
Recursion Theory
Joost J. Joosten

Institute for Logic Language and Computation

University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

Room P 3.26, +31 20 5256095

jjoosten@phil.uu.nl

www.phil.uu.nl/∼jjoosten

Recursion Theory – p.1/14

Hamkins’ Course

Studying informational degrees via Turing Degrees

Recursion Theory – p.2/14

Hamkins’ Course

Studying informational degrees via Turing Degrees

What is the order and how complex is it?

Recursion Theory – p.2/14

Hamkins’ Course

Studying informational degrees via Turing Degrees

What is the order and how complex is it?

Computable tree with no computable branch

Recursion Theory – p.2/14

Hamkins’ Course

Studying informational degrees via Turing Degrees

What is the order and how complex is it?

Computable tree with no computable branch

Some computable model theory: e.g., does every
computable consistent theory have a computable
model?

Recursion Theory – p.2/14

Hamkins’ Course

Studying informational degrees via Turing Degrees

What is the order and how complex is it?

Computable tree with no computable branch

Some computable model theory: e.g., does every
computable consistent theory have a computable
model?

Infinite time Turing Machines

Recursion Theory – p.2/14

Hamkins’ Course

Studying informational degrees via Turing Degrees

What is the order and how complex is it?

Computable tree with no computable branch

Some computable model theory: e.g., does every
computable consistent theory have a computable
model?

Infinite time Turing Machines

Who is going to take it?

Recursion Theory – p.2/14

Our course and Hamkins’ course

Hamkins takes off where we shall leave

Recursion Theory – p.3/14

Our course and Hamkins’ course

Hamkins takes off where we shall leave

Last two weeks: Turing degrees

Recursion Theory – p.3/14

Our course and Hamkins’ course

Hamkins takes off where we shall leave

Last two weeks: Turing degrees

What have we done so far?

Recursion Theory – p.3/14

Our course and Hamkins’ course

Hamkins takes off where we shall leave

Last two weeks: Turing degrees

What have we done so far?

Capturing notion of computable/ computable
enumerable

Recursion Theory – p.3/14

Our course and Hamkins’ course

Hamkins takes off where we shall leave

Last two weeks: Turing degrees

What have we done so far?

Capturing notion of computable/ computable
enumerable

Seen different kinds of informationally dense sets
(simple, creative, m-complete)

Recursion Theory – p.3/14

Our course and Hamkins’ course

Hamkins takes off where we shall leave

Last two weeks: Turing degrees

What have we done so far?

Capturing notion of computable/ computable
enumerable

Seen different kinds of informationally dense sets
(simple, creative, m-complete)

and discussed ways to compare them

Recursion Theory – p.3/14

Our course and Hamkins’ course

Hamkins takes off where we shall leave

Last two weeks: Turing degrees

What have we done so far?

Capturing notion of computable/ computable
enumerable

Seen different kinds of informationally dense sets
(simple, creative, m-complete)

and discussed ways to compare them

Studied repercussions of computability theory to “real
mathematics”

Recursion Theory – p.3/14

Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Recursion Theory – p.4/14

Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Turing’s idea: given a set B and suppose I have A as an
oracle, can I then decide whether a number is in B or
not?

Recursion Theory – p.4/14

Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Turing’s idea: given a set B and suppose I have A as an
oracle, can I then decide whether a number is in B or
not?

Notation: B ≤T A

Recursion Theory – p.4/14

Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Turing’s idea: given a set B and suppose I have A as an
oracle, can I then decide whether a number is in B or
not?

Notation: B ≤T A

Questions: K ≤T Cof?

Recursion Theory – p.4/14

Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Turing’s idea: given a set B and suppose I have A as an
oracle, can I then decide whether a number is in B or
not?

Notation: B ≤T A

Questions: K ≤T Cof?

Cof ≤T K?

Recursion Theory – p.4/14

Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Turing’s idea: given a set B and suppose I have A as an
oracle, can I then decide whether a number is in B or
not?

Notation: B ≤T A

Questions: K ≤T Cof?

Cof ≤T K?

Formal definition: many ways to go about this

Recursion Theory – p.4/14

Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Turing’s idea: given a set B and suppose I have A as an
oracle, can I then decide whether a number is in B or
not?

Notation: B ≤T A

Questions: K ≤T Cof?

