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Hamkins’ Course

Studying informational degrees via Turing Degrees

What is the order and how complex is it?

Computable tree with no computable branch

Some computable model theory: e.g., does every
computable consistent theory have a computable
model?

Infinite time Turing Machines

Who is going to take it?
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Our course and Hamkins’ course

Hamkins takes off where we shall leave

Last two weeks: Turing degrees

What have we done so far?

Capturing notion of computable/ computable
enumerable

Seen different kinds of informationally dense sets
(simple, creative, m-complete)

and discussed ways to compare them

Studied repercussions of computability theory to “real
mathematics”
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Turing degrees

The m-degrees do not really capture the intuition that a
set is informationally equivalent to its complement

Turing’s idea: given a set B and suppose I have A as an
oracle, can I then decide whether a number is in B or
not?

Notation: B ≤T A

Questions: K ≤T Cof?

Cof ≤T K?

Formal definition: many ways to go about this

Kleene: The A-recursive functions are those that can
be computed by computable functions that are defined
as usual, only that now χA is a given base function (like
zero or projection) .
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Oracle machines

Our definition of A-computable goes via Oracle Turing
Machines

New type of instruction is allowed:

qiSjqkql

Note the dummy role of the Sj !

For sake of deteminacy, we demand consistency

A function f is A-computable, per definition, if there
exists an Oracle Turing Machine with oracle A

computing f

Sets are, as usual, reduced to their characteristic
functions.
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Turing reducibility

Note that A ≤m B ⇒ A ≤T B (prove this as an exercise)

≤T is reflexive

Moreover: A has as much informational content as its
complement (in the ≤T world)

Thus we have
≤1 ⊂ ≤m ⊂ ≤T
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Relativized Recursion Theory

Many statements we have encountered relativize

Relativized C.T.-thesis

Any intuitive and correct description of an A-computable
function is equivalent to our formal notion of
A-computable.

Thus, we can speak of A-computable, rather than
A-Turing computable

Relativized CT thesis is equivalent to CT thesis

Easy application:

≤T is transitive
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Coding A-computable functions

Every A-computable function contains of a computable
part together with some queries to the oracle

So, each function can be assigned a code e

and we define as before, the e-th oracle TM

P̂e =

gn−1(e) if that is a well-defined oracle program

∅ otherwise

We view P̂e as a functional

Likewise, we define ΦA
e (n) = sg(P̂A

e (n))
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The Turing Universe

Consider again degrees D of Turing equivalent sets

≤ is well defined on these degrees by

deg(A) ≤ deg(B) ⇔ A ≤T B

Thus, ≤ defines a partial ordering on D

Hamkins: what does D look like?

First simple question: how many degrees are there?

Answer: there are uncountably many degrees
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