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» Since the foundational crises around 1900 more rigor was
needed within mathematics and its foundations

» Most notably, David Hilbert proposed (1900) a programme to
justify the use non-finitary methods by finitary means only

» In meta-mathematical language:
F + Con(R)

» where F is some undisputed part of mathematics consisting of
finitary methods only, and R denotes ‘real’” mathematics
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» The second incompleteness theorem of Godel (1931) taught
us that we can not even expect

F + Con(F)

under some very reasonable assumptions of F.
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Proof-strength of theories Ordinal analysis
Iterated consistency

» The second incompleteness theorem of Godel (1931) taught
us that we can not even expect

F + Con(F)

under some very reasonable assumptions of F.
» Thus proving the impossibility of Hilbert's programme.

» However, partial realizations of Hilbert's programme have
been obtained

» Most notably, Gentzen's consistency proof for Peano
Arithmetic (1936)
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Iterated consistency

» Peano Arithmetic (PA) is the formal arithmetical theory in the
language {0, S, +, -, 2¥} axiomatized by the regular axioms for
the constant and function symbols together with full
induction:

©(0,y) AVx [p(x, ¥) = ¢(5x, ¥)] = Vxe(x, ).
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Proof-strength of theories Ordinal analysis
Iterated consistency

» Peano Arithmetic (PA) is the formal arithmetical theory in the
language {0, S, +, -, 2¥} axiomatized by the regular axioms for
the constant and function symbols together with full
induction:

©(0,Y) ANVx [p(x,¥) — @(Sx, y)] — Vxp(x, y).
» Gentzen showed
F + PR-Tl(ep) F Con(PA)

» Here PR-TI(¢p) is transfinite induction up to € for primitive
recursive (p.r.) predicates

VaeS [Vi<a A(B) — A(a)] — YaA(«a)

where S is some set on which < defines a (p.r.) well-order of
order type €y and A is a p.r. predicate
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» F + PR-Tl(eg) - Con(PA)
With F some finitistic part of mathematics (for example
Primitive Recursive Arithmetic).
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Proof-strength of theories Ordinal analysis
Iterated consistency

» F + PR-Tl(eg) - Con(PA)
With F some finitistic part of mathematics (for example
Primitive Recursive Arithmetic).

> It is tempting to conceive of PR-TI(¢p) as the non-finitistic
part encompassed by PA.

» And in analogy to this, one can define a norm that measures
proof strengths for theories T as follows:

| T |con := min{a | PRA + PR-Tl(a) F Con(T)}
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» Ad (a.) Recall that an ordinal is just defined as a transitive
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Proof-strength of theories Ordinal analysis
Iterated consistency

» The norm | T|con is very sensitive to
(a.) The way ordinals are notated
(b.) The way these notations are represented in a theory dealing

with natural numbers (PRA)

» Ad (a.) Recall that an ordinal is just defined as a transitive
set that is well-ordered by €. They live out there but to pick
out one particular ordinal one needs a recipe. A uniform
recipe makes up an ordinal notation system.

(where x being transitive means VyexVz(z € y — z € x),
that is, each element y of x is also a subset of x)

» Ad (b.): There are pathological orderings known (Kreisel)
such that w would be |T|con for any T
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» Kreisel's pathological ordering for a consistent theory T
» We define n <1+ m iff
» n < mand Vx < max{n, m} =Proof r(x,70 =17)
» m < nand 3x < max{n, m} Proofr(x,70=17)
» (PRA proves) The ordering <71 looks like
> 0<rl<y2<y...
in case T is consistent
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in case X is the smallest proof of 0 =1
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» We define n <1+ m iff
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» Kreisel's pathological ordering for a consistent theory T
» We define n <1+ m iff
» n < mand Vx < max{n, m} =Proof r(x,70 =17)
» m < nand 3x < max{n, m} Proofr(x,70=17)
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» Now, in PRA:
» If 3xProof(x,"0 = 17) then for any z:
=Vy <t z=Proof(y,"0 =17).
As there are arbitrary large proofs of anything that has a proof.
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» Kreisel's pathological ordering for a consistent theory T
» We define n <1+ m iff
» n < mand Vx < max{n, m} =Proof r(x,70 =17)
» m < nand 3x < max{n, m} Proofr(x,70=17)
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Iterated consistency

