
Recursion Theory
Joost J. Joosten

Institute for Logic Language and Computation

University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

Room P 3.26, +31 20 5256095

jjoosten@phil.uu.nl

www.phil.uu.nl/∼jjoosten

Recursion Theory – p.1/10



Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM

Recursion Theory – p.2/10



Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM

Even self reference became an option

Recursion Theory – p.2/10



Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM

Even self reference became an option

Self reference was central to paradoxes (Russell)

Recursion Theory – p.2/10



Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM

Even self reference became an option

Self reference was central to paradoxes (Russell)

But also to subtle and beautiful theorems (Gödel)

Recursion Theory – p.2/10



Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM

Even self reference became an option

Self reference was central to paradoxes (Russell)

But also to subtle and beautiful theorems (Gödel)

How can theories talk about “themselves”?

Recursion Theory – p.2/10



Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM

Even self reference became an option

Self reference was central to paradoxes (Russell)

But also to subtle and beautiful theorems (Gödel)

How can theories talk about “themselves”?

How can TM’s talk about “themselves”?

Recursion Theory – p.2/10



Scaling up TM’s

In 1936 Turing showed how on TM could be input to
another TM

Even self reference became an option

Self reference was central to paradoxes (Russell)

But also to subtle and beautiful theorems (Gödel)

How can theories talk about “themselves”?

How can TM’s talk about “themselves”?

Gödel numbers!

Recursion Theory – p.2/10



Gödel numbers

We will represent TM’s by numbers

Recursion Theory – p.3/10



Gödel numbers

We will represent TM’s by numbers

What are TM’s?

Recursion Theory – p.3/10



Gödel numbers

We will represent TM’s by numbers

What are TM’s? : list of instructions over some
language

Recursion Theory – p.3/10



Gödel numbers

An action consists of 〈qi, S, A, qj〉

Recursion Theory – p.4/10



Gödel numbers

An action consists of 〈qi, S, A, qj〉

We code: gn(L) = p0

Recursion Theory – p.4/10



Gödel numbers

An action consists of 〈qi, S, A, qj〉

We code: gn(L) = p0

We code: gn(R) = p1

Recursion Theory – p.4/10



Gödel numbers

An action consists of 〈qi, S, A, qj〉

We code: gn(L) = p0

We code: gn(R) = p1

We code: gn(qi) = p2i+2

And likewise for the Si (see book)

Recursion Theory – p.4/10



Gödel numbers

An action consists of 〈qi, S, A, qj〉

We code: gn(L) = p0

We code: gn(R) = p1

We code: gn(qi) = p2i+2

And likewise for the Si (see book)

We code: gn(Q) = p
gn(qi)
0 · p

gn(S)
1 · p

gn(A)
2 · p

gn(qj)
3

Recursion Theory – p.4/10



Gödel numbers

An action consists of 〈qi, S, A, qj〉

We code: gn(L) = p0

We code: gn(R) = p1

We code: gn(qi) = p2i+2

And likewise for the Si (see book)

We code: gn(Q) = p
gn(qi)
0 · p

gn(S)
1 · p

gn(A)
2 · p

gn(qj)
3

We code: gn(〈Q0, Q1, . . . , Qn〉) = p
gn(Q0)
0 · . . . · p

gn(Qn)
n

Recursion Theory – p.4/10



Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P

Recursion Theory – p.5/10



Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P

Instead of ϕ
(k)
T we write ϕ

(k)
e

Recursion Theory – p.5/10



Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P

Instead of ϕ
(k)
T we write ϕ

(k)
e

We omit k whenever k = 1

Recursion Theory – p.5/10



Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P

Instead of ϕ
(k)
T we write ϕ

(k)
e

We omit k whenever k = 1

Enumeration Theorem:

Recursion Theory – p.5/10



Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P

Instead of ϕ
(k)
T we write ϕ

(k)
e

We omit k whenever k = 1

Enumeration Theorem:

There is a p.c. ϕz(x) that maps 〈z, x〉 to the output that

the zth TM would have on input x

Recursion Theory – p.5/10



Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P

Instead of ϕ
(k)
T we write ϕ

(k)
e

We omit k whenever k = 1

Enumeration Theorem:

There is a p.c. ϕz(x) that maps 〈z, x〉 to the output that

the zth TM would have on input x

Proof:

Recursion Theory – p.5/10



Enumerating TM’s

The eth TM is empty program if e does not code a TM
and is P if e is a code gn of some program P

Instead of ϕ
(k)
T we write ϕ

(k)
e

We omit k whenever k = 1

Enumeration Theorem:

There is a p.c. ϕz(x) that maps 〈z, x〉 to the output that

the zth TM would have on input x

Proof:

Long live the Church Turing Thesis!

