w, t) ⊨ p1 ∧ ¬p2 and either the point or open segment of w with
maximum index, less than i, where p1 ∧ ¬p2 doesn’t hold satisfies (i)
¬p1 ∧ ¬p2 if it is a point segment, and then by 5(a), 5(c) and 2, ui = 0,
or (ii) ¬p1 if it is an open segment, and then by 2,3, and 5(c), ui = 0.

Case t = ti.

• If i ≥ 1 and ẇi ⊨ p1Sp2, then by definition either (a) wi−1 ⊨ p1 ∧ p2, and
then by 4 and 2, u̇i = 1, or (b) wi−1 ⊨ p1 ∧ ¬p2, and either the point or
open segment of w with maximum index, less than i− 1, where p1 ∧ ¬p2
doesn’t hold satisfies (i) p2 if it is a point segment, and then by 5(b), 5(c)
and 2, u̇i = 1, or (ii) p1 ∧ p2 if it is an open segment, and then by 4, 2 and
5(c), u̇i = 1.

• If ẇi ⊭ p1Sp2, then by definition i = 0 and u̇0 = 0 by 1, or i ≥ 1 and
either (a) wi−1 ⊨ ¬p1, and then by 2 and 3, u̇i = 0 or (b) wi−1 ⊨ p1 ∧¬p2
and either the point or open segment of w with maximum index, less than
i − 1, where p1 ∧ ¬p2 doesn’t hold satisfies (i) ¬p1 ∧ ¬p2 if it is a point
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segment, and then by 5(a), 5(c) and 2, u̇i = 0, or (ii) ¬p1 if it is an open
segment, and then by 2,3, and 5(c), u̇i = 0.

We now define the tester Tp1Sp2 = (S, s, P,Q,C, Inv,∆, λ, γ,F) that realizes
the characteristic function of the formula p1Sp2, consisting of

• S = {s0, s1, s2, s3}

• P = {p1, p2} and Q = {q}

• C = ∅

• ∆ = {δ1, . . . , δ20}

• F = ∅

• The following input and output labels, and invariants for every state

λ(s0) = p1 ∧ p2 γ(s0) = q Inv(s0) = ⊤
λ(s1) = p1 ∧ ¬p2 γ(s1) = q Inv(s1) = ⊤
λ(s2) = ¬p1 γ(s2) = ¬q Inv(s2) = ⊤

λ(s3) = p1 ∧ ¬p2 γ(s3) = ¬q Inv(s3) = ⊤

• In the following table we can see at the same time all the edges in ∆ and
their respective input and output labels

i δi λ(δi) γ(δi)
1 (s,⊤, ∅, s0) ⊤ ¬q
2 (s,⊤, ∅, s1) p2 ¬q
3 (s,⊤, ∅, s2) ⊤ ¬q
4 (s,⊤, ∅, s3) ¬p2 ¬q
5 (s0,⊤, ∅, s0) ¬p1 ∨ ¬p2 q
6 (s0,⊤, ∅, s1) p1 ∨ p2 q
7 (s0,⊤, ∅, s2) ⊤ q
8 (s0,⊤, ∅, s3) ¬p1 ∧ ¬p2 q
9 (s1,⊤, ∅, s0) ⊤ q
10 (s1,⊤, ∅, s1) p2 q
11 (s1,⊤, ∅, s2) ⊤ q
12 (s1,⊤, ∅, s3) ¬p1 ∧ ¬p2 q
13 (s2,⊤, ∅, s0) ⊤ ¬q
14 (s2,⊤, ∅, s1) p2 ¬q
15 (s2,⊤, ∅, s2) p1 ¬q
16 (s2,⊤, ∅, s3) ¬p2 ¬q
17 (s3,⊤, ∅, s0) ⊤ ¬q
18 (s3,⊤, ∅, s1) p2 ¬q
19 (s3,⊤, ∅, s2) ⊤ ¬q
20 (s3,⊤, ∅, s3) ¬p1 ∧ ¬p2 ¬q
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Figure 3.5.1: Temporal tester for p1Sp2

The temporal tester Tp1Sp2 for operator since with input p1, p2 and output
q is depicted in Figure 3.5.1. In the following theorem we prove that Tp1Sp2
computes χp1Sp2 by proving that every Tp1Sp2 -output u over a signal w equals
χp1Sp2(w).

Theorem 3.5.2. The transducer Tp1Sp2 is functional. Moreover, for every
signal w over p1, p2, we have

χp1Sp2(w) = Tp1Sp2(w)

Proof. Let w be an arbitrary signal over p1, p2. To see that there exists an
accepting run of Tp1Sp2 over w we use the fact that from any configuration (s, v)
of Tp1Sp2 , a time or discrete transition reading some point segment of w can be
taken, followed by a time step (or an “infinite time” step where the automaton
reads an infinite open segment). Let us fix some partition I compatible with w.
Without loss of generality, we assume that for all i ≥ 0, we have that if wi = ẇi,
then wi ̸= wi+1. Let i ≥ 0 and consider ẇi, wi.
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• Suppose s = s, then i = 0 and

– If ẇ0 ⊨ p2, then transitions δ1, δ2, δ3 are allowed. These transitions
lead to states s0, s1, s2, and then a time step can be performed for
any w0.

– If ẇ0 ⊨ ¬p2, then transitions δ1, δ3, δ4 are allowed. These transitions
lead to states s0, s2, s3, and then a time step can be performed for
any w0.

• Suppose s = s0, then

– If ẇi ⊨ p1 ∧ p2, transitions δ6, δ7 are allowed. These transitions lead
to states s1, s2, and then a time step can be performed for any value
of wi, unless for wi ⊨ p1 ∧ p2, but by hypothesis wi ⊭ p1 ∧ p2.

– If ẇi ⊨ p1 ∧¬p2, then transitions δ5, δ6, δ7 are allowed. These transi-
tions lead to states s0, s1, s2, and then a time step can be performed
for any wi.

– If ẇi ⊨ ¬p1 ∧ p2, then transitions δ5, δ6, δ7 are allowed. These transi-
tions lead to states s0, s1, s2, and then a time step can be performed
for any wi.

– If ẇi ⊨ ¬p1 ∧¬p2, then transitions δ5, δ7, δ8 are allowed. These tran-
sitions lead to states s5, s7, s8, and then a time step can be performed
for any wi.

• Cases s = s1, s2, s3 are similar.

Furthermore, since F = ∅, every run is accepting.
Now consider an Tp1Sp2 -output over w. This means that there is an accepting

run

(s, 0)
ẇ0/u̇0−−−−→
δ0

(s0, v0)
w0/u0−−−−→ (s0, v0 + r0)

ẇ1/u̇1−−−−→
δ1

(s1, v1)
w1/u1−−−−→ (s1, v1 + r1) . . . ,

the output of Tp1Sp2 over w inducing u such that ẇ0 · wr00 · w1 · wr11 · · · and
u̇0 · ur00 · u̇1 · ur11 · · · . We show that for all i ≥ 0,

• u̇0 = 0.
The first step performed by the transducer is a discrete transition coming
from s, i.e. δi for i = 1, 2, 3, 4. But observe that, γ(δi) = ¬q for all
i = 1, 2, 3, 4. Hence, u̇0 = 0.

• ui = u̇i+1.
We have to show that for every s and every transition δ = (s, g, Z, s′)
we have γ(s) = γ(δ). For s = s0 we have γ(s0) = q and γ(δj) = q for
j = 5, 6, 7, 8. For s1, we have γ(s1) = q and γ(δj) = q for j = 9, 10, 11, 12.
For s2, we have γ(s2) = ¬q and γ(δj) = ¬q for j = 13, 14, 15, 16. For s3,
we have γ(s3) = ¬q and γ(δj) = ¬q for j = 17, 18, 19, 20.
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• if wi ⊨ ¬p1, then ui = 0.
At step i the transducer takes a time step at state s1 which is the only
one satisfying λ(s) = ¬p1, whence ui ⊨ γ(s1) = ¬q. Hence ui = 0.

• if wi ⊨ p1 ∧ p2, then ui = 1.
At step i the transducer takes a time step at state s0 which is the only
one satisfying λ(s) = p1 ∧ p2, whence ui ⊨ γ(s0) = q. Hence ui = 1.

• if wi ⊨ p1 ∧ ¬p2, there are three possibilities

1. if ẇi ⊨ ¬p1 ∧ ¬p2 then ui = 0.
For every s, if δ = (s, g, R, s′) satisfies λ(δ) = ¬p1 ∧ ¬p2 and λ(s′) ⊨
p1 ∧ ¬p2, then δ = δj for j = 4, 8, 12, 16, 20, and s′ = s3. Hence
ui ⊨ γ(s3) = ¬q, and ui = 0.

2. if ẇi ⊨ p2, then ui = 1.
For every s, if δ = (s, g, R, s′) satisfies λ(δ) = p2 and λ(s′) ⊨ p1∧¬p2,
then δ = δj for j = 2, 6, 10, 14, 18, and s′ = s1. Hence ui ⊨ γ(s3) = q,
and ui = 1.

3. if ẇi ⊨ p1 ∧ ¬p2, then ui = u̇i.
For every s, if δ = (s, g, R, s′) satisfies λ(δ) = p1 ∧ ¬p2 and λ(s′) ⊨
p1 ∧ ¬p2, then δ = δj for j = 4, 6, 16. For δ4, we have γ(δ4) = ¬q =
γ(s3), whence ui = u̇i = 0. For δ6, we have γ(δ6) = q = γ(s1),
whence ui = u̇i = 1. For δ16, we have γ(δ16) = ¬q = γ(s3), whence
ui = u̇i = 0.

Then by Theorem 3.5.1, u = χp1Sp2(w), and then u is unique.

Theorem 3.5.1 can easily be adapted to hold true for bounded signals by
bounding the index i of the ti and considering time points of the domain of
w. Moreover, we have observed that for all w, t, we have (w, t) ⊨ p1Sp2 iff
(w|[0,t], t) ⊨ p1Sp2. Hence, the temporal tester Tp1Sp2 also realizes the char-
acteristic function χp1Sp2 over bounded signals and we get the corresponding
theorem which can be proved analogously.

Theorem 3.5.3. The transducer Tp1Sp2 is functional. Moreover, for every
bounded signal w over p1, p2, we have

χp1Sp2(w) = Tp1Sp2(w).

3.5.2 Strict Until

To construct a temporal tester for p1Up2 for arbitrary different propositions
p1, p2, we analize the semantics of U and describe some of its properties. We
know that (w, t) ⊨ p1Up2 if and only if there is some t′ > t such that (w, t′) ⊨ p2
and for all t′′ ∈ (t, t′), (w, t′′) ⊨ p1. Let us begin by pointing out the following
property.
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Lemma 3.5.2. For every signal w, time instant t and formulas φ1, φ2, if
(w, t) ⊨ φ1Uφ2, then there exists t′ > t such that for all t′′ ∈ (t, t′), (w, t′′) ⊨
φ1Uφ2. In other words, for every signal w and formulas φ1, φ2, the character-
istic function χφ1Uφ2

(w) is right-continuous.

Proof. Let w be an arbitrary signal and u = χφ1Uφ2
(w). Then u can be decom-

posed as a concatenation of the form u̇0 · ur00 · u̇1 · ur11 · · · where ri = ti − ti−1

for a point-segment partition I = {0}(0, t0){t0}(t0, t1) · · · . In this sense, right-
continuity is equivalent to showing for every i ≥ 0 that u̇i(0) = urii (t) for all
t ∈ (0, ri). First, assume that u̇i(0) = 1. Then there exists t > ti such that φ2

is satisfied at t and φ1 holds continuously throughout the interval (ti, t). As a
consequence p1Up2 holds along (ti, t), whence urii (t) = 1 for all t ∈ (0, ri). If
u̇i(0) = 0, then we have two possibilities, (i) either φ2 never becomes true at
any t > ti and then u(t) = 0 for every t > ti, or (ii) for any t > ti where φ2

is true, there is some t′ between ti and t where φ1 is false, which implies that
φ1Uφ2 is false over (ti, t

′), and then urii (t) = 0 for all t ∈ (0, ri).

We have the corresponding result for bounded signals.

Lemma 3.5.3. For every bounded signal w of domain D, time instant t <
sup D and formulas φ1, φ2, if (w, t) ⊨ φ1Uφ2, then there exists t′ > t such that
for all t′′ ∈ (t, t′), (w, t′′) ⊨ φ1Uφ2. In other words, for every signal w and
formulas φ1, φ2, the characteristic function χφ1Uφ2

(w) is right-continuous.

In the next theorem, we characterise the semantics of until operator over
unbounded signals.

Theorem 3.5.4. For every boolean signal w over p1, p2 and every 1-boolean
signal u over q, we have

u = χp1Up2(w)

if and only if there exists a point-segment partition I = {t0}(t0, t1){t1}(t1, t2) · · ·
compatible with w and u such that w = ẇ0 · wr00 · ẇ1 · wr11 · · · and u = u̇0 · ur00 ·
u̇1 · ur11 · · · and such that for all i ≥ 0,

1. u̇i = ui,

2. if wi ⊨ ¬p1, then ui = 0,

3. if wi ⊨ p1 ∧ p2, then ui = 1,

4. if wi ⊨ p1 ∧ ¬p2, then wi is the last segment of w and ui = 0, or this is
not the case, and

(a) if ẇi+1 ⊨ ¬p1 ∧ ¬p2, then ui = 0,

(b) if ẇi+1 ⊨ p2, then ui = 1,

(c) if ẇi+1 ⊨ p1 ∧ ¬p2, then ui = u̇i+1.
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Proof. (⇒) Let w be an arbitrary signal. If u = χp1Up2(w), then u is a signal and
satisfies these properties by definition. Consider the point-segment partition I
induced by the discontinuities of w and u. Then u and w can be decomposed
with respect to I. Moreover,

1. Let i ≥ 0. If ẇi ⊨ p1Up2 then by right-continuity of χp1Up2(w) there
exists some t′ > ti such that ∀t′′ ∈ (ti, t

′), (w, t′′) ⊨ p1Up2. Hence, since
(ti, t

′) ∩ (ti, ti+1) ̸= ∅, then we obtain wi ⊨ p1Up2. Conversely, if wi ⊭
p1Up2, then for all t > ti such that (w, t) ⊨ p1Up2, there exists t′ ∈ (ti, t)
such that (w, t′) ⊭ p1Up2 and by right-continuity ẇi ⊭ p1Up2.

