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Do come!

Later (April-June) there are lectures by Hamkins on
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Talk by Terwijn

Tuesday November 14, 16.00-17.00 T
P 327

Intervals in the Medvedev lattice

Link intuitionism/computability theory

Do come!

Later (April-June) there are lectures by Hamkins on
Advanced Topics in Recursion Theory

And projects in June
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Rice’'s Theorem

-

# If Ais anindex set — not equal to @ or N—, then A is
Incomputable
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K<, A
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Rice’'s Theorem
-

If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
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If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
First idea: Define f(x) := e if x € K and
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If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
First idea: Define f(x) := e if x € K and
f(z)=€ifx ¢ K
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Rice’'s Theorem

-

If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
First idea: Define f(x) := e if x € K and
f(z)=€ifx ¢ K

Then: K <, A
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Rice’'s Theorem

-

If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
First idea: Define f(x) := e if x € K and
f(z)=€ifx ¢ K

Then: K <, A @wxe K& f(r)e A
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Rice’'s Theorem

-

If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
First idea: Define f(x) :=eif x € K and
f(z)=€ifx ¢ K

Then: K <, A @wxe K& f(r)e A

Alas: f is not computable
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# Second idea: Define f(x) :=elif z € K and
# and undefined otherwise.

# Now f Is partially computable.

® and:zr e K& f(z) le A
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Rice’'s Theorem

Second idea: Define f(x) :=elif z € K and
and undefined otherwise.

Now f Is partially computable.

and: r € K < f(z) l€e A

But f is not total, so no reduction
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Second idea: Define f(x) :=elif z € K and
and undefined otherwise.

Now f Is partially computable.

and: r € K < f(z) l€e A

But f is not total, so no reduction

Final idea: W,y =W, ifx € K

|

Recursion Theory — p.4/10



© © o o o o @

Rice’'s Theorem

Second idea: Define f(x) :=elif z € K and
and undefined otherwise.

Now f Is partially computable.

and: r € K < f(z) l€e A

But f is not total, so no reduction

Final idea: W,y =W, ifx € K

and @ otherwise.
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Rice’'s Theorem

Second idea: Define f(x) :=elif z € K and
and undefined otherwise.

Now f Is partially computable.

and: r € K < f(z) l€e A

But f is not total, so no reduction

Final idea: W,y =W, ifx € K

and @ otherwise.

The case that @ has a code in A goes similar (misprint)
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® Virus scanner does not exist and cannot exist!!!
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Rice applications
f Fin T

9
® Inf

o Cof

#® Virus scanner does not exist and cannot exist!!!
#® and much more
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# =, IS an equivalence (reflexive, transitive, symmetric)
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m-degrees

-

=,, IS an equivalence (reflexive, transitive, symmetric)
relation , so, we divide it out

a,, := deg(A) with <
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=,, IS an equivalence (reflexive, transitive, symmetric)
relation , so, we divide it out

a,, = deg(A) with <
Notice that it Is a well defined notion
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=,, IS an equivalence (reflexive, transitive, symmetric)
relation , so, we divide it out

a,, = deg(A) with <

Notice that it is a well defined notion
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< defines a partial order (refl., trans., antisymm.)
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m-degrees

-

=,, IS an equivalence (reflexive, transitive, symmetric)
relation , so, we divide it out

a,, = deg(A) with <

Notice that it is a well defined notion

We always exclude @ and N as members of m-degrees
< defines a partial order (refl., trans., antisymm.)

