AUTOMATED THEOREM PROVING

Resolution in first-order logic

Exercise 1. Let $\theta_1 = \{a/x, f(z)/y, y/z\}$ and $\theta_2 = \{b/x, z/y, g(x)/z\}$. Find $\theta_1 \circ \theta_2$.

Exercise 2. If two or more literals with the same sign of a clause ϕ have a most general unifier σ , then $\phi\sigma$ is called a factor of ϕ . Give the factors of the following clauses:

- (1) $P(x) \lor Q(y) \lor P(f(x))$.
- (2) $P(x) \lor P(c) \lor Q(f(x)) \lor Q(f(c)).$
- (3) $P(x, y) \lor P(c, f(c))$.
- (4) $P(c) \lor P(d) \lor Q(x, y)$.
- (5) $P(x) \lor P(f(y)) \lor Q(x, y)$.

Exercise 3. A clause ϕ_1 subsumes a clause ϕ_2 , if there is a substitution σ such that $Mb(\phi_1) \sigma \subseteq Mb(\phi_2)$. Then, determine whether ϕ_1 subsumes ϕ_2 in each of the following cases:

- (a) $\phi_1 = P(x, y) \lor Q(z), \ \phi_2 = Q(c) \lor P(d, d) \lor R(u).$
- (b) $\phi_1 = P(x, y) \lor R(y, x), \phi_2 = P(c, y) \lor R(z, d).$ (c) $\phi_1 = \neg P(x) \lor P(f(x)), \phi_2 = \neg P(x) \lor P(f(f(x))).$

Exercise 4. Determine whether each of the following sets is unifiable by using the unification algorithm.

- (1) $\{Q(c), Q(d)\}.$
- (2) $\{Q(c,x), Q(c,c)\}.$
- (3) $\{P(x, y, z), P(y, z, y)\}.$
- (4) {Q(c, x, f(x)), Q(c, y, y)}
- (5) $\{Q(x, y, z), Q(u, h(v, v), u)\}.$
- $(6) \{ P(x_1, g(x_1), x_2, h(x_1, x_2), x_3, k(x_1, x_2, x_3)), P(y_1, y_2, e(y_2), y_3, f(y_2, y_3), y_4) \}.$

Exercise 5. Find all possible resolvents of the following pairs of clauses:

- (1) $\phi_1 = \neg P(x) \lor Q(x,b), \phi_2 = P(a) \lor Q(a,b).$ (2) $\phi_1 = \neg P(x) \lor Q(x,x), \phi_2 = \neg Q(a, f(a)).$ (3) $\phi_1 = \neg P(v, z, v) \lor P(w, z, w), \phi_2 = P(w, h(x, x), w).$
- (4) $\phi_1 = \neg P(x, y, u) \lor \neg P(y, z, v) \lor \neg P(x, v, w) \lor P(u, z, w), \phi_2 = P(g(x, y), x, y).$

<u>Exercise 6</u>. Prove by resolution that the Skolem formulas α_{Φ} associated with the following sets of formulas are unsatisfiable:

- (a) $\Phi = \{ \neg P(x) \lor Q(f(x), x), P(g(b)), \neg Q(y, z) \}.$
- (b) $\Phi = \{P(x), Q(x, f(x)) \lor \neg P(x), \neg Q(g(y), z)\}.$

<u>Exercise 7</u>. Prove by resolution that the formula $\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$ is a tautology.

Exercise 8. Consider the following assertions:

(1) "The custom officials search everyone who enters the country and is not a VIP".

(2) "Some drug pushers enter the country and they are only searched by drug pushers".

(3) "No drug pusher is a VIP".

(a) Formalize (1)-(3) as first-order formulas.

(b) Prove by resolution that from the assertions (1)-(3) it follows that "some of the custom officials are drug pushers".