2. If wi ⊨ ¬p1, then ∀t′ > ti where p2 holds, there exists t′′ ∈ (ti, t
′) such

that (w, t′′) ⊭ ¬p1, and then wi ⊭ p1Up2. Hence, ui = 0.

3. If wi ⊨ p1 ∧ p2, then ∃t ∈ (ti, ti+1) such that (w, t) ⊨ p2 and ∀t′′ ∈ (ti, t),
(w, t′′) ⊨ p1. Hence (w, ti) ⊨ p1Up2, or equivalently, ui = 1.

4. If wi ⊨ p1 ∧ ¬p2, then either wi is the last segment in w and for every
t > ti, (w, t) ⊨ ¬p2, whence (w, t) ⊭ p1Up2, or

(a) if ẇi+1 ⊨ ¬p1 ∧ ¬p2, then for all t > ti such that (w, t) ⊨ p2, there
exists some t′ = ti+1 ∈ (ti, t) such that (w, t′) ⊭ p1, and then wi ⊭
p1Up2, whence ui = 0.

(b) if ẇi+1 ⊨ p2, then for every t ∈ (ti, ti+1), we have that there exists
t′ = ti+1 > t satisfying p2 and for every t′′ ∈ (t, t′), p1 holds true.
Then (w, t) ⊨ p1Up2, whence ui = 1.

(c) if ẇi+1 ⊨ p1 ∧ ¬p2, we consider the point or open segment of w with
minimum index, greater than i+1, where p1∧¬p2 doesn’t hold. If it
is a point segment where p2 holds, then ui = u̇i+1 = 1; if ¬p1 ∧ ¬p2
holds, then ui = u̇i+1 = 0. If it is an open segment where p1 ∧ p2
holds, then ui = u̇i+1 = 1, but if ¬p1 holds, then ui = u̇i+1 = 0.

(⇐) Suppose that there exists such an u. We have to prove that u = χp1Up2(w)
i.e. that for all t ≥ 0, u(t) = 1 iff (w, t) ⊨ p1Up2. Let t ≥ 0, and let us show
both directions of the equivalence, one directly and the other by contraposition.
We have two cases, t ∈ (ti, ti+1) or t = ti for some i ∈ N.

Case t ∈ (ti, ti+1) for some i ≥ 0.

• Suppose (w, t) ⊨ p1Up2. Then by definition either
(a) (w, t) ⊨ p1 ∧ p2, and then by 3, ui = 1, or
(b) (w, t) ⊨ p1 ∧ ¬p2, wi is not the last segment of w, and the first point
or open segment where p1∧¬p2 is false satisfies: (i) p1∧p2 if it is an open
segment or (ii) p2 if it is a point segment.

In case (b), if the index is j = i + 1, then by 4(b), ui = 1. Otherwise,
j > i + 1. If it is a point segment tj , then wj−1 ⊨ p1 ∧ ¬p2 and ẇj ⊨ p2,
whence by 4(b) uj−1 = 1. But then, by 4(c) and 1, ui = u̇i+1 = ui+1 =
· · · = uj−1 = 1. If it is an open segment (tj , tj+1) for some j, then
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ẇj ⊨ p1 ∧ ¬p2 and wj ⊨ p1 ∧ p2, whence by 3 uj = 1. But then, by 4(c)
and 1, ui = u̇i+1 = ui+1 = · · · = uj = 1.

• Suppose (w, t) ⊭ p1Up2. Then by definition either
(a) (w, t) ⊨ ¬p1, and then by 2, ui = 0 or
(b) (w, t) ⊨ p1 ∧ ¬p2 and (i) wi is the last segment in w, or (ii) the first
point or open segment such that p1 ∧ ¬p2 is false satisfies: (i) ¬p1 if it is
an open segment or (ii) ¬p1 ∧ ¬p2 if it is a point segment.

In case (b), if wi is the last segment of w, by 4, ui = 0. Otherwise,
consider such a segment. If it is ti+1, then by 4(a), ui = 0. Otherwise,
if the first segment is a point segment tj , then wj−1 ⊨ p1 ∧ ¬p2 and
ẇj ⊨ ¬p1 ∧ ¬p2, whence by 4(b) uj−1 = 1. But then, by 4(c) and 1,
ui = ui+1 = u̇i+1 = · · · = uj−1 = 1. If it is an open segment (tj , tj+1),
then ẇj ⊨ p1 ∧ ¬p2 and wj ⊨ ¬p1, whence by 2 uj = 1. But then, by 4(c)
and 1, ui = u̇i+1 = ui+1 = · · · = uj = 1.

Case t = ti for some i ≥ 0.

• If i ≥ 1 and ẇi ⊨ p1Up2, then by definition either
(a) wi ⊨ p1 ∧ p2, and then by 3 and 1, u̇i = 1, or
(b) wi ⊨ p1∧¬p2, and either the point or open segment of w with minimum
index, greater than i+ 1, where p1 ∧ ¬p2 doesn’t hold satisfies (i) p2 if it
is a point segment, and then by 4(b), 4(c), 1 and 2, u̇i = 1, or (ii) p1 ∧ p2
if it is an open segment, and then by 3, 1 and 4(c), u̇i = 1.

• If ẇi ⊭ p1Up2, then by definition either
(a) wi ⊨ ¬p1, and then by 1 and 3, u̇i = 0 or
(b) wi ⊨ p1∧¬p2 and either the point or open segment of w with maximum
index, greater than i+1, where p1∧¬p2 doesn’t hold satisfies (i) ¬p1∧¬p2
if it is a point segment, and then by 4(a), 4(c) and 1, u̇i = 0, or (ii) ¬p1
if it is an open segment, and then by 1,2, and 4(c), u̇i = 0.

For bounded signals, we get the following characterisation.

Theorem 3.5.5. For every bounded boolean signal w over p1, p2 and every
bounded 1-boolean signal u over q, we have

u = χp1Up2(w)

if and only if there exists a finite point-segment partition I = {t0}(t0, t1){t1} · · ·
ending at some (tj , tj+1) compatible with w and u such that w = ẇ0 ·wr00 · ẇ1 · · ·
and u = u̇0 · ur00 · u̇1 · · · and such that for all 0 ≤ i ≤ j,

1. u̇i = ui,

2. if wi ⊨ ¬p1, then ui = 0,

3. if wi ⊨ p1 ∧ p2, then ui = 1,
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4. if wi ⊨ p1 ∧¬p2, then either i = j and it is the last segment where uj = 0,
or this is not the case and

(a) if ẇi+1 ⊨ ¬p1 ∧ ¬p2, then ui = 0,

(b) if ẇi+1 ⊨ p2, then ui = 1,

(c) if ẇi+1 ⊨ p1 ∧ ¬p2, then ui = u̇i+1.

For unbounded signals, we now define the temporal tester Tp1Up2 =
(S, s, P,Q,C, Inv,∆, λ, γ,F) that computes the characteristic function of the
formula p1Up2 for any p1 ̸= p2 ∈ P , consisting of

• S = {s0, s1, s2, s3}

• P = {p1, p2} and Q = {q}

• C = ∅

• ∆ = {δ1, . . . , δ20}

• F = {F1} where F1 = (S ∪∆)\{s1}

• The states have the following input and output labels, and invariants

λ(s0) = p1 ∧ p2 γ(s0) = q Inv(s0) = ⊤
λ(s1) = p1 ∧ ¬p2 γ(s1) = q Inv(s1) = ⊤
λ(s2) = ¬p1 γ(s2) = ¬q Inv(s2) = ⊤

λ(s3) = p1 ∧ ¬p2 γ(s3) = ¬q Inv(s3) = ⊤

• In the following table we can see at the same time all the edges in ∆ and
their respective input and output labels
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i δi λ(δi) γ(δi)
1 (s,⊤, ∅, s0) ⊤ q
2 (s,⊤, ∅, s1) ⊤ q
3 (s,⊤, ∅, s2) ⊤ ¬q
4 (s,⊤, ∅, s3) ⊤ ¬q
5 (s0,⊤, ∅, s0) ¬p1 ∨ ¬p2 q
6 (s0,⊤, ∅, s1) ⊤ q
7 (s0,⊤, ∅, s2) ⊤ ¬q
8 (s0,⊤, ∅, s3) ⊤ ¬q
9 (s1,⊤, ∅, s0) p1 ∨ p2 q
10 (s1,⊤, ∅, s1) p2 q
11 (s1,⊤, ∅, s2) p2 ¬q
12 (s1,⊤, ∅, s3) p2 ¬q
13 (s2,⊤, ∅, s0) ⊤ q
14 (s2,⊤, ∅, s1) ⊤ q
15 (s2,⊤, ∅, s2) p1 ¬q
16 (s2,⊤, ∅, s3) ⊤ ¬q
17 (s3,⊤, ∅, s0) ¬p1 ∧ ¬p2 q
18 (s3,⊤, ∅, s1) ¬p1 ∧ ¬p2 q
19 (s3,⊤, ∅, s2) ¬p2 ¬q
20 (s3,⊤, ∅, s3) ¬p1 ∧ ¬p2 ¬q

The temporal tester Tp1Up2 for operator until with input p1, p2 and output q is
depicted in Figure 3.5.2. It can be obtained by inverting the tester for since
operator with some additional modifications. As opposed to the tester for since,
this tester for until has to predict an output at every step, which is eventually
aborted or confirmed according to future observations. In the following theorem
we prove that Tp1Up2 mimicks the behaviour of χp1Up2 by proving that every
Tp1Up2-output u over a signal w corresponds to χp1Up2(w).

Theorem 3.5.6. The transducer Tp1Up2 is functional. Moreover, for every
signal w over p1, p2,

χp1Up2(w) = Tp1Up2(w)

Proof. Let w be an arbitrary signal over p1, p2. First, we show that there exists
a Tp1Up2-output over w and secondly we prove that every Tp1Up2-output over
w coincides with χp1Up2(w). For the second part, we use the characterisation
shown in Theorem 3.5.4.

A Tp1Up2 -output over w exists iff there exists an accepting run of Tp1Up2
over w. To prove this last assertion, we show that every partial run over w can
be extended. Let us fix some decomposition ẇ0 · wr00 · ẇ1 · wr11 · · · of w. We
assume without loss of generality that for all i ≥ 0, if wi = ẇi, then wi ̸= wi+1.
Suppose our partial run ends in configuration (s, v) having read w until some
point segment ẇi. Then, we must check whether Tp1Up2 can take a discrete step
reading ẇi for every ẇi, which can be followed by some time step. If i = 0,
then it is easy to see that Tp1Up2 can take transitions δj for j = 1, 2, 3, 4 as
every ẇ0 satisfies ⊤ at 0. Moreover, a time step can be taken if ∃s,∃i such
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Figure 3.5.2: Temporal tester for p1Up2

that δi = (s, g, R, s) and w0 ⊨ λ(s), which is clearly true. If i > 0, we consider
every possibility and conclude that the only cases where Tp1Up2 cannot perform
a transition are those where (i) s = s1 and ẇi ⊨ ¬p1 ∧ ¬p2 or (ii) s = s3 and
ẇi ⊨ p2. However, for every state s and every evaluation of p1, p2, there is a
transition from s to s1 iff there is a transition from s to s3. Hence, in case (i),
if our partial run r ends in s1, we consider the partial run r′ run coincing with
r until step i − 1, and then put a transition leading to s3 instead of s1, and
then take a transition from state s3. We perform a similar procedure for case
(ii). By these observations, we can infer that there exists a run of Tp1Up2 over
w. Because every run is accepting unless it ends in state s1 without taking any
transition, and if there exists a partial run leading to s1, there exists another
partial run of the same duration and number of steps leading to s3, there is an
accepting run for every signal.

Now let u be an Tp1Up2 -output over w. Then u is the output of an accepting
run over w. Moreover, there exist decompositions ẇ0 · wr00 · w1 · wr11 · · · and
u̇0 · ur00 · u̇1 · ur11 · · · compatible with w and u respectively, and a corresponding
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accepting run

(s, 0)
ẇ0/u̇0−−−−→
δ0

(s0, v0)
w

r0
0 /u

r0
0−−−−−→ (s0, v0+r0)

ẇ1/u̇1−−−−→
δ1

(s1, v1)
w

r1
1 /u

r1
1−−−−−→ (s1, v1+r1) · · · .

We show the following

• For every i ≥ 0, u̇i = ui. This follows because for every transition δ, if it
is of the form δ = (s, g, R, s′), then γ(δ) = γ(s′). Indeed,

γ(δi) = γ(s0) = q for i = 1, 5, 9, 13, 17

γ(δj) = γ(s1) = q for j = 2, 6, 10, 14, 18

γ(δk) = γ(s2) = ¬q for k = 3, 7, 11, 15, 19

γ(δl) = γ(s3) = ¬q for l = 4, 8, 12, 16, 20

• For every i ≥ 0, if wi ⊨ ¬p1, then ui = 0. In this case the automata takes
a time transition. This amounts to show that for every state s such that
wi ⊨ λ(s), then ui = 0. If wi ⊨ ¬p1, then s = s2 and then ui ⊨ γ(s2) = ¬q,
whence ui = 0.

