
Recursion Theory
Joost J. Joosten

Institute for Logic Language and Computation

University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

Room P 3.26, +31 20 5256095

jjoosten@phil.uu.nl

www.phil.uu.nl/∼jjoosten

Recursion Theory – p.1/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

Recursion Theory – p.2/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Recursion Theory – p.2/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

Recursion Theory – p.2/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Recursion Theory – p.2/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

Recursion Theory – p.2/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

Recursion Theory – p.2/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

So, we can take k to be h(e)

Recursion Theory – p.2/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

So, we can take k to be h(e) (here we use that h should
be total!)

Recursion Theory – p.2/14



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

Recursion Theory – p.3/14



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!

Recursion Theory – p.3/14



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!

Fixed points and a map of Amsterdam

Recursion Theory – p.3/14



Computable approximations

We shall see (more or less, we have already seen) that
ϕe(x) ↓ and ϕe(x) = y is incomputable

Recursion Theory – p.4/14



Computable approximations

We shall see (more or less, we have already seen) that
ϕe(x) ↓ and ϕe(x) = y is incomputable

However, ϕe,s(x) = y is of course computable

Recursion Theory – p.4/14



Computable approximations

We shall see (more or less, we have already seen) that
ϕe(x) ↓ and ϕe(x) = y is incomputable

However, ϕe,s(x) = y is of course computable

We shall use these approximations later

Recursion Theory – p.4/14



Recap of previous lecture

Coding: representing programs by numbers

Recursion Theory – p.5/14



Recap of previous lecture

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Recursion Theory – p.5/14



Recap of previous lecture

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem

Recursion Theory – p.5/14



Recap of previous lecture

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem

Fixed point theorem

Recursion Theory – p.5/14



Recap of previous lecture

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem

Fixed point theorem

Computable approximations of uncomputable problems

Recursion Theory – p.5/14



Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Recursion Theory – p.6/14



Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Motivation

Recursion Theory – p.6/14



Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Motivation

Consider {x ∈ N | there is a sequence of at least x 7’s in
the decimal expansion of π }

Recursion Theory – p.6/14



Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Motivation

Consider {x ∈ N | there is a sequence of at least x 7’s in
the decimal expansion of π }

Next, consider {x ∈ N | there is a sequence of exactly x

(and no more) 7’s in the decimal expansion of π }

Recursion Theory – p.6/14



Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Motivation

Consider {x ∈ N | there is a sequence of at least x 7’s in
the decimal expansion of π }

Next, consider {x ∈ N | there is a sequence of exactly x

(and no more) 7’s in the decimal expansion of π }

Although the latter is not computable, it is enumerable
in an effective way.

Recursion Theory – p.6/14



Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Recursion Theory – p.7/14



Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Recursion Theory – p.7/14



Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954)

Recursion Theory – p.7/14



Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954) (almost proved
Gödel 1, was a high-school teacher for some period of
time)

Recursion Theory – p.7/14



Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954) (almost proved
Gödel 1, was a high-school teacher for some period of
time)

Theorem: If A is computable, it is also computably
enumerable

Recursion Theory – p.7/14



Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954) (almost proved
Gödel 1, was a high-school teacher for some period of
time)

Theorem: If A is computable, it is also computably
enumerable

Theorem: A is computable iff both A and A are CE

Recursion Theory – p.7/14



Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954) (almost proved
Gödel 1, was a high-school teacher for some period of
time)

Theorem: If A is computable, it is also computably
enumerable

Theorem: A is computable iff both A and A are CE

This is the famous complemantiation theorem.

Recursion Theory – p.7/14



Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

Recursion Theory – p.8/14



Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

If A and B are both CE, then also A ∩ B is CE

Recursion Theory – p.8/14



Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

If A and B are both CE, then also A ∩ B is CE

We shall prove the latter formally in the workgroup

Recursion Theory – p.8/14



Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

If A and B are both CE, then also A ∩ B is CE

We shall prove the latter formally in the workgroup

What about complements?

Recursion Theory – p.8/14



Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

If A and B are both CE, then also A ∩ B is CE

We shall prove the latter formally in the workgroup

What about complements? (Stay tuned!)

Recursion Theory – p.8/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof:

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" :

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" :

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" : if CE, then it is the range of some computable f

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" : if CE, then it is the range of some computable f

We use f to define a 1-1 h:

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" : if CE, then it is the range of some computable f

We use f to define a 1-1 h:
h(0) = f(0)

Recursion Theory – p.9/14



CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" : if CE, then it is the range of some computable f

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Recursion Theory – p.9/14



How formal should we be?

We consider again:

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

This we need to prove in exercises!!!!!

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

This we need to prove in exercises!!!!!

This is the level of formality we are after

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

This we need to prove in exercises!!!!!

This is the level of formality we are after

In case of doubt: choose the formal solution

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

This we need to prove in exercises!!!!!

This is the level of formality we are after

In case of doubt: choose the formal solution (how much
risk do you allow?)

Recursion Theory – p.10/14



Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

Recursion Theory – p.11/14



Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

First: We, the halting set of e

Recursion Theory – p.11/14



Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

First: We, the halting set of e

Next: a relation being Σ0
1, Π0

1 or ∆0
1

Recursion Theory – p.11/14



Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

First: We, the halting set of e

Next: a relation being Σ0
1, Π0

1 or ∆0
1

Example: for a given e, the set {x | ϕe(x) ↓} is Σ1

Recursion Theory – p.11/14



Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

First: We, the halting set of e

Next: a relation being Σ0
1, Π0

1 or ∆0
1

Example: for a given e, the set {x | ϕe(x) ↓} is Σ1

Proof: ϕe(x) ↓ iff (∃s)∃y ϕe,s(x) = y

Recursion Theory – p.11/14



Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

Recursion Theory – p.12/14



Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

Recursion Theory – p.12/14



Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

(2) A is Σ0
1

Recursion Theory – p.12/14



Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

(2) A is Σ0
1

(3) A is We for some e

Recursion Theory – p.12/14



Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

(2) A is Σ0
1

(3) A is We for some e

Proof:

Recursion Theory – p.12/14



Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

(2) A is Σ0
1

(3) A is We for some e

Proof:

(1) ⇒ (2) ⇒ (3) ⇒ (1)

Recursion Theory – p.12/14


	The fixed point theorem
	Fixed points
	Computable approximations
	Recap of previous lecture
	Computably enumerable sets
	Computably enumerable
	Closure properties of CE functions
	CE sets and increasing functions
	How formal should we be?
	Characterizing c.e. sets
	Normal Form Theorem