Recursion Theory – p.5/10



Tm’s and codes

Enumeration Theorem uses the concept of a Universal
Turing Machine!!!

Recursion Theory – p.6/10



Tm’s and codes

Enumeration Theorem uses the concept of a Universal
Turing Machine!!!

Note that we cannot get a version of the Enumeration
Theorem for recursive functions

Recursion Theory – p.6/10



Tm’s and codes

Enumeration Theorem uses the concept of a Universal
Turing Machine!!!

Note that we cannot get a version of the Enumeration
Theorem for recursive functions

Diagonal argument again

Recursion Theory – p.6/10



Tm’s and codes

Enumeration Theorem uses the concept of a Universal
Turing Machine!!!

Note that we cannot get a version of the Enumeration
Theorem for recursive functions

Diagonal argument again

Another fact about code of programs: Every p.c.
function has infinitely many different codes (Padding
Lemma)

Recursion Theory – p.6/10



Tm’s and codes

Looks strange, but useful: The Sm
n -theorem

Recursion Theory – p.7/10



Tm’s and codes

Looks strange, but useful: The Sm
n -theorem

If f(x, y) is a p.c. function, for some computable g,
f(x, y) = ϕg(x)(y).

Recursion Theory – p.7/10



Tm’s and codes

Looks strange, but useful: The Sm
n -theorem

If f(x, y) is a p.c. function, for some computable g,
f(x, y) = ϕg(x)(y).

More general: for each m,n ∈ N, there is a function Sm
n

such that

ϕm+n
e (x1, . . . , xm, y1, . . . , yn) = ϕSm

n (e,x1,...,xm)(y1, . . . , yn)

Recursion Theory – p.7/10



The fixed point theorem

Kleene’s Fixed point theorem (1938)

Recursion Theory – p.8/10



The fixed point theorem

Kleene’s Fixed point theorem (1938)

For all computable f , there exists a k such that
ϕf(k) = ϕk

Recursion Theory – p.8/10



The fixed point theorem

Kleene’s Fixed point theorem (1938)

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

Recursion Theory – p.8/10



The fixed point theorem

Kleene’s Fixed point theorem (1938)

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Recursion Theory – p.8/10



The fixed point theorem

Kleene’s Fixed point theorem (1938)

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

Recursion Theory – p.8/10



The fixed point theorem

Kleene’s Fixed point theorem (1938)

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

Recursion Theory – p.8/10



The fixed point theorem

Kleene’s Fixed point theorem (1938)

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

So, we can take k to be h(e)

Recursion Theory – p.8/10



The fixed point theorem

Kleene’s Fixed point theorem (1938)

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

So, we can take k to be h(e) (here we use that h should
be total!)

Recursion Theory – p.8/10



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

Recursion Theory – p.9/10



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!

Recursion Theory – p.9/10



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!

Example: there is a program that only halts on its own
input

Recursion Theory – p.9/10



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!

Example: there is a program that only halts on its own
input

Proof: consider the function f that maps x to the code
of a TM that halts if the input equals x and loops
otherwise.

Recursion Theory – p.9/10



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!

Example: there is a program that only halts on its own
input

Proof: consider the function f that maps x to the code
of a TM that halts if the input equals x and loops
otherwise.

Next, apply the FP THM to f .

Recursion Theory – p.9/10



Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!

Example: there is a program that only halts on its own
input

Proof: consider the function f that maps x to the code
of a TM that halts if the input equals x and loops
otherwise.

Next, apply the FP THM to f .

Recursion Theory – p.9/10



Recap

Coding: representing programs by numbers

Recursion Theory – p.10/10



Recap

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Recursion Theory – p.10/10



Recap

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem

Recursion Theory – p.10/10



Recap

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem

Fixed point theorem

Recursion Theory – p.10/10



Recap

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem

Fixed point theorem

Recursion Theory – p.10/10


	Scaling up TM's
	G"odel numbers
	G"odel numbers
	Enumerating TM's
	Tm's and codes
	Tm's and codes
	The fixed point theorem
	Fixed points
	Recap