• For every i ≥ 0, if wi ⊨ p1 ∧ p2, then ui = 1. Indeed, if s is such that
λ(s) = p1 ∧ p2, then s = s0 and then ui ⊨ γ(s0) = q. Hence ui = 1.

• If wi ⊨ p1 ∧ ¬p2, then either wi is the last segment in w and ui = 0, or

(i) if ẇi+1 ⊨ ¬p1 ∧ ¬p2, then ui = 0,
(ii) if ẇi+1 ⊨ p2, then ui = 1,
(iii) if ẇi+1 ⊨ p1 ∧ ¬p2, then ui = u̇i+1.

First suppose wi is the last segment and the automaton is at some state
s such that λ(s) = p1 ∧ ¬p2. Then s = s1 or s = s3. But the run is
accepting iff for all t ≥ 0, there exists t′ > t such that the automaton is in
a state or transition from F . Since wi is the last segment, the automaton
is not allowed to take any transition from s1 to itself. As s1 /∈ F1, then
s = s3 and ui ⊨ γ(s3) = ¬q. Hence ui = 0.

(i) We consider transitions δ = (s, g, Z, s′) such that λ(s) = p1 ∧ ¬p2 and
¬p1 ∧ ¬p2 ⊨ λ(δ). Then δ = δi for i = 17, 18, 19, 20. Then s = s3 and
ui = γ(s3) = ¬q. Hence ui = 0.
(ii) We consider transitions δ = (s, g, Z, s′) such that λ(s) = p1 ∧ ¬p2
and p2 ⊨ λ(δ). Then δ = δi for i = 9, 10, 11, 12. Then s = s1 and
ui = γ(s1) = q.
(iii) We consider transitions δ = (s, g, Z, s′) such that λ(s) = p1 ∧¬p2 and
p1 ∧ ¬p2 ⊨ λ(δ). Then s = s1, s3 and δ = δi for i = 9, 19. If δ = δ9,
then ui = γ(s1) = q = γ(δ9) = u̇i+1. If δ = δ19, then ui = γ(s3) = ¬q =
γ(δ19) = u̇i+1.

Therefore, by Theorem 3.5.4, u = χp1Up2 . Hence, u is the unique Tp1Up2-output
over w and we can conclude that Tp1Up2(w) = u.
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For bounded signals, we define the temporal tester T b
p1Up2 =

(S, s, P,Q,C, Inv,∆, λ, γ, F ) coinciding with Tp1Up2 in every component and
such that F = {s0, s2, s3} is the set of final states. Then we have

Theorem 3.5.7. The transducer T b
p1Up2 is functional. Moreover, for every

bounded signal w over p1, p2,

χp1Up2(w) = T b
p1Up2(w).

3.5.3 Eventually
For every signal w and time instant t, we have that (w, t) ⊨ ♢(0,a)p iff there is
some t′ ∈ (t, t+ a) such that (w, t′) ⊨ p. Thus, the value of χ♢(0,a)p(w) at each t
depends on the value of p throughout the interval (t, t+a). At intervals I where
p holds then the formula is satisfied in I⊖(0, a) independently of the shape of I.
When p becomes untrue, there are three possible output behaviours depending
on the duration of the segment where p is false.

Theorem 3.5.8. Let a be a positive rational number. For every signal w and
every t ≥ 0 we have that (w, t) ⊨ ♢(0,a)p iff χ♢(0,a)p(w)(t) = 1 iff there exists
some point-segment partition I compatible with w,χ♢(0,a)p(w) and some of the
following holds

1. t ∈ [ti, ti+1) for some i and wi ⊨ p,

2. t ∈ [ti, ti+1) for some i and

• wi ⊭ p,
• ti+1 − ti < a,

• ẇi+1 ⊨ p or wi+1 ⊨ p

3. t ∈ (ti, ti+1), for some i, and

• wi ⊭ p,
• ti+1 − ti = a,

• ẇi+1 ⊨ p or wi+1 ⊨ p,

4. t ∈ (ti+1 − a, ti+1) for some i, and

• wi ⊭ p,
• ti+1 − ti > a,

• ẇi+1 ⊨ p or wi+1 ⊨ p.

Proof. By definition, if some of the conditions 1-4 holds, then ♢(0,a)p holds at
time t. On the other hand, if χ♢(0,a)p(w)(t) = 1, then either t = ti or t ∈ (ti, ti+1)
for some i ≥ 0. If t = ti, then either

• wi ⊨ p and we are in case 1, or
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• wi ⊭ p but ti+1 − ti < a and ẇi+1 ⊨ p or wi+1 ⊨ p as in case 2.

If t ∈ (ti, ti+1), then it is clear to see that either 1, 2, 3 or 4 holds.

We now define the temporal tester T♢(0,a)p = (S, s, P,Q,C, Inv,∆, λ, γ,F)
with input variable p realizing the characteristic function of the formula ♢(0,a)p,
consisting of

• S = {s0, s1, s2, s3}

• P = {p} and Q = {q}

• C = {x}

• ∆ = {δ1, . . . , δ17}

• F = ∅

• The states have the following input and output labels, and invariants

λ(s0) = p γ(s0) = q Inv(s0) = ⊤
λ(s1) = ¬p γ(s1) = q Inv(s1) = x < a
λ(s2) = ¬p γ(s2) = q Inv(s2) = x < a
λ(s3) = ¬p γ(s3) = ¬q Inv(s3) = ⊤

• In the following table we can see at the same time all the edges in ∆ and
their respective input and output labels

i δi λ(δi) γ(δi)
1 (s,⊤, ∅, s0) ⊤ q
2 (s,⊤, {x}, s1) ⊤ ¬q
3 (s,⊤, {x}, s2) ⊤ q
4 (s,⊤, ∅, s3) ⊤ ¬q
5 (s0,⊤, ∅, s0) ¬p q
6 (s0,⊤, {x}, s1) ⊤ ¬q
7 (s0,⊤, {x}, s2) ⊤ q
8 (s0, x < a, ∅, s3) ⊤ ¬q
9 (s1, x = a, ∅, s0) ⊤ q
10 (s1, x = a, {x}, s1) p ¬q
11 (s1, x = a, {x}, s2) p q
12 (s1, x = a, ∅, s3) p ¬q
13 (s2, x < a, ∅, s0) ⊤ q
14 (s2, x < a, {x}, s1) p ¬q
15 (s2, x < a, {x}, s2) p q
16 (s2, x < a, ∅, s3) p ¬q
17 (s3,⊤, {x}, s1) ¬p ¬q
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The temporal tester T♢(0,a)p depicted in Figure 3.5.3 reads point or open seg-
ments of a signal w where p or ¬p holds. In open segments where p holds, the
tester is at state s0 and the output satisfies q throughout the segment. Singular
points where p doesn’t hold are ignored by the automaton, a fact reflected by
transition δ5. When the automaton reads a segment where p is false, it pre-
dicts the length of that segment by means of clock x and then aborts wrong
predictions. The automaton can make three possible predictions:

1. A prediction that the length of the segment is strictly less than a is realized
by transition δ7 to state s2 where the clock x is reset. When at state s2,
the delay until an input satisfying p has to be strictly smaller than a, i.e.
one of δ13, δ14, δ15, δ16 has to be taken, as λ(s0) = p and λ(δ14) = λ(δ15) =
λ(δ16) = p. Otherwise, the run is aborted.

2. A prediction that the length of the segment is equal to a is realized by
transition δ6 to state s1 where the clock x is reset. The output at the
beggining of that segment satisfies γ(δ6)) = ¬q and during the segment it
satisfies γ(s1) = q. When at state s1, the delay until an input satisfying
p has to be exactly a, i.e. one of δ9, δ10, δ11, δ12 has to be taken. Observe
that λ(s0) = p and λ(δ10) = λ(δ11) = λ(δ12) = p. Any other run is
aborted.

3. A prediction that the length of the segment is strictly greater than a is
realized by transition δ8 to state s3. The tester makes a nondeterministic
guess of the time instant t whose distance to the end of the segment is
exactly a. At that point it takes transition δ17 to s1 and then behaves as
in case 2. If the prediction of t is wrong, then the run is aborted.

Theorem 3.5.9. The transducer T♢(0,a)p is functional. Moreover, for every
signal w, we have

χ♢(0,a)p(w) = T♢(0,a)p(w)

Proof. Let w be a signal over p. The existence of a T♢(0,a)p-output over w is again
a simple but lengthy check. A T♢(0,a)p-output over w exists iff there exists an
accepting run of T♢(0,a)p over w. To prove this last assertion, we restrict to one
case and show that every partial run over w ending in state s1 can be extended;
other cases are similar. Let us fix some decomposition ẇ0 · wr00 · ẇ1 · wr11 · · · of
w. We assume without loss of generality that for all i ≥ 0, if wi = ẇi, then
wi ̸= wi+1. We only allow a decomposition wi = ẇi = wi+1 iff p is false at all
of them and wi has length < a and wi+1 length equal to a.

Suppose our partial run ends in configuration (s1, v) and has duration t =
r0+ · · ·+ri−1 having read w until some point segment ẇi. Then, we must check
whether T♢(0,a)p can take a discrete step reading ẇi for every ẇi, which can be
followed by some time step reading wrii .

Because Inv(s1) requires that x < a, we now that the last step of the partial
run was a time step of duration ≤ a where ¬p held. If its duration was < a
then v(x) < a at the time of taking a transition and no possible transition is
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Figure 3.5.3: Tester for T♢(0,a)p
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enabled. If ri−1 = a then there exists another partial run which at this place
takes a time step in s1 of duration a. If ri−1 < a, argue as follows. Observe
that in this case, by construction there exists another partial run until state
s2 that takes a time step of duration < a (see that all guards of transitions
from s2 are x < a, and λ(δ13 = ⊤ thus at least some discrete step is enabled).
Because transitions δ to s1 and to s2 are always both allowed under the same
conditions for states s, s0, s1, s2 (see δi for i = 2, 3, 6, 7, 10, 11, 14, 15). Only state
who enables a transition to s1 and not to s2 under the same conditions is s3 (see
δ17). But this happens where the automaton predicts that there is a compatible
decomposition wi−2 = ẇi = wi−1 where p is false at all of them and wi−2 has
length < a and wi−1 length equal to a. But this doesn’t apply in our case as
ri−1 < a.

If the time step was of duration a i.e. ri−1 = a, discrete transitions from s1
are allowed (observe that v(x) = a because transitions to state s1 reset clock x,
see δi for i = 2, 6, 10, 14, 17).

• Suppose ẇi ⊨ p. Then any of the discrete transitions out of s1 are allowed.

– If wrii ⊨ p, then take transition δ9 and then a time step in s0 of length
ri.

– If wrii ⊨ ¬p, then according to ri, take transitions δ11 and then a
time step of duration ri if ri < a, transition δ10 and a time step of
duration ri if ri = a, or finally transition δ12 and then a time step of
duration ri if ri > a.

• Suppose ẇi ⊨ ¬p. Then transition δ9 to state s0 is allowed. From state s0
we distinguish:

– If wrii ⊨ p take a time step in s0 of length ri.

– If wrii ⊨ ¬p, then no time step is enabled since λ(s0) requires that p
holds. But observe that, in this case, wri−1

i−1 ⊨ ¬p, ẇi ⊨ ¬p and wrii ⊨
¬p. This means that wi−1, ẇi, wi satisfy ¬p but such a decomposition
is excluded unless ri−1 < a and ri = a which is not the case, as
ri−1 = a by assumption.

Suppose u is a T♢(0,a)p-output over w. We want to see that u = χ♢(0,a)p(w).
We show that if χ♢(0,a)p(w)(t) = 1, then u(t) = 1, and if χ♢(0,a)p(w)(t) = 0,
then u(t) = 0.

Let us consider some t ≥ 0, and suppose χ♢(0,a)p(w)(t) = 1. Then there is
a point-segment partition compatible with w,χ♢(0,a)p(w). Moreover, one of the
four cases in Theorem 3.5.8 holds. We show that any case leads to u(t) = 1.

1. Case t ∈ [ti, ti+1) for some i and wi ⊨ p.

• If t = ti, we want to show that u̇i = 1. We look at discrete transitions
δ = (s, g, Z, s′) such that λ(s′) ⊨ p. Then s′ = s0 and δ = δj for
j = 1, 5, 9, 13 and γ(δj) = q for all j. Hence u̇i = 1.
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• If t ∈ (ti, ti+1), we want to show that ui = q. We look at time
transitions starting in s such that λ(s) = p, and again s = s0 and
ui ⊨ γ(s0) = q, whence ui = 1.

2. Case t ∈ [ti, ti+1) for some i and wi ⊭ p, ti+1−ti < a, ẇi+1 ⊨ p or wi+1 ⊨ p.
We consider a segment of run

· · · (s, v) ẇi/u̇i−−−−→
δ

(s′, v′)
wi/ui−−−−→ (s′, v′ + ri)

ẇi+1/u̇i+1−−−−−−−→
δ′

(s′′, v′′) · · ·

• If t = ti, we want to show that u̇i = 1. We look at discrete transitions
δ = (s, g, Z, s′) such that λ(s′) = ¬p, followed by time transitions of
duration t such that v′ + t ⊨ Inv(s′), followed by δ′ = (s′, g′, Z ′, s′′)
such that λ(δ′) = p or λ(s′′) = p and x < a satisfies g′. If we look at
these conditions, we realize that s′ = s1, s2, s3. But observe that all
discrete transitions δ′ coming from s1 have g′ = (x = a). Then s′ ̸=
s1. Further, the only transition coming from s3, δ17 = (s3,⊤, {x}, s1)
satisfies λ(δ17) = ¬p and λ(s1) = ¬p, and then s′ ̸= s3. Then we
conclude that s′ = s2 and we check that λ(δ) = q for all transitions
δ ending in s2. Indeed, λ(δi) = q for i = 3, 7, 11, 15. Then u̇i ⊨ q and
u̇i = 1.

