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# Consider again degrees D of Turing equivalent sets
#® < is well defined on these degrees by

deg(A) < deg(B) < A<r B

#® Thus, < defines a partial ordering on D
® Hamkins: what does D look like?
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Consider again degrees D of Turing equivalent sets
< 1s well defined on these degrees by

deg(A) < deg(B) < A<r B

Thus, < defines a partial ordering on D
Hamkins: what does D look like?
First simple question: how many degrees are there?
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TheTuring Universe
-

Consider again degrees D of Turing equivalent sets
< 1s well defined on these degrees by

deg(A) < deg(B) < A<r B

Thus, < defines a partial ordering on D

Hamkins: what does D look like?

First simple question: how many degrees are there?
Answer: there are uncountably many degrees
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Countability revisited

Cantor: 2" is not countable
Proof: consider S :={z |z ¢ X}
If S = X, for some ¢, we would have a problem

Again, draw the diagram to see why this is called a
diagonal argument!
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Countability revisited

Cantor: 2" is not countable
Proof: consider S :={z |z ¢ X}
If S = X, for some ¢, we would have a problem

Again, draw the diagram to see why this is called a
diagonal argument!

Each degree contains precisely ¥; many sets
(deg(A) € {®7 | i € N})
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Cantor: 2" is not countable
Proof: consider S :={z |z ¢ X}
If S = X, for some ¢, we would have a problem

Again, draw the diagram to see why this is called a
diagonal argument!

Each degree contains precisely ¥; many sets
(deg(A) € {®7 | i € N})

Each set is contained in precisely one degree
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Countability revisited

Cantor: 2" is not countable
Proof: consider S :={z |z ¢ X}
If S = X, for some ¢, we would have a problem

Again, draw the diagram to see why this is called a
diagonal argument!

Each degree contains precisely ¥; many sets
(deg(A) € {®7 | i € N})

Each set is contained in precisely one degree

However, a countable union of countable sets is again
countable via coding
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® Likewise, we have

{b|b <a}jf <N
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Countability revisited

Likewise, we have
[{b | b <a}| <Ry

Is this an indication that D is necessarily broad?
No: look at the set of all countable ordinals

This is a linearly ordered uncountable set where each
element only has Xy many predecessors
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Likewise, we have
[{b | b <a}| <Ry

Is this an indication that D is necessarily broad?
No: look at the set of all countable ordinals

This is a linearly ordered uncountable set where each
element only has Xy many predecessors

However, |[{b | b < a}| < Xy does imply that there Is no
maximal element
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Countability revisited

Likewise, we have
[{b | b <a}| <Ry

Is this an indication that D is necessarily broad?
No: look at the set of all countable ordinals

This is a linearly ordered uncountable set where each
element only has Xy many predecessors

However, |[{b | b < a}| < Xy does imply that there Is no
maximal element

Aside: also in D there is a minimal element 0
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# the sets that can be computably enumerated using
gueriesto A
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® \We can consider A-c.e. sets:

# the sets that can be computably enumerated using
gueriesto A

® Lemma: Bis A-c.e., iff B = WA for some e
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Relativizing continued
Structure gets inherited through relativization T
We can consider A-c.e. sets:

the sets that can be computably enumerated using
gueriesto A

Lemma: B is A-c.e., iff B = WA for some e

We can now again consider the A-computable
approximations
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Relativizing continued
Structure gets inherited through relativization T
We can consider A-c.e. sets:

the sets that can be computably enumerated using
gueriesto A

Lemma: B is A-c.e., iff B = WA for some e

We can now again consider the A-computable
approximations

q)és and W, .
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Relativizing continued
Structure gets inherited through relativization T
We can consider A-c.e. sets:

the sets that can be computably enumerated using
gueriesto A

Lemma: B is A-c.e., iff B = WA for some e

We can now again consider the A-computable
approximations

» o2 and W,

» Likewise, we define the notions x4 and II¢!
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Relativazed complementation

-

#® X Is A-computable = X Is A-c.e.
® X is A-computable < both X and X are A-c.e.
® = XecAl

® As A-c.e. coincides with ¢!
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# Summarizing the above, we can state the relativized
NFT:
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# Summarizing the above, we can state the relativized
NFT:

# The following three statements are equivalent
#® X is A-computably enumerable

® X is WA for some e
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Relativized Normal Form
-

Summarizing the above, we can state the relativized
NFT:

The following three statements are equivalent
X I1s A-computably enumerable

X is WA for some e
X is x4
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o A'is A-c.e., but not A-computable
» K{'is called the jump of A and is also denoted by A’
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Halting problem relativized
- -

We can define 4’ = {(z,y) | z € W'} (= K¢
A’is A-c.e., but not A-computable
K¢ is called the jump of A and is also denoted by A’

o o o o

We can iterate jumps
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® A'is A-c.e.
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® Bis A-ce. iff B<,, A
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The Jump Theorem

f o A'is A-c.e.
® Bis A-ce. iff B<,, A

9 A,fTA
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TheJump Theorem
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A’is A-c.e.
Bis A-ce. iff B<,, A
A L A

So we have proved once more that there is no maximal
element in D
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# Can we lift the Jump operation to degrees
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# Can we lift the Jump operation to degrees
# If ais adegree, is a’ well defined?
# Direct approach would use a false assumption:
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Jumps on degrees

# Can we lift the Jump operation to degrees
# If ais adegree, is a’ well defined?
# Direct approach would use a false assumption:

o A'=WA=WDPBso Ais B-c.e., whence <,,, B’
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Can we lift the Jump operation to degrees
If a is a degree, is a’ well defined?

A'=WA=Ww2E so A'is B-c.e., whence <,, B’

o

o

# Direct approach would use a false assumption:
o

# Itis not true that: A =1 B implies WA = W5
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Jumps on degrees

Can we lift the Jump operation to degrees

If a is a degree, is a’ well defined?

Direct approach would use a false assumption:
A'=WA=Ww2E so A'is B-c.e., whence <,, B’
It is not true that: A = B implies WA = W5

However: A <p B and X Is A-c.e., implies that X is
B-c.e.
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Jumps on degrees

Can we lift the Jump operation to degrees

If a is a degree, is a’ well defined?

Direct approach would use a false assumption:
A'=WA=Ww2E so A'is B-c.e., whence <,, B’
It is not true that: A = B implies WA = W5

However: A <p B and X Is A-c.e., implies that X is
B-c.e.

This yields the required: A=y B = A' = B’
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Jumps on degrees

Can we lift the Jump operation to degrees

If a is a degree, is a’ well defined?

Direct approach would use a false assumption:
A'=WA=Ww2E so A'is B-c.e., whence <,, B’
It is not true that: A = B implies WA = W5

However: A <p B and X Is A-c.e., implies that X is
B-c.e.

This yields the required: A=y B = A' = B’
In particular:

0<0 <0"<0”"<0"...
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We define the ©Y and the I1Y, and often omit the
superscript O.

Example: Tot is a I19-set

We shall see that there Is a tight connection between
the (™ and the X, definable sets.
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We define the ©Y and the I1Y, and often omit the
superscript O.

Example: Tot is a I19-set

We shall see that there Is a tight connection between
the (™ and the X, definable sets.

This Is one of Post’'s famous theorems:

o(nt+l) is 3,1 ;-complete (a generalization of
m-completeness)
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superscript O.

Example: Tot is a I19-set

We shall see that there Is a tight connection between
the (™ and the X, definable sets.

This Is one of Post’'s famous theorems:

o(nt+l) is 3,1 ;-complete (a generalization of
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A set A is X, complete if it is X,,, and for any other >,
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Higher up in the hierarchy
-

We define the ©Y and the I1Y, and often omit the
superscript O.

Example: Tot is a I19-set

We shall see that there Is a tight connection between
the (™ and the X, definable sets.