We call this the ordering of m-degrees

and denote it D,,
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Propertiesof D,,
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#® Thereis a minimal element in D,,:
# If Ais decidable, and B # @, N, then A <,,, B

#® However, there is no such thing as a maximal m-degree
as we shall see later

o |

Recursion Theory — p.7/10



o o

Propertiesof D,,

There is a minimal element in D,,: T
If Ais decidable, and B # @, N, then A <,,, B

However, there is no such thing as a maximal m-degree
as we shall see later

Moreover, D,,, does not have such a well-behaved
structure as, say, the distributive lattice (£, C) or the
Boolean algebra (P(X), C)
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Propertiesof D,,
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There is a minimal element in D,,:
If Ais decidable, and B # @, N, then A <,,, B

However, there is no such thing as a maximal m-degree
as we shall see later

Moreover, D,,, does not have such a well-behaved
structure as, say, the distributive lattice (£, C) or the
Boolean algebra (P(X), C)

It is a very interesting and complex
structure
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Propertiesof D,,
-

There is a minimal element in D,,:
If Ais decidable, and B # @, N, then A <,,, B

However, there is no such thing as a maximal m-degree
as we shall see later

Moreover, D,,, does not have such a well-behaved
structure as, say, the distributive lattice (£, C) or the
Boolean algebra (P(X), C)

It is a very interesting and complex (its first order theory
IS of complexity 0¥ 1) structure
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#® The structure &,,, does have a maximal element

Recursion Theory — p.8/10



-

C.e. m-degrees

#® The structure &,,, does have a maximal element
® Aisce. iff A<, Ky!

-



C.e. m-degrees
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#® The structure &,,, does have a maximal element T
® Aisce. iff A<, Ky!

# We shall now proof that deg(Ky) (we shall write 0/) is
Inhabited precisely by all the creative sets
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The structure &,,, does have a maximal element
Aisce iff A<, Ky'!

We shall now proof that deg(Kj) (we shall write 0/ ) is
Inhabited precisely by all the creative sets

If C Is creative, and C <,,, A then A Is creative too.
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We shall now proof that deg(Kj) (we shall write 0/ ) is
Inhabited precisely by all the creative sets

If C Is creative, and C <,,, A then A Is creative too.
Recall that we now only consider c.e. sets, whence, A Is
by definition c.e.

|

Recursion Theory — p.8/10



o o

C.e. m-degrees
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We shall now proof that deg(Kj) (we shall write 0/ ) is
Inhabited precisely by all the creative sets

If C Is creative, and C <,,, A then A Is creative too.
Recall that we now only consider c.e. sets, whence, A Is
by definition c.e.

Proof: If C' Is creative with creative function f and
g: C <, A
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C.e. m-degrees
-

The structure &,,, does have a maximal element
Aisce iff A<, Ky'!

We shall now proof that deg(Kj) (we shall write 0/ ) is
Inhabited precisely by all the creative sets

If C Is creative, and C <,,, A then A Is creative too.
Recall that we now only consider c.e. sets, whence, A Is
by definition c.e.

Proof: If C' Is creative with creative function f and
g: C <, A

use ¢! to get a set to apply f to, to obtain a new
element. Use g again to get the element where is
should be.
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Creative sets
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# Corollary: there is some a with 0,,, <,, a < 0/
# Every creative set C' is m-complete (John Myhill, 1955)
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# Corollary: there is some a with 0,,, <,, a < 0/
# Every creative set C' is m-complete (John Myhill, 1955)
# Collecting ingredients to find a proof strategy:

#® We should find for every c.e. A some reduction
g: A<, C,thus
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Creative sets

Corollary: there is some a with 0,,, <,,, a < 0],

-

Every creative set C' is m-complete (John Myhill, 1955)

Collecting ingredients to find a proof strategy:

We should find for every c.e. A some reduction
g: A<, C,thus

yeA =gy eC
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Corollary: there is some a with 0,,, <,,, a < 0],
Every creative set C' is m-complete (John Myhill, 1955)
Collecting ingredients to find a proof strategy:

We should find for every c.e. A some reduction
g: A<, C,thus

yeA =gy eC
yeA =gy eC
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Creative sets
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Corollary: there is some a with 0,,, <,,, a < 0],
Every creative set C' is m-complete (John Myhill, 1955)
Collecting ingredients to find a proof strategy:

We should find for every c.e. A some reduction
g: A<, C,thus

yeA =gy eC
yeA =gy eC
Notice, for f the creative function: f(e) € Cif W, = @
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Creative sets

-

Corollary: there is some a with 0,,, <,,, a < 0],
Every creative set C' is m-complete (John Myhill, 1955)
Collecting ingredients to find a proof strategy:

We should find for every c.e. A some reduction
g: A<, C,thus

yeA =gy eC

yeA =gy eC

Notice, for f the creative function: f(e) € Cif W, = @
How can we make sure that g(y) € C?
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Creative sets
-

Corollary: there is some a with 0,,, <,,, a < 0],
Every creative set C' is m-complete (John Myhill, 1955)
Collecting ingredients to find a proof strategy:

We should find for every c.e. A some reduction
g: A<, C,thus

yeA =gy eC

yeA =gy eC

Notice, for f the creative function: f(e) € Cif W, = @
How can we make sure that g(y) € C?

Well, if W, = {f(g(y))}"
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Myhill’s Theorem

f # We use the fixed point theorem: for f(x), we find a ﬁxedT
point (number) e such that W, = Wy,

o With parameters: for g(x,y) we find a fixed point
(function) k(y) such that Wi,y = W)
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Myhill’s Theorem
.

# We use the fixed point theorem: for f(x), we find a fixe
point (number) e such that W, = Wy,

o With parameters: for g(x,y) we find a fixed point
(function) k(y) such that Wi,y = W)

# First consider a (total!) recursive g(x,y) such that
» Wg(x,y) ={f(z)}Ifye A

|

Recursion Theory — p.10/10



°

Myhill’s Theorem
.

We use the fixed point theorem: for f(z), we find a fixe
point (number) e such that W, = Wy,

With parameters: for g(x,y) we find a fixed point
(function) k(y) such that Wi,y = W)

First consider a (total!) recursive g(z,y) such that

Wg(x,y) ={f(zx)}ifyec A
and o otherwise
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Myhill’s Theorem
.

We use the fixed point theorem: for f(z), we find a fixe
point (number) e such that W, = Wy,

With parameters: for g(x,y) we find a fixed point
(function) k(y) such that Wi,y = W)

First consider a (total!) recursive g(z,y) such that

Wg(x,y) ={f(x)}ifye A
and @ otherwise
We now find fixed point k(y) with Wi,y = W i,).0)
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Myhill’s Theorem
.

We use the fixed point theorem: for f(z), we find a fixe
point (number) e such that W, = Wy,

With parameters: for g(x,y) we find a fixed point
(function) k(y) such that Wi,y = W)

First consider a (total!) recursive g(z,y) such that
Wg(x,y) — {f(:l?)} If yeA

and @ otherwise

We now find fixed point k(y) with Wi,y = W i,).0)

(f o k) Is the required reduction:
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We use the fixed point theorem: for f(z), we find a fixe
point (number) e such that W, = Wy,

With parameters: for g(x,y) we find a fixed point
(function) k(y) such that Wi,y = W)

First consider a (total!) recursive g(z,y) such that
Wg(x,y) — {f(:l?)} If yeA

and @ otherwise

We now find fixed point k(y) with Wi,y = W i,).0)

(f o k) Is the required reduction:
yeA = (fok)(y)eC
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Myhill’s Theorem
.

We use the fixed point theorem: for f(z), we find a fixe
point (number) e such that W, = Wy,

With parameters: for g(x,y) we find a fixed point
(function) k(y) such that Wi,y = W)

First consider a (total!) recursive g(z,y) such that
Wg(x,y) — {f(:l?)} If yeA

and @ otherwise

We now find fixed point k(y) with Wi,y = W i,).0)

(f o k) Is the required reduction:
yeA = (fok)(y)eC

yeA = (fok)(y) el o
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