• If t ∈ (ti, ti+1), looking at the discussion above, we know that ui ⊨
γ(s′) = γ(s2) = q, whence ui = 1.

3. Case t ∈ (ti, ti+1) for some i and wi ⊭ p, ti+1 − ti = a, ẇi+1 ⊨ p or wi+1 ⊨
p. We consider a segment of run

· · · (s, v) ẇi/u̇i−−−−→
δ

(s′, v′)
wi/ui−−−−→ (s′, v′ + ri)

ẇi+1/u̇i+1−−−−−−−→
δ′

(s′′, v′′) · · ·

We look at discrete transitions δ = (s, g, Z, s′) such that λ(s′) = ¬p,
followed by time transitions such that v′ + t ⊨ Inv(s′), followed by δ′ =
(s′, g′, Z ′, s′′) such that λ(δ′) = p or λ(s′′) = p and x = a ⊨ g′. If
we look at these conditions, we realize that s′ = s1, s2, s3. But observe
that all discrete transitions δ′ coming from s2 have g′ = (x < a). Then
s′ ̸= s2. Further, the only transition coming from s3, δ17 = (s3,⊤, {x}, s1)
satisfies λ(δ17) = ¬p and λ(s1) = ¬p, and then s′ ̸= s3. In the case of s1,
all the outgoing transitions satisfy the condition since λ(s0) = λ(δ10) =
λ(δ11) = λ(δ12) = q. Then we conclude that s′ = s1 and we check that
ui = λ(s1) = q.

4. Case t ∈ (ti+1 − a, ti+1) for some i and wi ⊭ p, ti+1 − ti = a, ẇi+1 ⊨
p or wi+1 ⊨ p. We consider a segment of run

· · · (s, v) ẇi/u̇i−−−−→
δ

(s′, v′)
wi/ui−−−−→ (s′, v′ + ri)

ẇi+1/u̇i+1−−−−−−−→
δ′

(s′′, v′′) · · ·

We write wi = w′
iẇ

′
i+1w

′
i+1 such that ẇ′

i = ẇ1 and ẇi+2 = ẇi+2, and we
want to show that u′i+1 = q. Observe that
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• w′
i ⊨ ¬p

• ẇ′
i+1 ⊨ ¬p then δ from s = s1, s2, s3 such that λ(δ) = ¬p. Then

δ = δ17, and the run looks like

· · · (s3, v)
ẇ′

i+1/u̇
′
i+1−−−−−−−→

δ17
(s1, 0)

w′
i+1/u

′
i+1−−−−−−−→ (s1, a) · · ·

and u′i+1 ⊨ γ(s1) = q. Then u′i+1 = 1.

Let us consider some t ≥ 0, and suppose u(t) = 1. Then, if t = ti, the transducer
must be taking a discrete transition δ such that γ(δ) = q. Then δ = δi for
i = 1, 3, 5, 7, 9, 11, 13, 15 and the automaton goes to states s0 or s2. But then we
have ẇi ⊨ ♢(0,a)p since both s0, s2 correspond to cases where either (i) wi ⊨ p,
or (ii) ẇi+1 ⊨ p or wi+1 ⊨ p and the length of segment wi is less than a. Observe
that these are cases 1 and 2 from Thm. 3.5.8. If t ∈ (ti, ti+1), the transducer
must be taking a time transition in a state s s.t. γ(s) = q. Then s = s0, s1, s2
and then if s0 we are in case 1 or 4, if = s1 we are in case 3, if s = s2 we are in
case 2. Then by Thm. 3.5.8 χ♢(0,a)p(w)(t) = 1.

The unicity of u follows by the fact that u = χ♢(0,a)p(w).

For a bounded signal, the formula ♢(0,a)p is true at its last open segment if and
only if p holds in the segment. If p doesn’t hold then ♢(0,a)p is false in the
segment. Following this observations we define T b

♢(0,a)p
as T♢(0,a)p but with a set

of final states F = {s0, s3}.

Theorem 3.5.10. The transducer T b
♢(0,a)p

is functional. Moreover, for every
bounded signal w, we have

χ♢(0,a)p(w) = T b
♢(0,a)p

(w).

3.5.4 Once
For every w, t, we have that (w, t) ⊨ ♦(0,a)p iff there is some t′ ∈ (t − a, t)
such that (w, t′) ⊨ p. Thus, the value of χ♦(0,a)p(w) at each t depends on the
value of p throughout the interval (t − a, t). At intervals I where p holds then
the formula is satisfied at I ⊕ (0, a) independently of the shape of I. When p
becomes untrue, there are three possible output behaviours depending on the
duration of the segment where p is false.

Theorem 3.5.11. For every signal w and every t ≥ 0 we have that (w, t) ⊨
♦(0,a)p iff χ♦(0,a)p(w)(t) = 1 iff there exists some point-segment partition com-
patible with w,χ♦(0,a)p(w) and some of the following holds

1. t ∈ (ti, ti+1] for some i and wi ⊨ p

2. t ∈ (ti, ti+1] for some i and

• wi ⊭ p
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• ti+1 − ti < a

• ẇi−1 ⊨ p or wi−1 ⊨ p

3. t ∈ (ti, ti+1), for some i, and

• wi ⊭ p

• ti+1 − ti = a

• ẇi−1 ⊨ p or wi−1 ⊨ p

4. t ∈ (ti, ti + a),

• wi ⊭ p

• ti+1 − ti > a

• ẇi−1 ⊨ p or wi−1 ⊨ p

Proof. Analogous to Theorem 3.5.8.

We now define the temporal tester T♦(0,a)p = (S, s, P,Q,C, Inv,∆, λ, γ,F)
depicted in Figure 3.5.4 that realises the characteristic function of the formula
♢(0,a)p, consisting of

• S = {s0, s1, s2} such that

• P = {p} and Q = {q}

• C = {x}

• ∆ = {δ1, . . . , δ12}

• F = ∅

• The states have the following input and output labels, and invariants

λ(s0) = p γ(s0) = q Inv(s0) = ⊤
λ(s1) = ¬p γ(s1) = q Inv(s1) = x < a
λ(s2) = ¬p γ(s2) = ¬q Inv(s2) = ⊤

• In the following table we can see at the same time all the edges in ∆ and
their respective input and output labels
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Figure 3.5.4: Tester for ♦(0,a)p

i δi λ(δi) γ(δi)
1 (s,⊤, ∅, s0) ⊤ ¬q
2 (s,⊤, {x}, s1) p ¬q
3 (s,⊤, ∅, s2) ¬p ¬q
4 (s0,⊤, ∅, s0) ¬p q
5 (s0,⊤, {x}, s1) ⊤ q
6 (s1, x < a, ∅, s0) ⊤ q
7 (s1, x = a, ∅, s0) ⊤ ¬q
8 (s1, x < a, {x}, s1) p q
9 (s1, x = a, {x}, s1) p ¬q
10 (s1, x = a, ∅, s2) ¬p ¬q
11 (s2,⊤, ∅, s0) ⊤ ¬q
12 (s2,⊤, {x}, s1) p ¬q

This transducer observes the input w and moves through its states. The clock
x measures the time from the last time p was observed.

Theorem 3.5.12. The transducer T♦(0,a)p is functional. Moreover, for every
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signal w,
χ♦(0,a)p(w) = T♦(0,a)p(w)

Proof. Left to the reader using Lemma 3.5.11.

Lemma 3.5.11 can easily be adapted to hold true for bounded signals by
bounding the index i of the ti and considering time points of the domain of
w. Moreover, we observe that every property about the satisfiability of ♦(0,a)p
at point t is based on past observations at some t′ < t, and then it holds for
signals iff it holds for bounded signals. Hence, the temporal tester T♦(0,a)p also
realizes the characteristic function χ♦(0,a)p over bounded signals and we get the
corresponding theorem.

Theorem 3.5.13. The transducer T♦(0,a)p is functional. Moreover, for every
bounded signal w over p1, p2, we have

χ♦(0,a)p(w) = T♦(0,a)p(w)

3.6 An effective translation
In this section we present the main result of this chapter, a plain correspondence
between MITL formulas and temporal testers. This correspondence is the key to
construct a model-checking decision procedure for MITL-definable properties.

Theorem 3.6.1. For every MITL formula φ, there exists a functional timed
transducer Tφ such that, Tφ(w) = χφ(w) for every signal w. Moreover, if
Sφ, Cφ, are the set of states and clocks of Tφ respectively, then |Sφ| ∈ 2O(s(φ)r(φ))

and |Cφ| ∈ O(s(φ)r(φ)) where s and r denote the size and the resolution.

Proof. Let φ be an arbitrary formula and let φ′ be an equivalent formula in
standard form. By Theorem 3.2.2 we have that s(φ′) ∈ O(s(φ)r(φ)) and r(φ′) ≤
1.

Let P ′ be the set of propositional variables appearing in φ′. The definition of
a temporal tester for φ′ with input variables P ′ and output variable q, denoted
by T q

φ′ , is recursive on the structure of φ′. For each subformula of φ′, we
construct a temporal tester for its main subformula(s) and compose it with a
basic temporal tester for its main operator. Since the number of subformulas of
φ′ is s(φ′) we do this process for s(φ′) times.

Let p, p1, p2 be fresh variables. Then we define the following testers according
to the form of the subformula and use Propositions 3.4.1 and 3.4.2 to prove their
correctness. The temporal testers are defined as follows

• T q
¬ψ := T p

ψ ; T q
¬p. Then if w is a signal over P ′ we have T q

¬ψ(w) = χ¬ψ(w)
by construction. Moreover, S¬ψ = Sψ × S¬p and since the set S¬p is
unitary, then |S¬ψ| = |Sψ|. On the other hand, C¬ψ = Cψ ∪ C¬p = Cψ.

• T q
ψ1∨ψ2

:= (T p1
ψ1

||T p2
ψ2

); T q
p1∨p2 . Then if w is a signal over P ′ we have

T q
ψ1∨ψ2

(w) = χψ1∨ψ2
(w) by construction. Moreover, Sψ1∨ψ2

= Sψ1
×Sψ2

×
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Sp1∨p2 , whence |Sψ1∨ψ2 | = |Sψ1 | · |Sψ2 |. On the other hand, Cψ1∨ψ2 =
Cψ1 ∪ Cψ2 ∪ Cp1∨p2 . Therefore |Cψ1∨ψ2 | = |Cψ1 |+ |Cψ2 |.

• T q
ψ1Uψ2

:= (T p1
ψ1

||T p2
ψ2

); T q
p1Up2 . For all w over P ′, we have that T q

ψ1Uψ2
(w) =

χψ1Uψ2
(w) by construction. Moreover, Sψ1Uψ2

= Sψ1
× Sψ1

× Sp1Up2 .
Therefore, |Sψ1Uψ2

| = |Sψ1
| · |Sψ2

| · 4. Finally, Cψ1Uψ2
= Cψ1

∪ Cψ2
∪

Cp1Up2 = Cψ1 ∪ Cψ2 . Therefore |Cψ1∨ψ2 | = |Cψ1 |+ |Cψ2 |.

• T q
ψ1Sψ2

:= (T p1
ψ1

||T p2
ψ2

); T q
p1Sp2 . For all w over P ′, we have that T q

ψ1Sψ2
(w) =

χψ1Sψ2
(w) by construction. Moreover, Sψ1Sψ2

= Sψ1
× Sψ1

× Sp1Sp2 .
Therefore, |Sψ1Sψ2

| = |Sψ1
|·|Sψ2

|·4. Finally, Cψ1Sψ2
= Cψ1

∪Cψ2
∪Cp1Sp2 .

Therefore |Cψ1Sψ2 | = |Cψ1 |+ |Cψ2 |.

• T q
♢(0,a)ψ

:= T p
ψ ; T

q
♢(0,a)p

. For all w over P ′ we have that T q
♢(0,a)ψ

(w) =

χ♢(0,a)ψ(w) by construction. Moreover, S♢(0,a)ψ = Sψ × S♢(0,a)p. There-
fore, |S♢(0,a)ψ| = |Sψ| · 4. Finally, C♢(0,a)ψ = Cψ ∪ C♢(0,a)p. Therefore
|C♢(0,a)ψ| = |Cψ|+ 1.

• T q
♦(0,a)ψ

:= T p
ψ ; T

q
♦(0,a)p

. For all w over P ′ we have that T q
♦(0,a)ψ

(w) =

χ♦(0,a)ψ(w) by construction. Moreover, S♦(0,a)ψ = Sψ × S♦(0,a)p. There-
fore, |S♦(0,a)ψ| = |Sψ| · 3. Finally, C♦(0,a)ψ = Cψ ∪ C♦(0,a)p. Therefore
|C♦(0,a)ψ| = |Cψ|+ 1.

The constructions above show that Tφ′ , the temporal tester for φ′, which is also
a temporal tester for φ, exists. Further, we can conclude that |Sφ′ | ∈ O(2s(φ

′)) ∈
O(2s(φ)r(φ)) and |Cφ′ | ∈ O(s(φ′)) ∈ O(s(φ)r(φ)).





Chapter 4

Model-checking
MITL-definable time
properties

In this chapter, we explain what it means for an automaton to satisfy a formula,
and then we provide a model-checker for this question in the particular case
where A is a timed Büchi automaton and φ is a MITL formula. To this end, we
first use Theorem 3.6.1 to reduce the model-checking problem to the emptiness
problem of timed (signal-based) automata, and then we construct an algorithm
that provides an answer.