Cof ≤T K?

Formal definition: many ways to go about this

Kleene: The A-recursive functions are those that can
be computed by computable functions that are defined
as usual, only that now χA is a given base function

.
Recursion Theory – p.4/14

Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Turing’s idea: given a set B and suppose I have A as an
oracle, can I then decide whether a number is in B or
not?

Notation: B ≤T A

Questions: K ≤T Cof?

Cof ≤T K?

Formal definition: many ways to go about this

Kleene: The A-recursive functions are those that can
be computed by computable functions that are defined
as usual, only that now χA is a given base function (like
zero or projection) .

Recursion Theory – p.4/14

Oracle machines

Our definition of A-computable goes via Oracle Turing
Machines

Recursion Theory – p.5/14

Oracle machines

Our definition of A-computable goes via Oracle Turing
Machines

New type of instruction is allowed:

Recursion Theory – p.5/14

Oracle machines

Our definition of A-computable goes via Oracle Turing
Machines

New type of instruction is allowed:

qiSjqkql

Recursion Theory – p.5/14

Oracle machines

Our definition of A-computable goes via Oracle Turing
Machines

New type of instruction is allowed:

qiSjqkql

Note the dummy role of the Sj !

Recursion Theory – p.5/14

Oracle machines

Our definition of A-computable goes via Oracle Turing
Machines

New type of instruction is allowed:

qiSjqkql

Note the dummy role of the Sj !

For sake of deteminacy, we demand consistency

Recursion Theory – p.5/14

Oracle machines

Our definition of A-computable goes via Oracle Turing
Machines

New type of instruction is allowed:

qiSjqkql

Note the dummy role of the Sj !

For sake of deteminacy, we demand consistency

A function f is A-computable, per definition, if there
exists an Oracle Turing Machine with oracle A

computing f

Recursion Theory – p.5/14

Oracle machines

Our definition of A-computable goes via Oracle Turing
Machines

New type of instruction is allowed:

qiSjqkql

Note the dummy role of the Sj !

For sake of deteminacy, we demand consistency

A function f is A-computable, per definition, if there
exists an Oracle Turing Machine with oracle A

computing f

Sets are, as usual, reduced to their characteristic
functions.

Recursion Theory – p.5/14

Turing reducibility

Note that A ≤m B ⇒ A ≤T B

Recursion Theory – p.6/14

Turing reducibility

Note that A ≤m B ⇒ A ≤T B (prove this as an exercise)

Recursion Theory – p.6/14

Turing reducibility

Note that A ≤m B ⇒ A ≤T B (prove this as an exercise)

≤T is reflexive

Recursion Theory – p.6/14

Turing reducibility

Note that A ≤m B ⇒ A ≤T B (prove this as an exercise)

≤T is reflexive

Moreover: A has as much informational content as its
complement (in the ≤T world)

Recursion Theory – p.6/14

Turing reducibility

Note that A ≤m B ⇒ A ≤T B (prove this as an exercise)

≤T is reflexive

Moreover: A has as much informational content as its
complement (in the ≤T world)

Thus we have
≤1

Recursion Theory – p.6/14

Turing reducibility

Note that A ≤m B ⇒ A ≤T B (prove this as an exercise)

≤T is reflexive

Moreover: A has as much informational content as its
complement (in the ≤T world)

Thus we have
≤1 ⊂ ≤m

Recursion Theory – p.6/14

Turing reducibility

Note that A ≤m B ⇒ A ≤T B (prove this as an exercise)

≤T is reflexive

Moreover: A has as much informational content as its
complement (in the ≤T world)

Thus we have
≤1 ⊂ ≤m ⊂ ≤T

Recursion Theory – p.6/14

Relativized Recursion Theory

Many statements we have encountered relativize

Recursion Theory – p.7/14

Relativized Recursion Theory

Many statements we have encountered relativize

Relativized C.T.-thesis

Recursion Theory – p.7/14

Relativized Recursion Theory

Many statements we have encountered relativize

Relativized C.T.-thesis

Any intuitive and correct description of an A-computable
function is equivalent to our formal notion of
A-computable.

Recursion Theory – p.7/14

Relativized Recursion Theory

Many statements we have encountered relativize

Relativized C.T.-thesis

Any intuitive and correct description of an A-computable
function is equivalent to our formal notion of
A-computable.