This Is one of Post’'s famous theorems:

o(nt+l) is 3,1 ;-complete (a generalization of
m-completeness)

A set A is X, complete if it is X,,, and for any other >,
set B we have that B <,,, A

To prove Post’s Theorem we need the following lemma
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® The g(W-Relativizing Principle:
® Aisyl | & Aisce.ing,
# Proof: by induction on n

#® n = 0Is already established
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o")-Relativizing Principle

The z("-Relativizing Principle:
Ais¥0,, & Aisc.e.in g,
Proof: by induction on n

n = 0 1S already established
Assume A € X, 49

-
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o")-Relativizing Principle

The z("-Relativizing Principle:
Ais¥0,, & Aisc.e.in g,
Proof: by induction on n

n = 0 1S already established

Assume A € X1 9

that is, for some I1,,.; relation R we have
re A < Jy R(x,y)

-
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o")-Relativizing Principle

The z("-Relativizing Principle:
Ais¥0,, & Aisc.e.in g,
Proof: by induction on n

n = 0 1S already established

Assume A € X1 9

that is, for some I1,,.; relation R we have
re A < Jy R(x,y)

That is A € X, where R is .11

-
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o")-Relativizing Principle

The z("-Relativizing Principle:
Ais¥0,, & Aisc.e.in g,
Proof: by induction on n

n = 0 1S already established

Assume A € X1 9

that is, for some I1,,.; relation R we have
re A < Jy R(x,y)

That is A € X, where R is .11

IH: Ris c.e.in g"

-
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o")-Relativizing Principle

The z("-Relativizing Principle:
Ais¥0,, & Aisc.e.in g,
Proof: by induction on n

n = 0 1S already established

Assume A € X1 9

that is, for some I1,,.; relation R we have
re A < Jy R(x,y)

That is A € X, where R is .11

IH: R is c.e. in @"
By Jump-Theorem: R <,,, @"*!

-
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o")-Relativizing Principle

The z("-Relativizing Principle:
Ais¥0,, & Aisc.e.in g,
Proof: by induction on n

n = 0 1S already established

Assume A € X1 9

that is, for some I1,,.; relation R we have
re A < Jy R(x,y)

That is A € X, where R is .11

IH: Ris c.e.in g"

# By Jump-Theorem: R <,,, @"*!

® So, Aex?" and by NFT c.e. in g"t!

-
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o")-Relativizing Principle
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® Ais¥l | & Aisce.ing,
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® Ais¥l | & Aisce.ing,

® Suppose Ais c.e.in o™t jie, A=w?""

® As g s c.e.in g™, bythe IH: gt e ¥, ..
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® Suppose Ais c.e.in g™ je, A=w?"
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n)-Relativizing Principle

Ais¥0,, & Aisc.e.in g,

+1)

As ("t js c.e.in @™, by the IH: gD e ¥, ..

Now, z € A

Iff

35 and some oracle queries to ("t and its
complement such that: = € W2,""
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® Suppose Ais c.e.in g™ je, A=w?"

°

n)-Relativizing Principle

Ais¥0,, & Aisc.e.in g,

+1)

As ("t js c.e.in @™, by the IH: gD e ¥, ..

Now, z € A

Iff

35 and some oracle queries to ("t and its
complement such that: = € W2,""

Bringing this into prenex normal form gives us
A€ Xy,
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o AcA o A A<y o0
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Post’s Theorem
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o AcA o A A<y o0

o Proof: By the relativized Complementation Lemma and
using that Ais X0 ,, < Aisc.e.in g,
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o gt sy, . -complete
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# Proof: If A € ¥, 1 then, by previous lemma: Ais c.e. in
@(n)

o gt sy, . -complete
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o gt sy, . -complete

# Proof: If A € ¥, 1 then, by previous lemma: Ais c.e. in
@(n)

® By Jump Theorem: A <,, (&™) (= gntl)
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o+l is 5,1 ;-complete

Proof: If A € ¥,,.1 then, by previous lemma: A is c.e. in
@(n)

By Jump Theorem: A <, (&™)’ (= gntl)
Each quantifier adds new complexity!
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o+l is 5,1 ;-complete

Proof: If A € ¥,,.1 then, by previous lemma: A is c.e. in
@(n)

By Jump Theorem: A <,, (&™) (= g+)
Each quantifier adds new complexity!
Informational content grows
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Post’s Theorem

-

o+l is 5,1 ;-complete

Proof: If A € ¥,,.1 then, by previous lemma: A is c.e. in
@(n)

By Jump Theorem: A <, (&™)’ (= gntl)
Each quantifier adds new complexity!

Informational content grows

To go beyond w we need hyperarithmetic sets and
second order logic
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