The emptiness problem of timed automata was studied by Alur and Dill in
[1] and the decidability was proven. In the paper, they provide an algorithm
that relies on the construction of a region automaton, a Büchi automaton that
accepts exactly the set of untimed words that are consistent with the set of
timed words accepted by a timed automaton. Here, we adapt their work for the
case of signal-based automata and calculate the complexity of the corresponding
model-checking algorithm. We shall obtain the following estimation.

Theorem 4.0.1. For every TBA A and MITL formula φ, the model-checking
problem of whether A ⊨ φ can be checked in time

O((nφrφ + CA)! · 2O((Eφ+EA)·(nφrφ+CA)) · SA).

4.1 Problem Statement

In general, we say that a finite automaton A satisfies a formula φ if every word
w ∈ L(A) satisfies φ. For a timed Büchi automaton A = (S, s, C,Σ,∆, λ, γ, Inv,F)
and a MITL formula φ, we write A ⊨ φ iff every signal w in the timed language
Lt(A) satisfies φ. Then we consider the following model-checking problems

89
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Input: A TBA, φ MITL
Problem: does every signal w in Lt(A) satisfy φ?

and also

Input: A TA, φ MITL
Problem: does every bounded signal w in Lt(A) satisfy φ?

The answer to these model-cheking problems will be denoted by MC(A, φ) ∈
{0, 1} and BMC(A, φ) ∈ {0, 1} where 1 represents a yes-answer and 0 a no-
answer.

Given a MITL formula φ, we recall that a signal w satisfies φ iff (w, 0) ⊨ φ
iff Tφ(w)(0) = 1. From the temporal tester Tφ we define a new automaton T̃φ
accepting those signals w that don’t satisfy φ.

Lemma 4.1.1. If φ is a MITL formula and Tφ = (S, s, P,Q,C, Inv,∆, λ, γ,F)

is the corresponding temporal tester, then the automaton T̃φ = (S, s, P,Q,C, Inv,

∆̃, λ̃, γ̃, F̃) where

• ∆̃ = ∆\{δ ∈ ∆ : δ = (s, g, R, s) for some g,R, s and γ(δ) = 1},

• λ̃, γ̃ are the restrictions to S ∪ ∆̃ of λ, γ, and

• F̃ ∈ F̃ iff there is some F ∈ F such that F̃ = F ∩ ∆̃

satisfies that w ∈ Lt(T̃φ) iff (w, 0) ⊭ φ.

Proof. Observe that w ∈ Lt(T̃φ) iff w ∈ Lt(Tφ) and Tφ(w)(0) = 0. But by
definition of Tφ, w ∈ Lt(Tφ) is trivially satisfied and Tφ(w)(0) = 0 implies
(w, 0) ⊭ φ.

We emphasize that the number of states, clocks and the constants appearing
in clock constraints remain equal after the modifications of the lemma above.

For the complexity analysis of a model-checker for A ⊨ φ, we consider the
following parameters

• the size of φ, denoted by nφ,

• the resolution of φ, denoted by rφ,

• the maximum rational constant appearing in a subscript of a temporal
modality of φ′, the standard form of φ, denoted by Mφ,

• the number of states, clocks, and the maximum rational number appearing
as a constant in a clock constraint of A, denoted by SA, CA, MA respec-
tively,

• the least common multiple (lcm) of integers b1, . . . , bn where a1/b1, . . . , an/bn
are rational numbers appearing in some clock constraint of A, denoted tA,
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• the least common multiple (lcm) of integers b1, . . . , bn where a1/b1, . . . , an/bn
are rational numbers appearing in a subscript of φ, denoted tφ.

In the next proposition we show that our model-checking problem is reducible
to the emptiness problem for TBA.

Proposition 4.1.1. For every TBA A and MITL formula φ, there exists a
TBA BA,φ such that A ⊨ φ iff Lt(BA,φ) = ∅. Moreover, the number of states of
BA,φ is in O(2O(nφrφ) · SA), the number of clocks is in O(nφrφ + CA) and the
maximum constant is max{MA,M}.
Proof. Let φ′ be the standard form of φ. We compute the temporal tester
Tφ′ , let T̃φ′ be as in Lemma 4.1.1 and use them to define BA,φ := A||T̃φ′ .
Following the definition of the parallel composition, we have States(BA,φ) =

States(A) × States(T̃φ′) and Clocks(BA,φ) = Clocks(A) ∪ Clocks(T̃φ′). The
clock constraints in BA,φ arise as conjunctions of clock constraints in A and T̃φ′ .
Then by the bounds from Theorem 3.6.1, the estimation follows. Moreover,
Lt(BA,φ) = Lt(A) ∩ Lt(T̃φ′).

The rest of this chapter is thus devoted to the development of an emptiness-
checker, an algorithm to check the emptiness of a signal language. In the same
spirit of Dill’s construction [1], the key for our construction is the definition
of the Region automaton R(A), a Büchi automaton accepting some untimed
language L ∈ Untime[Lt(A)] as defined in the next section.

4.2 Restriction to integer constants
Definition 4.2.1. For a signal w over Σ, we say that an ω-word u = u0u1u2 · · ·
over Σ belongs to Untime[w] iff there is some compatible point-segment parti-
tion I = I0I1I2 · · · such that for all t ∈ Ii, w(t) = ui. For a signal language Lt
over Σ, Untime[Lt] =

⋃
w∈Lt

Untime[w].

For our purposes, we will restrict ourselves to automata whose guards and
invariants contain integer constants. In the following lemma, we show that this
can be done without loss of generality.

Definition 4.2.2. For a point-segment sequence I = {0}(0, t0){t0}(t0, t1){t1} . . .
and t ∈ Q+

0 , we define t · I as the point-segment sequence {0}(0, t · t0){t · t0}(t ·
t0, t · t1){t · t1} . . .
Lemma 4.2.1. Consider a TBA A, a signal w decomposed with respect to I as
ẇ0w

r0
0 ẇ1a

r1
1 ẇ2 · · · , and t ∈ Q+. Then

r : (s, 0)
ẇ0−−→ (s0, v0)

w
r0
0−−→ (s0, v0 + r0)

ẇ1−−→ (s1, v1)
w

r1
1−−→ (s1, v1 + r1) · · ·

is an accepting run over w for A iff

rt : (s, 0)
ẇ0−−→ (s0, t·v0)

w
t·r0
0−−−→ (s0, t·(v0+r0))

ẇ1−−→ (s1, t·v1)
w

t·r1
1−−−→ (s1, t·(v1+r1)) · · ·

is an accepting run over u for At where
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• u is decomposed with respect to t · I as ẇ0a
t·r0
0 ẇ1a

t·r1
1 ẇ2 · · · , and

• At is the same as A but replacing each value k by t · k in the clock con-
straints of A.

Proof. A discrete step of A of the form (si, vi + ri)
ẇi+1−−−→ (si+1, vi+1) for some

ri > 0 is allowed iff there is some δ = (si, g, R, si+1) such that vi + ri satisfies
g and vi+1 = R(vi). But δ is a transition of A iff δt = (si, gt, R, si+1) is a
transition of At where gt is obtained from g by replacing every rational constant
k appearing in it by t · k. Then (si, t · (vi + ri))

ẇi+1−−−→ (si+1, t · vi+1) is a
suitable discrete step of At. Therefore the initial step (s, 0)

ẇ0−−→ (s0, v0) is
allowed by A iff (s, 0)

ẇ0−−→ (s0, t · v0) is allowed by At. By a similar argument,

(si, vi)
w

ri
i−−→ (si+1, vi+ ri) is a time step of A iff (si, t · vi)

w
ri
i−−→ (si+1, t · (vi+ ri))

is a time step of At.

Proposition 4.2.1. For every TBA A and MITL formula φ, there exists a
TBA BintA,φ with integer constants such that A ⊨ φ iff Lt(BintA,φ) = ∅. More-
over, the number of states of BintA,φ is in O(2O(nφrφ) · SA), the number of clocks
is in O(nφrφ + CA) and the maximum constant in clock constraints is tBA,φ ·
max(MA,M) where BA,φ is as in Proposition 4.1.1.

Proof. Let BA,φ be as in Proposition 4.1.1. Let {c1, . . . , cn} ⊆ Q+
0 be all the

constants appearing in the clock constraints of BA,φ. Then each ci can be writ-
ten as

ai
bi

for some ai, bi ∈ N with bi > 0. Let k = lcm(b1, . . . , bn). Therefore,

the automaton (BA,φ)k as defined in Lemma 4.2.1 has only integer constants
in its clock constraints and satisfies Lt(BA,φ) = ∅ iff Lt((BA,φ)t) = ∅ and
Untime[Lt(BA,φ)] = Untime[Lt((BA,φ)t)]. Moreover, the maximum constant
appearing in a clock constraint is lcm(b1, . . . , bn) ·max(MA,M).

4.3 The Region automaton
In the remainder of the chapter we consider only clock constraints where clocks
are compared to integer values and we assume that every clock appears in some
clock constraint. For a TBA A and a clock x ∈ C, we denote by Mx ∈ Z0 the
largest integer value to which x is compared to in any clock constraint of A,
and by MA = maxx∈CMx. Moreover, we decompose every real number into its
integer and fractional part as r = ⌊r⌋+ frac(r), e.g. 5.43 = 5 + 0.43.

We define the region equivalence ∼ between two time valuations. We say
that v ∼ v′ iff

1. for all x ∈ C, ⌊v(x)⌋ = ⌊v′(x)⌋ or both v(x) and v′(x) are greater than
Mx,

2. for all x, y ∈ C with v(x) ≤Mx and v(y) ≤My, frac(v(x)) ≤ frac(v(y))
iff frac(v′(x)) ≤ frac(v′(y)),
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3. for all x ∈ C with v(x) ≤Mx, frac(v(x)) = 0 iff frac(v′(x)) = 0.

Definition 4.3.1. A clock region, denoted by [v], is an equivalence class under
∼.

The set of clock regions is finite. A bound on the number of clock regions is
offered in the following lemma, whose proof can be found in [1].

Lemma 4.3.1. For a given TBA A with set of clock variables C, the number
of clock regions is bounded by O[|C|! · 2|C| ·

∏
x∈C(2Mx + 2)], where Mx is the

largest integer value to which x is compared to in any clock constraint of A.

Then ifMA is the maximum of allMx, we infer that |C|!·2|C| ·
∏
x∈C(2MA+2)

is a bound for the number of clock regions. Moreover, we can rewrite it into
|C|! · 2|C| · (2MA + 2)|C| which is |C|! · 22|C| · (MA + 1)|C| .

For a clock region [v] and a clock constraint ϕ(C), we say that [v] satisfies
ϕ(C) iff v satisfies ϕ(C) or equivalently iff every v′ ∈ [v] satisfies ϕ(C). For
a clock region [v] and a reset condition R ⊆ C, we define R([v]) := [R(v)].
Observe that if v ∼ v′ and ϕ(C), R are arbitrary, then [v] satisfies ϕ(C) iff [v′]
satisfies ϕ(C), and R([v]) coincides with R([v′]).

Definition 4.3.2. We say that [v2] is a time successor of [v1] iff for each v ∈ [v1]
there is tv > 0 such that v + tv ∈ [v2].

Proposition 4.3.1. If r > 0 then [v + r] is a time successor of [v].

Proof. Let v′ ∼ v. We have to show that there is some r′ such that v′+r′ ∼ v+r.
We can assume without loss of generality that r < 1.

If for every x ∈ C, both v′(x), v(x) are greater than Mx, then pick r′ arbi-
trary.

Now suppose there is some x0 ∈ C such that r = 1− frac(v(x0)). Then put
r′ = 1− frac(v′(x0)). Then

• for every x ∈ C, if v(x) > Mx, then v′(x) > Mx, whence v(x) + r > Mx

and v′(x) + r′ > Mx. Otherwise suppose both v(x), v′(x) are below Mx.
Then we have ⌊v(x) + r⌋ = ⌊v(x)⌋ + ⌊r⌋ + ⌊frac(v(x)) + frac(r)⌋ =
⌊v′(x)⌋+ 0 + ⌊frac(v(x)) + r⌋. Since v ∼ v′, then it is equal to ⌊v′(x)⌋+
⌊frac(v(x)) + 1 − frac(v(x0))⌋. But on the other hand, ⌊v′(x) + r′⌋ =
⌊v′(x)⌋+ ⌊frac(v′(x)) + 1− frac(v′(x0))⌋. Then it only remains to prove
that

⌊frac(v(x)) + 1− frac(v(x0))⌋ = ⌊frac(v′(x)) + 1− frac(v′(x0))⌋.

Clearly, the above expressions are either 1 or 0. Observe that ⌊frac(v(x))+
1 − frac(v(x0))⌋ = 1 iff frac(v(x)) ≤ frac(v(x0)) and because v ∼ v′

this is equivalent to frac(v′(x)) ≤ frac(v′(x0)) iff ⌊frac(v′(x)) + 1 −
frac(v′(x0))⌋ = 1.

In the case that v(x) + r ≥Mx, this means v(x) + 1− frac(v(x0)) ≥Mx.
Then if v(x) ≥ Mx, then v′(x) ≥ Mx and clearly v′(x) + r′ ≥ Mx. Now
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suppose v(x) < Mx ≤ v(x) + 1− frac(v(x0)). Since Mx is an integer and
⌊v(x)⌋ = ⌊v′(x)⌋, then v′(x) + r′ ≥Mx iff ⌊v′(x) + r′⌋ ≥Mx. But as both
v(x), v′(x) are below Mx, we have seen that ⌊v′(x) + r′⌋ = ⌊v(x) + r⌋.
Hence, v′(x) + r′ ≥Mx.

