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Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM
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Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM

Even self reference became an option

Self reference was central to paradoxes (Russell)

But also to subtle and beautiful theorems (Gödel)

How can theories talk about “themselves”?

How can TM’s talk about “themselves”?

Gödel numbers!
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Gödel numbers

We will represent TM’s by numbers
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Gödel numbers

We will represent TM’s by numbers

What are TM’s?
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Gödel numbers

We will represent TM’s by numbers

What are TM’s? : list of instructions over some
language
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Gödel numbers

An action consists of 〈qi, S, A, qj〉
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Gödel numbers

An action consists of 〈qi, S, A, qj〉

We code: gn(L) = p0

We code: gn(R) = p1

We code: gn(qi) = p2i+2

And likewise for the Si (see book)

We code: gn(Q) = p
gn(qi)
0 · p

gn(S)
1 · p

gn(A)
2 · p

gn(qj)
3

Recursion Theory – p.4/10



Gödel numbers

An action consists of 〈qi, S, A, qj〉

We code: gn(L) = p0

We code: gn(R) = p1

We code: gn(qi) = p2i+2

And likewise for the Si (see book)

We code: gn(Q) = p
gn(qi)
0 · p

gn(S)
1 · p

gn(A)
2 · p

gn(qj)
3

We code: gn(〈Q0, Q1, . . . , Qn〉) = p
gn(Q0)
0 · . . . · p

gn(Qn)
n
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Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P
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and is P if e is a code gn of some program P

Instead of ϕ
(k)
T we write ϕ

(k)
e

We omit k whenever k = 1

Enumeration Theorem:

There is a p.c. ϕz(x) that maps 〈z, x〉 to the output that

the zth TM would have on input x
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Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P

Instead of ϕ
(k)
T we write ϕ

(k)
e

We omit k whenever k = 1

Enumeration Theorem:

There is a p.c. ϕz(x) that maps 〈z, x〉 to the output that

the zth TM would have on input x

Proof:

Long live the Church Turing Thesis!
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Tm’s and codes

Enumeration Theorem uses the concept of a Universal
Turing Machine!!!
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Note that we cannot get a version of the Enumeration
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Tm’s and codes

Enumeration Theorem uses the concept of a Universal
Turing Machine!!!

Note that we cannot get a version of the Enumeration
Theorem for recursive functions

Diagonal argument again

Another fact about code of programs: Every p.c.
function has infinitely many different codes (Padding
Lemma)
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Tm’s and codes

Looks strange, but useful: The Sm
n -theorem
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Tm’s and codes

Looks strange, but useful: The Sm
n -theorem

If f(x, y) is a p.c. function, for some computable g,
f(x, y) = ϕg(x)(y).

More general: for each m,n ∈ N, there is a function Sm
n

such that

ϕm+n
e (x1, . . . , xm, y1, . . . , yn) = ϕSm

n (e,x1,...,xm)(y1, . . . , yn)
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The fixed point theorem

Kleene’s Fixed point theorem (1938)
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The fixed point theorem

Kleene’s Fixed point theorem (1938)

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

So, we can take k to be h(e) (here we use that h should
be total!)
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Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program
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Recap

Coding: representing programs by numbers
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