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The Turing Universe

Consider again degrees D of Turing equivalent sets

≤ is well defined on these degrees by

deg(A) ≤ deg(B) ⇔ A ≤T B

Thus, ≤ defines a partial ordering on D

Hamkins: what does D look like?

First simple question: how many degrees are there?

Answer: there are uncountably many degrees
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Countability revisited

Cantor: 2N is not countable

Proof: consider S := {x | x /∈ Xx}

If S = Xe for some e, we would have a problem

Again, draw the diagram to see why this is called a
diagonal argument!

Each degree contains precisely ℵ0 many sets
(deg(A) ⊆ {ΦA

i | i ∈ N})

Each set is contained in precisely one degree

However, a countable union of countable sets is again
countable via coding

Recursion Theory – p.3/15



Countability revisited

Likewise, we have

|{b | b ≤ a}| ≤ ℵ0

Recursion Theory – p.4/15



Countability revisited

Likewise, we have

|{b | b ≤ a}| ≤ ℵ0

Is this an indication that D is necessarily broad?

Recursion Theory – p.4/15



Countability revisited

Likewise, we have

|{b | b ≤ a}| ≤ ℵ0

Is this an indication that D is necessarily broad?

No: look at the set of all countable ordinals

Recursion Theory – p.4/15



Countability revisited

Likewise, we have

|{b | b ≤ a}| ≤ ℵ0

Is this an indication that D is necessarily broad?

No: look at the set of all countable ordinals

This is a linearly ordered uncountable set where each
element only has ℵ0 many predecessors

Recursion Theory – p.4/15



Countability revisited

Likewise, we have

|{b | b ≤ a}| ≤ ℵ0

Is this an indication that D is necessarily broad?

No: look at the set of all countable ordinals

This is a linearly ordered uncountable set where each
element only has ℵ0 many predecessors

However, |{b | b ≤ a}| ≤ ℵ0 does imply that there is no
maximal element

Recursion Theory – p.4/15



Countability revisited

Likewise, we have

|{b | b ≤ a}| ≤ ℵ0

Is this an indication that D is necessarily broad?

No: look at the set of all countable ordinals

This is a linearly ordered uncountable set where each
element only has ℵ0 many predecessors

However, |{b | b ≤ a}| ≤ ℵ0 does imply that there is no
maximal element

Aside: also in D there is a minimal element 0
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Relativizing continued

Structure gets inherited through relativization

We can consider A-c.e. sets:

the sets that can be computably enumerated using
queries to A

Lemma: B is A-c.e., iff B = WA
e for some e

We can now again consider the A-computable
approximations

ΦA
e,s and We,s

Likewise, we define the notions ΣA
1 and ΠA

1
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Relativazed complementation
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Relativazed complementation

X is A-computable ⇒ X is A-c.e.

X is A-computable ⇔ both X and X are A-c.e.

⇔ X ∈ ∆A
1

As A-c.e. coincides with ΣA
1
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Relativized Normal Form

Summarizing the above, we can state the relativized
NFT:
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Relativized Normal Form

Summarizing the above, we can state the relativized
NFT:

The following three statements are equivalent

X is A-computably enumerable

X is WA
e for some e

X is ΣA
1
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Halting problem relativized
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y } (= KA
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Halting problem relativized

We can define A′ = {〈x, y〉 | x ∈ WA
y } (= KA

0 )

A′ is A-c.e., but not A-computable

KA
0 is called the jump of A and is also denoted by A′

We can iterate jumps
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The Jump Theorem

A′ is A-c.e.

B is A-c.e. iff B ≤m A′

A′ 6≤T A

So we have proved once more that there is no maximal
element in D
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Jumps on degrees

Can we lift the Jump operation to degrees

If a is a degree, is a
′ well defined?

Direct approach would use a false assumption:

A′ = WA
e = WB

e so A′ is B-c.e., whence ≤m B′

It is not true that: A ≡T B implies WA
e = WB

e !

However: A ≤T B and X is A-c.e., implies that X is
B-c.e.

This yields the required: A ≡T B ⇒ A′ ≡T B′

In particular:

0 < 0
′ < 0

′′ < 0
′′′ < 0

′′′′ . . .
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Higher up in the hierarchy

We define the Σ0
n and the Π0

n, and often omit the
superscript 0.

Example: Tot is a Π0
2-set

We shall see that there is a tight connection between
the ∅

(n) and the Σn definable sets.

This is one of Post’s famous theorems:

∅
(n+1) is Σn+1-complete (a generalization of

m-completeness)

A set A is Σn complete if it is Σn, and for any other Σn

set B we have that B ≤m A

To prove Post’s Theorem we need the following lemma
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∅
(n)-Relativizing Principle

The ∅
(n)-Relativizing Principle:

A is Σ0
n+1 ⇔ A is c.e. in ∅

(n).

Proof: by induction on n

n = 0 is already established

Assume A ∈ Σn+2

that is, for some Πn+1 relation R we have
x ∈ A ⇔ ∃y R(x, y)

That is A ∈ ΣR
1 , where R is Σn+1

IH: R is c.e. in ∅
n

By Jump-Theorem: R ≤m ∅
n+1

So, A ∈ Σ∅
n+1

1 and by NFT c.e. in ∅
n+1
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∅
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A is Σ0
n+1 ⇔ A is c.e. in ∅

(n).

Suppose A is c.e. in ∅
(n+1), i.e., A = W∅

(n+1)

i .

As ∅
(n+1) is c.e. in ∅

(n), by the IH: ∅
(n+1) ∈ Σn+1.

Now, x ∈ A
iff
∃s and some oracle queries to ∅

(n+1) and its

complement such that: x ∈ W∅
(n+1)

i,a

Bringing this into prenex normal form gives us
A ∈ Σn+2.
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Post’s Theorem

A ∈ ∆n+1 ⇔ A,A ≤T ∅
(0)
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Post’s Theorem

A ∈ ∆n+1 ⇔ A,A ≤T ∅
(0)

Proof: By the relativized Complementation Lemma and
using that A is Σ0

n+1 ⇔ A is c.e. in ∅
(n).
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Post’s Theorem

∅
(n+1) is Σn+1-complete

Proof: If A ∈ Σn+1 then, by previous lemma: A is c.e. in
∅

(n)

By Jump Theorem: A ≤m (∅(n))′ (= ∅
(n+1))

Each quantifier adds new complexity!

Informational content grows

To go beyond ω we need hyperarithmetic sets and
second order logic
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