• We leave the checking of points 2 and 3 of the definition of region equiva-
lence to the reader.

Otherwise if there is no x0 ∈ C as above, order clocks x1 ≤ · · · ≤ xn accord-
ing to frac(v(x)) i.e. xi ≤ xj iff frac(v(xi)) ≤ frac(v(xj)) (equivalently for
frac(v′(x)). Choose an index i ≤ n + 1 such that when adding r, the val-
ues v(xi), . . . , v(xn) are moved to the next region equivalence above but not
v(x1), . . . , v(xi−1). Then choose r′ that does the same for v′.

Corollary 4.3.0.1. A clock region [v′] is a time successor of [v] iff there exists
some r > 0 such that [v′] = [v + r].

Proof. If [v′] = [v + r] for some r > 0, then [v′] is a time successor of [v], and
conversely if [v′] is a time successor of [v], then there is some r > 0 such that
v + r ∈ [v′], whence [v + r] = [v′].

Definition 4.3.3. For a TBA A = (S, s, C,Σ,∆, Inv, λ, γ,F) and for some
M > MA, the region automaton R(A) is the generalized BA defined as (S′, S′

0,Σ,∆
′, λ′, γ′,F ′)

• S′ = {⟨s, [v]⟩t : s ∈ S} ∪ {⟨s, [v]⟩d : s ∈ S ∪ {s}} ∪ {⟨s, [v +M ]⟩∞ : s ∈ S}

• S0 = {⟨s, [0]⟩d}

• ∆′ has elements of the following form

– (⟨s, [v]⟩t, a, ⟨s, [v′]⟩d) iff [v′] is a time successor of [v], for all t ∈ (0, tv)
(where tv is s.t. v + tv ∈ [v′]), [v + t] satisfies Inv(s) and a = λ(s)

– (⟨s, [v]⟩d, a, ⟨s′, [R(v)]⟩t) iff there is some δ = (s, g, R, s′) ∈ ∆ where
[v] satisfies g and a = λ(δ)

– (⟨s, [v]⟩t, a, ⟨s, [v′]⟩∞) iff [v′] = [v +M ] and a = λ(s), and v + t ⊨
Inv(s) for all t > 0

– (⟨s, [v]⟩∞, a, ⟨s, [v′]⟩∞) iff [v′] = [v +M ] and a = λ(s)

• for a state ⟨s, [v]⟩t,d,∞, we define λ′(⟨s, [v]⟩t,d,∞) = λ(s)

• for an edge δ′ = (⟨s, [v]⟩x, a, ⟨s′, [v′]⟩y) where x, y ∈ {t, d,∞}, we define
λ′(δ′) = a

• γ′ = γ

• F ′ = {{⟨s, [v]⟩t,d,∞ : s ∈ F} : F ∈ F}
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The region automaton mimicks the runs of A in a certain way. We extend
the states ⟨s, [v]⟩ of the region automaton in [1] with subscripts t and d to force
an alternation among transitions of type “t” and “d”, corresponding to time and
discrete steps of A. When the automaton jumps into an ∞-state, then it is
forced to loop forever in that state.

Moreover, by Lemma 4.3.1, the region automaton R(A) has a state for every
state of A, clock region [v] and subscript t, d,∞, and then |States(R(A))| ∈
O(|CA|! · 22|CA| · (MA + 1)|CA| · SA).

In the following, we use the notation rt for runs of timed automata and r
for untimed automata.

Definition 4.3.4. We define the projection of an infinite run of a TBA A over
a signal w

rt : (s, 0)
ẇ0−−→ (s0, v0)

w
r0
0−−→ (s0, v0 + r0)

ẇ1−−→ (s1, v1) · · ·

as the run

r = [rt] : ⟨s, [0]⟩d
ẇ0−−→ ⟨s0, [v0]⟩t

w0−−→ ⟨s0, [v0 + r0]⟩d
ẇ1−−→ ⟨s1, [v1]⟩t · · ·

We define the projection of a finite run of a TBA A over a signal w

rt : (s, 0)
ẇ0−−→ (s0, v0)

w
r0
0−−→ (s0, v0 + r0) → · · · → (si, vi)

w
ri
i

as the run

r = [rt] : ⟨s, [0]⟩d
ẇ0−−→ · · · ⟨si, [vi]⟩t → ⟨si, [vi+M ]⟩∞

wi−→ ⟨si, [vi+M+M ]⟩∞
wi−→ · · ·

From the definition of the edge relation of R(A), it follows that [rt] is a run
of R(A) over w. However, not every run of the region automaton is a run of A.

Definition 4.3.5. A run of the region automaton R(A) of the form

r : ⟨s, [0]⟩d
w0−−→ ⟨s0, [v0]⟩t

w1−−→ ⟨s1, [v1]⟩d
w2−−→ ⟨s2, [v2]⟩t

w3−−→ ⟨s3, [v3]⟩d · · ·

is progressive iff for every clock x ∈ C there are infinitely many i ≥ 0 s.t. [vi]
satisfies (x = 0 ∨ x ≥Mx).

Proposition 4.3.2. If rt is a run of A over w, then the projection r = [rt] is
a progressive run of R(A) over some u ∈ Untime[w].

Proof. By definition of a run rt of A, the sum
∑
i∈N ri of the durations of all

time steps along the run diverges. Consider some clock x ∈ C and pick some
i ≥ 0. Suppose for a contradiction that there is no i′ ≥ i such that vi′ satisfies
vi′(x) = 0 or vi′(x) ≥ Mx. Then from step i onwards x is never reset, and
clearly after a certain number of time steps the automaton will reach some
configuration satisfying x ≥ Mx. But this is a contradiction. Hence, there is
some i′ ≥ i s.t. vi′ satisfying vi′(x) = 0 or vi′(x) ≥Mx, and the same holds for
[vi′ ] at [rt].
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In the next lemma, we show that exactly the progressive runs of R(A) cor-
respond to projections of runs of A.

Lemma 4.3.2. If r is a progressive run of R(A) over u, then there exists a run
rt of A over a signal w such that r = [rt] and u ∈ Untime[w].

Proof. Let r : ⟨s, [0]⟩d
w0−−→ ⟨s0, [v0]⟩t

w1−−→ ⟨s1, [v1]⟩d · · · be a progressive run of
R(A) over u = w0w1w2 · · · . We define the run rt and the signal w with respect
to I recursively for i where i indexes states of r. For all i ≥ 0 until the first
j such that ⟨sj , [vj ]⟩ has index ∞ (or for every i ≥ 0 if j doesn’t exist), we
construct wi and ui such that

• ui ∈ [vi]

• (s, 0)
ẇ0−−→ (s0, u0)

w
r0
0−−→ (s1, u1) → · · · −→ (si, ui) is a partial run of A

reading wi of duration r0 + r1 + · · ·+ ri

• wi = ẇ0 · wr00 · ẇ1 · wr11 · · ·wrii

We define r0 as (s, 0) and we set w0 = ẇ0. Now suppose we have constructed the
partial run ri of A until configuration (si, ui) with ui ∈ [vi]. Then we distinguish
three cases depending on what is the transition taken in r at step i

1. If it is of the form (⟨si, [vi]⟩d, ai+1, ⟨si+1, [vi+1]⟩t), then there is some δ =
(s, g, R, s′) ∈ ∆ where [vi] satisfies g and ai+1 = λ(δ). Then construct
ri+1 by adding the following discrete transition to ri

((si, ui), ai+1, (si+1, R(ui)))

and put wi+1 = wi · ai+1. Then by definition R(ui) ∈ [vi+1] = [R(vi)] as
ui ∈ [vi] by induction.

2. If it is of the form (⟨si, [vi]⟩t, ai+1, ⟨si, [vi+1]⟩d) then [vi+1] is a time suc-
cessor of [vi], whence ui + rui

∼ vi+1 for some rui
> 0. Then construct

the partial run ri+1 by adding the following time transition to ri

((si, ui), a
rui
i+1, (si, ui + rui

))

and put wi+1 = wi · a
rui
i+1.

3. If it is of the form (⟨si, [vi]⟩t, ai+1, ⟨si, [vi +M ]⟩∞), then the partial run
ri+1 coincides with ri, and the automaton stays at the same configuration
by reading the infinite open segment a∞i+1

(si, ui)
a∞i+1

and wi+1 = wi ·a∞i+1, for a∞i+1 the unbounded open segment with constant
value ai+1. Observe that ui +M ∈ [vi +M ] since M > MA
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Following this construction, we obtain a sequence of configurations rt of A by
joining all the ri over w such that [rt] = r. However, rt is a run of A iff

∑
n∈N rn

diverges. Assume, to get a contradiction, that every partial sum converges. In
this case, we use the fact that r is a progressive run to define another sequence
{r′n}n∈ω of durations such that

∑
n∈ω r

′
n → ∞ and another run r′′ satisfying

that r′′ is a run of A over w and [r′′] = r.
From {rn}n∈ω we define an auxiliary sequence {tn}n∈ω as t0 = 0 and tn =∑
i<n rn. Observe that {tn}n∈ω converges. Let C0 be the set of clocks x reset

infinitely often along r. By definition of convergence and the progressivity of r,
the following holds

• there is some n0 ∈ N s.t. ∀n ≥ n0, tn+1 − tn < 1

• there exists m0 ∈ N s.t. ∀k > m0, tk − tm < 0.5

• if x /∈ C0, there exists i0 ∈ N s.t. ∀i ≥ i0, [vi] satisfies x > Mx

Let j = max{n0,m0, i0} and let {kn}n∈N be an strictly increasing sequence of
integers with k0 = j s.t. each clock x ∈ C0 gets reset at least once between the
kith and the ki+1th transition steps along r. Then define {r′n}n∈N as r′n = 0.5
if n ∈ {j, k1, k2, . . . } and r′n = rn otherwise. We observe that the sequence of
the r′n doesn’t converge to zero since infinitely many terms have the value 0.5.

From {r′n}n∈N and r′, the run r′′ is defined along the same sequence of states
as rt. Moreover, the discrete transitions remain the same. To obtain a run of
A, we modify the duration of the time steps according to {r′n}n∈N. Thus, if
r′ has a time step of the form ((si, ui), a

ri
i+1, (si, ui + ri)) at step i, then put

((si, ui), a
r′i
i+1, (si, ui + r′i)) at the i-th step of r′′.

To conclude, we have to prove that r′′ is a run of A s.t. [r′′] = [rt], by showing
that for every time step i > j of r′′, ui + ri ∼ ui + r′i. If i /∈ {k1, k2, k3, . . . },
then r′i = ri, whence ui + ri ∼ ui + r′i. Otherwise, suppose i = kn for some
n > 0. We check that

1. for all x ∈ C, ⌊(ui + ri)(x)⌋ = ⌊(ui + r′i)(x)⌋ or both (ui + ri)(x) and
(ui + r′i)(x) are greater than Mx,

2. for all x, y ∈ C with (ui + ri)(x) ≤ Mx and (ui + ri)(y) ≤ My, we have
frac((ui+ ri)(x)) ≤ frac((ui+ ri)(y)) iff frac((ui+ r′i)(x)) ≤ frac((ui+
r′i)(y)),

3. for all x ∈ C with (ui+ ri)(x) ≤Mx, frac((ui+ ri)(x)) = 0 iff frac((ui+
r′i)(x)) = 0.

To this end, we divide C into C0 and C\C0. To prove (1), let x ∈ C0. We
denote by k > kn−1 the index of the last step before kn where x was reseted.
Then k ≥ j, whence ti−1 − tk < 0.5. Hence, the value of x at step i − 1 is less
than 0.5, and since r′i = 0.5, it is less than 1 after the step i. Now let x ∈ C\C0.
Since i − 1 ≥ j, then ui(x) ≥ Mx, whence (ui + r′i)(x) = ui(x) + r′i ≥ Mx.
Therefore (1) holds. Moreover, we have proven that the values of the clocks in
C0 are continuously less than 1 after the transition step j.
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To prove (2), the only case is where x, y ∈ C0. Since every valuation v
satisfies v(x), v(y) < 1 every fractionary part in the formula is the number itself.
Thus, it is trivially true that ui(x) + ri ≤ ui(y) + ri iff ui(x) + r′i ≤ ui(y) + r′i.

To prove (3), just note that frac((ui+ri)(x)) > 0 and frac((ui+r′i)(x)) > 0
for all x ∈ C0.

Hence, we conclude [r′′] = [rt] = r and r′′ is a run of A over w where
u ∈ Untime[w]. Therefore r′′ is the run required by the lemma.

Theorem 4.3.1. For every TBA A over Σ there exists a BA B over Σ such
that L(B) = Untime[Lt(A)]. Moreover, the number of states of B is in O(|CA|! ·
22|CA| · (tA ·MA + 1)|CA| · SA).

Proof. For a TBA A, let {c1, . . . , cn} ⊆ Q+
0 be all the constants appearing in the

clock constraints of A. Then each ci =
ai
bi

for some ai, bi ∈ N with bi > 0. Let

t = lcm(b1, . . . , bn). Therefore, the automaton At = (S, s, C,Σ,∆, Inv, λ, γ,F)
defined in Lemma 4.2.1 has only integer constants in its clock constraints and
L(A) = ∅ iff L(At) = ∅. Then compute R(At) = (S′, S′

0,Σ,∆
′, λ′, γ′,F ′). If At

has an accepting run rt over w, then [rt] is a progressive and accepting run of
R(At) over some u ∈ Untime[w]. By Lemma 4.3.2, an accepting progressive
run r of R(At) over u can be associated to an accepting run rt of At over some
w where u ∈ Untime[w] and [rt] = r. Hence, u ∈ Untime[Lt(At)] iff there is
some progressive run of R(At) over u.