Thus, we can speak of A-computable, rather than
A-Turing computable

Recursion Theory – p.7/14

Relativized Recursion Theory

Many statements we have encountered relativize

Relativized C.T.-thesis

Any intuitive and correct description of an A-computable
function is equivalent to our formal notion of
A-computable.

Thus, we can speak of A-computable, rather than
A-Turing computable

Relativized CT thesis is equivalent to CT thesis

Recursion Theory – p.7/14

Relativized Recursion Theory

Many statements we have encountered relativize

Relativized C.T.-thesis

Any intuitive and correct description of an A-computable
function is equivalent to our formal notion of
A-computable.

Thus, we can speak of A-computable, rather than
A-Turing computable

Relativized CT thesis is equivalent to CT thesis

Easy application:

Recursion Theory – p.7/14

Relativized Recursion Theory

Many statements we have encountered relativize

Relativized C.T.-thesis

Any intuitive and correct description of an A-computable
function is equivalent to our formal notion of
A-computable.

Thus, we can speak of A-computable, rather than
A-Turing computable

Relativized CT thesis is equivalent to CT thesis

Easy application:

≤T is transitive

Recursion Theory – p.7/14

Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

Recursion Theory – p.8/14

Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

So, each function can be assigned a code e

Recursion Theory – p.8/14

Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

So, each function can be assigned a code e

and we define as before, the e-th oracle TM

Recursion Theory – p.8/14

Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

So, each function can be assigned a code e

and we define as before, the e-th oracle TM

P̂e =

Recursion Theory – p.8/14

Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

So, each function can be assigned a code e

and we define as before, the e-th oracle TM

P̂e =

gn−1(e) if that is a well-defined oracle program

Recursion Theory – p.8/14

Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

So, each function can be assigned a code e

and we define as before, the e-th oracle TM

P̂e =

gn−1(e) if that is a well-defined oracle program

∅ otherwise

Recursion Theory – p.8/14

Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

So, each function can be assigned a code e

and we define as before, the e-th oracle TM

P̂e =

gn−1(e) if that is a well-defined oracle program

∅ otherwise

We view P̂e as a functional

Recursion Theory – p.8/14

Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

So, each function can be assigned a code e

and we define as before, the e-th oracle TM

P̂e =

gn−1(e) if that is a well-defined oracle program

∅ otherwise

We view P̂e as a functional

Likewise, we define ΦA
e (n) = sg(P̂A

e (n))

Recursion Theory – p.8/14

The Turing Universe

Consider again degrees D of Turing equivalent sets

Recursion Theory – p.9/14

The Turing Universe

Consider again degrees D of Turing equivalent sets

≤ is well defined on these degrees by

deg(A) ≤ deg(B) ⇔ A ≤T B

Recursion Theory – p.9/14

The Turing Universe

Consider again degrees D of Turing equivalent sets

≤ is well defined on these degrees by

deg(A) ≤ deg(B) ⇔ A ≤T B

Thus, ≤ defines a partial ordering on D

Recursion Theory – p.9/14

The Turing Universe

Consider again degrees D of Turing equivalent sets

≤ is well defined on these degrees by

deg(A) ≤ deg(B) ⇔ A ≤T B

Thus, ≤ defines a partial ordering on D

Hamkins: what does D look like?

Recursion Theory – p.9/14

The Turing Universe

Consider again degrees D of Turing equivalent sets

≤ is well defined on these degrees by

deg(A) ≤ deg(B) ⇔ A ≤T B

Thus, ≤ defines a partial ordering on D

Hamkins: what does D look like?

First simple question: how many degrees are there?

Recursion Theory – p.9/14

The Turing Universe

Consider again degrees D of Turing equivalent sets

≤ is well defined on these degrees by

deg(A) ≤ deg(B) ⇔ A ≤T B

Thus, ≤ defines a partial ordering on D

Hamkins: what does D look like?

First simple question: how many degrees are there?

Answer: there are uncountably many degrees

Recursion Theory – p.9/14

	Hamkins' Course
	Our course and Hamkins' course
	Turing degrees
	Oracle machines
	Turing reducibility
	Relativized Recursion Theory
	Coding A-computable functions
	The Turing Universe