For every x ∈ C, we define the set Fx = {⟨s, [v]⟩ ∈ S′ : [v] satisfies (x =
0∨x > Mx)} and let B be the same as R(At) but with a set F of accepting sets
defined by F ∈ F iff F = Fx for some x ∈ C or F ∈ F ′. Then Untime[L(At)] =
L(B).

Corollary 4.3.1.1. For a TBA A = (S, s, C,Σ,∆, λ, γ, Inv,F) and a MITL for-
mula φ, there exists a BA B such that A ⊨ φ iff L(B) = ∅. Moreover, the number
of states of B is in O[(nφrφ+CA)! ·2O(nφrφ)+CA ·(t ·max(MA,Mφ))

nφrφ+CA ·SA]).

Proof. Let A be a TBA and φ be a MITL formula. Let φ′ be the standard
form of φ. We have seen that the temporal tester Tφ′ has number of states in
O(2O(nφrφ)) and number of clocks in O(nφrφ). Moreover, the constants appear-
ing in clock constraints of Tφ′ depend on the subscripts of temporal modalities
in φ′. For an interval I we denote by aI , bI the right and left end-points of I.
Then the maximum constant Mφ appearing in a clock constraint of Tφ is the
maximum of the set {aI , bI − aI : I is a subscript from some operator in φ}.
We write all rational constants appearing in A, Tφ′ as a/b for a, b ∈ Z and b > 0
and enumerate these denominators as b1, . . . , bn.

For a TBA B, we denote by Bt the construction from Lemma 4.2.1 where
we multiply by an integer t > 0 all the constants appearing in clock constraints
from B. By Proposition 4.1.1 and Proposition 4.2.1, we know that the TBA
(A||T̃φ′)t where T̃φ is as in Lemma 4.1.1 and t = lcm(b, b1, . . . , bn), satisfies
A ⊨ φ iff Lt((A||T̃φ)t) = ∅. Moreover, the number of states of (A||T̃φ)t is in
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O(2O(nφrφ) · SA), the number of clocks is in O(nφrφ + CA) and the maximum
constant in clock constraints is t ·max(MA,M).

We compute the automaton R((A||T̃φ)t) constructed in the proof of Theorem
4.3.1 s.t. A ⊨ φ iff L(R((A||T̃φ)t)) = ∅. This automaton has number of states
in O(|CB |! · 2|CB | · (MB + 1)|CB | · SB) where B = (A||T̃φ)t. But then we rewrite
it as O[(nφrφ+CA)! ·2O(nφrφ)+CA · (t ·max(MA,Mφ))

nφrφ+|CA| ·2O(nφrφ) ·SA] or
equivalently O[(nφrφ+CA)!·2O(nφrφ)+CA ·(t·max(MA,Mφ))

O(nφrφ+CA) ·SA].

To compute our model-checking time bound we define a new set of parame-
ters:

• let NA be the maximum length of the binary code of a constant in A

• let DA be the number of constants in A

• let Nφ, Dφ defined similarly for φ

We define by Eφ := Nφ ·Dφ the total binary code length of numbers in φ. The
number EA is defined analogously.

Theorem 4.3.2. For every TBA A and MITL formula φ, the model-checking
problem of whether A ⊨ φ can be checked in time

O((nφrφ + CA)! · 2O((Eφ+EA)·(nφrφ+CA)) · SA).

Proof. Let φ′ be the standard form of φ. Then the constants appearing in T̃φ′

are linear combinations of numbers appearing in subscripts from φ. Then we
can assume that the length in binary code of tφ′ is of the same order as the
length of tφ. Moreover, we can bound tφ′ by the product of all denominators
bi from rational constants in φ′. For | · | the length in binary code, we obtain
|tφ′ | ≤ |b1 · b2 · · · bn| ≤ |Mφ′ | · Dφ′ = Nφ′ · Dφ′ ≤ Nφ · Dφ ≤ Eφ. Similarly,
EA = NA ·DA is a bound for |tA|.

Hence, the maximum length of a constant in (A||T̃φ′)tA||T̃ ′
φ

is in O((Eφ +

EA)+ (Nφ+NA)) which is in O(Eφ+EA). We denote k := tA||T̃φ
Therefore the

constants of (A||T̃φ)k are at most numbers in 2O(Eφ+EA).
Let B := R((A||T̃φ)k) be the Büchi automaton constructed in the proof of

Corollary 4.3.1.1. Then A ⊨ φ iff L(B) ̸= ∅. The language L(B) is nonempty iff
there is a state s of B such that s is accessible from some start state and from
itself, by a path containing at least one state from each F ∈ FB. This can be
checked in polynomial time in the states of B [27].

By Corollary 4.3.1.1, the number of states of R((A||T̃φ)k) is in

O((nφrφ + CA)! · 2O(nφrφ)+CA · 2O(Eφ+EA)·(nφrφ+CA) · 2O(nφrφ) · SA)

which is in
O((nφrφ + CA)! · 2O((Eφ+EA)·(nφrφ+CA)) · SA).

It is clear that the automaton B is computable in time polynomial in (nφrφ+
CA)! · 2(Eφ+EA)·(nφrφ+CA)) · SA.





Chapter 5

Emptiness Undecidability of
Stopwatch Automata

In many contexts there is an interest in measuring the overall accumulated
time that a systems spends in some state. One solution is to augment timed
automata with clocks that are allowed to be inactive at certain states, the so-
called stopwatches. This leads us to the class of Stopwatch Automata (SWA),
whose expressive power is very interesting in the context of reasoning about
real-time durations.

In this chapter, we present the undecidability of the emptiness problem for
Stopwatch Automata by a particular and adapted version of Theorem 4.1 from
[18]. Concretely, we obtain undecidability for SWA with a single stopwatch as
stated in the following theorem.

Theorem 5.0.1. If A is a stopwatch automaton with a single stopwatch, the
emptiness problem for A is undecidable.

The strategy of the proof is by reduction from the reachability problem for
SWA to the halting problem for two-counter machines, which is known to be
undecidable. As a consequence, we obtain undecidability of the model-checking
problem for SWA. Before giving the proof, we show the utility of Stopwatch
Automata in the frame of Regulation 561 [13].

5.1 Why stopwatches?
The first sentence of Article 7 from Reg. 561 regulates the maximum duration
of driving periods. According to the law, a truck driver can drive at most 4.5
hours without taking a rest. However, it can do other work between two contin-
uous driving periods until the next rest period, in which case the accumulated
durations of these driving periods shall not exceed 4.5 hours.

We will say that a MITL formula is equivalent to or formalizes a given
sentence from the article iff for every signal w and time point t, the formula

101
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φ is true at (w, t) iff (w, t) satisfies the given sentence. If we restrict to the

case where a driver can only switch between drive and rest periods (originally,
a driver can also do other work), then the sentence

S1: “after a driving period of four hours a driver shall take an un-
interrumpted break of not less than 45 minutes”

from Art. 7 is naturally formalized in MITL as

φ : drive→ ♢[0,4.5h]□(0,0.75h)rest

where 4.5h and 0.75h are notations for the number of minutes in these time
quantities. Indeed, for any point of time t where drive is true, there is some
point of time t′ ∈ [t, t+4.5h] such that rest continuously holds in (t′, t′+0.75h).

In the presence of a third activity, other work, the situation is rather different.
Think of a driver interleaving periods of driving and doing other work. If the
overall accumulated duration of driving periods between some break and the
following is less than 4.5h, the driver is in accordance with the law. But formula
φ becomes false if the accumulated duration of drive and other work periods
is more than 4.5h. For example, consider a driving of 4h duration followed by
1h of other work and then 1h of resting. This sequence of activities is clearly
within the law, but all times instants t from the first 0.5h of the driving period
doesn’t satisfy formula 5.1. That is because they can see no t′ ∈ [t, t + 4.5h]
where rest holds.

We infer that formula φ is not equivalent to sentence S1 in the presence of
three activities. One can see that finding a formula in MITL that formalizes
S1, is not an straightforward task. Even if possible, the automata accepting the
models of the formula is susceptible of having a state-space explosion. However,
with a stopwatch automaton with a single stopwatch xd and a clock xr, we can
count the overall duration of a driving period by letting xd be active if drive is
true and inactive otherwise. By a simple check of whether xd ≤ 4.5h ∧ xr ≥
0.75h holds, we set the condition for a run to be accepting. We will not go into
further detail here, but it is clear how useful is the expressive power of SWA in
the task of formalizing sentences of this kind; see also Article 6 in Fig. 0.0.2.
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5.2 Stopwatch Automata

Stopwatch automata are extensions of finite automata. Its computations hap-
pen in time, where the automaton can stay in a state for a while or take an
instantaneous transition to another state. The time constraints that regulate
transitions of the automaton are described by clock variables that can either be
active or inactive at a state. These variables are called stopwatches. When they
are active, their value increases as time increases, while they remain fixed when
inactive. The automaton accepts a given word over Σ if there exists a run from
a special state start that reads the word, and ends in a special state accept.

Definition 5.2.1. A stopwatch automaton SWA is a tuple (S,Σ, C, λ, d,∆, Inv)
where
- S is a finite set of states including two special states start and accept ;
- C is a set of stopwatches;
- λ : S → Σ;
- d : S × C → {0, 1} assigns a slope to every state and every stopwatch;
- ∆ is a transition relation consisting of elements of the form (s, g, R, s′) ∈
S × ϕ(C)× P(C)× S;
- Inv : S → ϕ(C) is the invariance map.

We say that x ∈ C is a clock if d(s, x) = 1 for every state s. For a stopwatch
x we use the notation ẋ = 1 to indicate that x is active at some state; ẋ = 0
otherwise. Also, we use the notation x := 0 on an edge to indicate a reset of x.

For a state s and assignment v of C, a step of the automaton is one of the
following:

• A discrete step (s, v)
0−→ (s′, v′) where there exists δ = (s, g, R, s′) ∈ ∆

such that v satisfies g and v′ is the result of reseting the clocks in R.

• A time step (s, v)
t−→ (s, v′) for t > 0, where for all x ∈ C

v′(x) =

{
v(x) + t if d((s, x)) = 1

v(x) if d((s, x)) = 0

as long as v′ satisfies Inv(s).

A run of the automaton starting from configuration (s0, v0) is a finite sequence
of discrete and time steps

(s0, v0)
t1−→ (s1, v1)

t2−→ · · · tm−−→ (sm, vm)

where qi ̸= accept if i < m. The time length of this run is t1 + t2 + · · · + tm.
A run is accepting if q0 = start, v0 is constantly 0, and qm = accept. The run
reads the word

λ(s0)
t0 · · ·λ(sm)tm .
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...
a, c ≤W

ȧ, ċ = 1
...

(e1) a := 0

(e2) c =W/c := 0

(e3) a =W

Figure 5.3.1: Wrapping lemma for c

5.3 Undecidability proof
In the following lemmas we introduce three techniques that are necessary for our
undecidability proof. The first one shows a mechanism to simulate the inactivity
of an active clock during a time step.

Lemma 5.3.1 (Wrapping lemma). Let W be a positive rational number. Con-
sider the fragment of automaton from Figure 5.3.1. Then if the value of the
clock c is x when the edge e1 is traversed, where x ≤W , then c has the value x
when traversing e3.

Proof. After traversing the edge e1, the clock a has value 0, and suppose c has
value x ≤W . Then, because of the invariance condition over c, the automaton
necessarily takes a number of time steps of accumulated duration t = W − x
enabling edge e2 to be taken. At this point the value of c is W (observe that a
has value W −x), which produces a reset of the clock c after traversing e2. The
invariance condition over a leads exclusively to edge e3 after a period of time of
duration x, which leaves a with value W and c with value x.

For a positive rational number W , a W -wrapping edge for a clock c and a
state s is an edge from s to itself that is annotated with the guarded command
c = W → c := 0. Enriching this technique by forcing two simultaneous W -
wrapping edges, we obtain a mechanism to check if the values of two clocks are
the same.

Lemma 5.3.2 (Equality lemma). Let W be a positive rational number. Con-
sider the fragment of a stopwatch automaton from Figure 5.3.2. Suppose that
the value of c is x and the value of d is y when the edge e1 is traversed, where
0 ≤ x, y ≤W . Then the edge e3 can be traversed later iff x = y, and when it is
traversed both c and d have the value x (which is equal to y).

Proof. After traversing the edge e1, the clock a has value 0, and suppose c
has value x ≤ W and d has value y ≤ W . Then, because of the invariance
condition over c and d, the automaton necessarily takes a number of time steps
of accumulated duration t = W − max{x, y}, after wich the clock c has value
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x + t and d has value y + t. But the edge e2 is enabled iff both c and d have
value W iff x = y. At this point the value of both c and d is W (observe that a
has value W −x), which produces a reset of both clocks after traversing e2. The
invariance condition over a leads exclusively to edge e3 after a period of time of
duration x, which leaves a with value W and both c and d with value x.

...
a, c, d ≤W

ȧ, ċ, ḋ = 1
...

(e1) a := 0

(e2) c =W ∧ d =W/c, d := 0

(e3) a =W

Figure 5.3.2: Equality lemma for c =?d

The last lemma allows us to copy the value of a clock to another clock while
mantaining the value of the first.

Lemma 5.3.3 (Assignment lemma). Let W be a positive rational number. Con-
sider the fragment of automaton from Figure 5.3.3. If the value of c is x when
the edge e1 is traversed, where 0 ≤ x ≤ W , then the next time e3 is traversed,
the value of c is again x and the value of d is x.

Proof. After traversing the edge e1, the clock a has value 0, and suppose c
has value x ≤ W and d has value y ≤ W . Then, because of the invariance
condition over c and d, the automaton necessarily takes a number of time steps
of accumulated duration t =W−x enabling the edge e2. At this point the value
of c is W (observe that a has value W − x and d has value W − x+ y), which
produces a reset of both c and d after traversing e2. The invariance condition
over a leads exclusively to edge e3 after a period of time of duration x, which
leaves a with value W and both c and d with value x.

The reachability problem is the problem of determining whether a certain
state of a system or computer program is reachable from a given initial state
of the system. We say that a configuration (s, v) of a stopwatch automaton
is reachable iff there exists a sequence of discrete and time steps starting in
configuration (start, 0), where 0 represents the valuation which is constantly
0, and ending in (s, v) where v satisfies Inv(s). Now we can state our main
theorem.

Theorem 5.3.1. If A is a stopwatch automaton with final state accept, then
the problem of deciding whether (accept, v) is reachable is undecidable.
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...
a, c, d ≤W

ȧ, ċ, ḋ = 1
...

(e1) a, d := 0

(e2) c =W/d, c := 0

(e3) a =W

Figure 5.3.3: Assignment lemma for d := c

The argument of the proof is by reducibility of the halting problem for two-
counter machines to the reachability problem for stopwatch automata.

A two-counter machine M is a computational model that consists of

• two variables c, d, called counters, that range over N

• a list of n instructions πM (or program) among the following: increment
counter, decrement counter (which leaves unchaged a counter value zero),
if counter is zero then go to instruction j0 else go to instruction j1 (where
1 ≤ j0, j1 ≤ n), and halt (which only corresponds to instruction n)

• a variable or register j ∈ {1, . . . , n} that stores the current instruction to
be executed

We denote configurations of two-counter machines as ((c, d), j) and we say that
a configuration ((c′, d′), j′) succeeds another configuration ((c, d), j) (for j < n)
if (c′, d′) is the result of applying j to (c, d). In other words, if we are in one of
the following cases

• j = “decrement counter c”, c′ = c − 1 if c > 0, or c′ = c if c = 0, d′ = d
and j′ = j + 1, or

• j = “increment counter c”, c′ = c+ 1, d′ = d and j′ = j + 1, or

• j = “if c = 0, go to instruction j0, else go to instruction j1”, and c = 0,
j′ = j0 or c > 0 and j′ = j1, and in both cases d′ = d, or

• j = “decrement counter d”, d′ = d − 1 if d > 0, or d′ = d if d = 0, c′ = c
and j′ = j + 1, or

• j = “increment counter d”, d′ = d+ 1, c′ = c and j′ = j + 1, or

• j = “if d = 0, go to instruction j0, else go to instruction j1”, and d = 0,
j′ = j0 or d > 0 and j′ = j1, and in both cases c′ = c.
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A computation of a two-counter machine is a finite sequence of configurations

((c0, d0), j0)((c1, d1), j1) · · · ((cl, dl), jl)

such that every two consecutive configurations are successors, the initial config-
urations is ((0, 0), 1), jm < n for all m < l, and jl = n = halt.

The halting problem for two-counter machines doesn’t have an input and it
consists of determining whether the halting condition is reached given a partic-
ular program that starts with both counters at 0 and follows the set of instruc-
tions specified by the machine. Alan Turing proved in 1936 that this problem is
undecidable and therefore that there exists no general algorithm to decide the
halting problem [30].

For a given two-counter machine M , we provide a computable translation
to a stopwatch automaton AM such that

M halts iff the configuration (accept, v) is reachable for AM iff AM
accepts some word.

Let M be a two-counter machine with counters C,D. The values of the coun-
ters and the actions performed by the machine are going to be represented by
different elements of the automaton. We encode counter value x by clock value
21−x and we use auxiliary clocks and a unique stopwatch to define AM .

The automaton AM consists of:

• A unitary alphabet Σ = {α}

• S defined below, with initial state start and final state accept

• ∆ defined below

• A set of stopwatches C = {a, b, b′, c, d, z} where

– a, b, b′, c, d are clocks i.e. active at every state
– z is a stopwatch i.e. d((s, z)) may be 0 at some state s (unless we

explicitly write ż = 0, assume ż = 1)
– clocks c and d are associated with values 21−C and 21−D, where C,D

are the counters of M

• for every state s, λ(s) = α

• for every state s, Inv(s) is the conjunction of x ≤ 4 for every clock x ∈
{a, b, b′, c, d, z} i.e. every clock must remain in the region [0, 4]

AM is a concatenation of automata in a certain sense. For every instruction j
of the counter machine, it has a certain effect on C or D. Then we construct
an automaton Aj mimicking the effect of j on C,D in terms of clocks c, d. We
have to be careful and always leave the value of a clock unchanged after a run of
Aj if the corresponding counter is unchanged during instruction j. Then, with
respect to the program πM , we join all the Aj in suitable order to construct
AM .
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Since by definition both counters start at value 0, the corresponding clocks
should hold value 21−0 = 2 at the starting configuration. Therefore we want to
impose an initialization condition to c, d by means of a guard. We define A0 as
in Figure 5.3.4.

start accept0
c = 2, d = 2

Figure 5.3.4: The automaton A0

Lemma 5.3.4. Let A be a stopwatch automaton and let r,W be two positive
rational numbers such that r ≤ W and Inv(s) =

∧
x∈X x ≤ W for every clock

x and state s of A. Then assume d is a fresh clock for A. Now let A′ be the
automaton A such that

• C ′ = C ∪ {d}

• Inv′(s) = Inv(s) ∧ d ≤W for every s ∈ S

• wrapping loops d = r/d := 0 to every state of the automaton i.e. δ =
(s, d = r, d, s) belongs to ∆′ for every s ∈ S,

Then for every run of A′ of duration r, d holds the same value both at the initial
and at the final configurations of the run.

Proof. Consider such a run and let us denote by d0 ≤ W the initial value of
clock d. Appart from the wrapping loops, clock d doesn’t appear at any edge
throughout the run. Since the run has duration r, at some point before the run
is ended, d will reach value r. Exactly, this will happen after r − d0 units of
time, where at some state the self-loop is enabled and clock d is reset. After the
transition, the run continues for some time r − (r − d0) = d0, whence the value
of d at exit is d0.

Claim 5.3.1.1. For every instruction j of the program πM for 0 < j < n, there
is an automaton Aj such that

• Σ, C, Inv, λ are as stated for AM above

• it has initial and final states startj and finalj
Moreover, for every computation of M if the configuration of the machine M
is ((C,D), j) before j is performed and ((C ′, D′), j′) after, then any run of Aj
starting at configuration

(startj , (a0, b0, b
′
0, 2

1−C , 21−D, z0))

and spending 0 time in state startj ends at some configuration of the form

(acceptj , (a1, b1, b
′
1, 2

1−C′
, 21−D

′
, z1)),

for some qk, ak, bk, b′k, zk, for k = 0, 1.
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We consider the different instructions over counter C, for counter D we do
the same construction interchanging c and d.

1. Case j = “decrement counter C” . The operation of decrementing 1
unit to counter C is encoded through multiplication by 2, since 21−(C−1) =
22−C = 2 · 21−C . The automaton Aj that performs this multiplication is
depicted in Figure 5.3.5 and it is divided in three steps. The first step
is intended to assign z := c, then doubling the value of z, and finally
assigning c := z. In the special case where clock c has value 2, its value
won’t be affected by the multiplication, corresponding with the case where
we leave unchanged a counter value 0. Let us explain and prove our

startj z := c z → 2z c := z acceptj

c→ 2d = 2/d := 0

c ̸= 4

c = 4/a, b, b′, c, z := 0 c = 2

Figure 5.3.5: c→ 2 · c

construction with more detail. We omit any reference to the states and
describe how are the runs by saying what are the values of the clocks along
time.

• We represent by circled z := c (detailed in Fig. 5.3.6) the fragment
of automaton showed in the Assignment Lemma 5.3.3 for variables z
and c.
Suppose we are at configuration

(a = a0, b = b0, b
′ = b′0, c = 21−C , d = 21−D, z = z0).

Then the run over the fragment of automaton from Figure 5.3.6 has
duration 4 because there is a clock (a) whose value at entry is 0
and 4 at exit, with no reset in between. Then, when traversing this
fragment, the configuration of the automaton is

(a = 0, b = 0, b′ = 0, c = 21−C , d = 21−D, z = 21−C),

as d remains unchanged by Lemma 5.3.4 and z is assigned the value
of c.

• The fragment for doubling the value of z is depicted in Figure 5.3.7.
The first edge of this fragment coincides whith the last from previous
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. . . ż = 1 ...
a, b, b′, z := 0

c = 4/z, c := 0

d = 4/d := 0

a = 4/a, b, b′ := 0

Figure 5.3.6: Assignment lemma for z := c leaving d unchanged

fragment. Then the configuration of Aj is

(a = 0, b = 0, b′ = 0, c = 21−C , d = 21−D, z = 21−C),

after the respective resets. When entering the state with ż = 0, the
automaton spends some time 4 − 21−C at the state until edge e1 is
enabled. At this point c = 4, z is unchanged, and a = b = b′ =
4 − 21−C . After e1 clock c is reset and we enter the state where z
is now active. Then after a period of time 4 − (4 − 21−C) = 21−C

which enables edge e2, the clocks satisfy a = b = b′ = 4, c = 21−C ,
and z = 21−C + 21−C . Since this computation lasts 4 units of time,
the value of clock d remains unchanged by Lemma 5.3.4. Hence, the
automaton is at configuration

(a = 4, b = 4, b′ = 4, c = 21−C , d = 21−D, z = 2 · 21−C)

startj ż = 0 ż = 1 acceptj

a = 4/a, b, b′ := 0 (e1) c = 4/c := 0

d = 4/d := 0

(e2) a = 4/a, b, b′ := 0

d = 4/d := 0

Figure 5.3.7: z → 2 · z

• We represent by circled c := z (detailed in Fig. 5.3.8) the fragment
of automaton showed in the Assignment Lemma 5.3.3 for variables c
and z.
We are at configuration

(a = 0, b = 0, b′ = 0, c = 21−C , d = 21−D, z = 2 · 21−C).
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. . . ż = 1 ...
a, b, b′, c := 0

z = 4/c, z := 0

d = 4/d := 0

a = 4/a, b, b′ := 0

Figure 5.3.8: Assignment lemma for c := z leaving d unchanged

Then the run over the fragment of automaton from Figure 5.3.8 has
duration 4 because there is a clock (a) whose value at entry is 0
and 4 at exit, with no reset in between. Then, after traversing this
fragment, if c ̸= 4, the configuration of the automaton is

(a = 0, b = 0, b′ = 0, c = 2 · 21−C , d = 21−D, z = 2 · 21−C),

as d remains unchanged by Lemma 5.3.4 and c is assigned the value
of z. Then c = 21−C

′
for C ′ = C +1 and d = 21−D

′
for D′ = D, and

then we are done.
• In the special case where clock c has value 2 it should remain un-

changed. Since after the run it has value 4, in this particular case we
traverse the edge guarded with c = 4 to force clock c to recuperate
its original value 2. This costs 2 units of time, whence this state
has a 2-wrapping edge leaving the value of d unaltered. Then the
configuration of the automaton is

(a = 2, b = 2, b′ = 2, c = 2, d = 21−D, z = 2).

Observe that c = 21−C
′

for C ′ = C = 0 and d = 21−D
′

for D′ = D,
and then we are done.

2. Case j = “increment counter C” . The operation of incrementing one
unit to counter C is encoded through division by two, since 21−(C+1) =

2−C =
1

2
· 21−C . The automaton Aj that performs this multiplication

is depicted in Figure 5.3.9 and it operates as follows. First, we give an
arbitrary value to b and multiply it by 2 using the doubling procedure
above and copy the value on variable b′ using Assignment Lemma 5.3.3.
Finally, we check if b′ is equal to c with the Equality lemma 5.3.2. If so,
we perform the assignation c := b. Otherwise the run is aborted.

The only new construction corresponds to the part where we assign a value
to b. This segment is detailed in Figure 5.3.10 whose computations last
exactly 4 units of time as a is reset at entry and required to be 4 at exit.
Because of this we infer by Lemma 5.3.4 that c, d are unchanged along
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startj let b ≤ 4 b′ := 2b c =?b′ c := b acceptj
yes

Figure 5.3.9: c→ 1

2
· c

this segment. Moreover, if b has arbitrary value ≤ 4 at entry, then after
spending some time t ≤ 4 at state s0, it takes a transition to state s1 after
which b is reset and a has value t. Then when leaving state s1, the clock
a has value 4 and b value 4− t. Since t is arbitrary, 4− t is arbitrary.

... s0 s1 ...
a, b′, z := 0

c = 4/c := 0

d = 4/d := 0

b := 0

c = 4/c := 0

d = 4/d := 0

a = 4

Figure 5.3.10: Assign a value to b leaving c, d unchanged

3. Case j = “if c = 0, go to instruction j0, else go to instruction j1” .
The automaton Aj that mimicks this process is depicted in Figure 5.3.11
and it branches according to the values of the clock c.

Aj0

startj

Aj1

c = 2

c ∈ [0, 1]

Figure 5.3.11: Test for zero

For instruction j = n = halt, we define the automaton An (Fig. 5.3.12). Then
the automaton AM is obtained with respect to πM by putting acceptj = startj+1

for every 0 ≤ j ≤ n and making them be wrapping edges as in Fig. 5.3.13.
Finally, we join all the Aj to obtain AM .
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accept

Figure 5.3.12: The automaton An

...
acceptj

startj+1

...
a, b, b′, z := 0

c = 4/c := 0

d = 4/d := 0

a = 4

Figure 5.3.13: Gluing with wrapping states
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