» Kreisel's pathological ordering for a consistent theory T
» We define n <1+ m iff
» n < mand Vx < max{n, m} =Proof r(x,70 =17)
» m < nand 3x < max{n, m} Proofr(x,70=17)
» (PRA proves) The ordering <71 looks like
» 0<Tl<T2<r...
in case T is consistent
» xg>7TX—1>7...>70>rx0+ 1> x0+2>7 ...
in case X is the smallest proof of 0 =1
» Now, in PRA:
» If 3xProof(x,"0 = 17) then for any z:
=Vy <t z=Proof(y,"0 =17).
As there are arbitrary large proofs of anything that has a proof.
Whence Yy <1 z—=Proof(y,"0 =17) — —=Proof(z,70 =17)
> If Yx—=Proof(x, 0 = 17) then certainly
Yy <7 z=Proof(y,"0 =17) — —Proof(z,70 = 17)
» By induction along <1 we prove in PRA consistency of T.
» Note that, as T is consistent, OT(N, <7) = w,
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» Beklemishev has provided pathological representations for
arbitrary large 8 < wICK such that PRA together with
transfinite induction along 3 does not prove Con(PA).
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Iterated consistency

» Beklemishev has provided pathological representations for
arbitrary large 8 < wICK such that PRA together with
transfinite induction along 3 does not prove Con(PA).

> Gentzen: F 4 PR-Tl(¢) - Con(PA)

» Consequently, PA ¥PR-Tl(ep)

» However, Gentzen later also showed that PA -PR-TI(«) for
any a < €

» This leads to another measure for prove-strength of a theory
T: the supremum of the order types of those recursive
well-orders that are provably (in T) well founded

> [ Tlsup :=={c |
« is the ordertype of a, provably in T, recursive well-order}

» There are some technical details here as well-foundedness is a
M} predicate and as such not definable in first-order theories.
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Proof-strength of theories Ordinal analysis
Iterated consistency

> \T|Sup is more robust and less prone to pathological
counter-examples.

» As a matter of fact, it is a bit too robust:

» Let S be a set of true Z% sentences, then, under some fairly
reasonable conditions

’T|SUP = ‘T + 5|sup
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Iterated consistency

» We know that, if T is consistent, then T + Con(T) is
consistent too

» This idea leads us to consider transfinite progressions of
consistency iterations for some basic theory T:

> To =T
> Toq1:=To+Con(T,)
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> Ty = Ug<a TB for limit A
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Proof-strength of theories Ordinal analysis
Iterated consistency

» We know that, if T is consistent, then T + Con(T) is
consistent too

» This idea leads us to consider transfinite progressions of
consistency iterations for some basic theory T:

> To =T
> Toq1:=To+Con(T,)
> Ty = Ug<a TB for limit A

» We can define the proof theoretic measure
| T it :== min{a | Fo - Con(T)}

where F is a suitably chosen finitistic fragment of arithmetic
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> It is to be expected that | T|; is more fine-grained than the
other notions as it is defined in terms of a central notion:
consistency
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Proof-strength of theories Ordinal analysis
Iterated consistency

> It is to be expected that | T|; is more fine-grained than the
other notions as it is defined in terms of a central notion:
consistency

» We can expect that | T |i; is again very sensible to pathological
orderings and representations thereof

» However, provability logics yield two main advantages

> All the calculations involved in determining | T|i: can be done

within these logics
» The logics suggest a very natural ordinal notation which is
completely unambiguous up to the Feferman-Shiitte ordinal Iy
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Preliminaries and definitions
Equivalences
The Reduction Property

Reflection, Consistency and Arithmetic

» Surprise to me:

» There is an intimate connection between consistency
statements and arithmetic

» In particular, the fragments /X, can be fully characterized in
terms of consistency statements

» We need some notation and terminology to make this precise.
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Preliminaries and definitions
Equivalences
The Reduction Property

Reflection, Consistency and Arithmetic

» Using coding techniques, syntactic objects like formulas and
proofs can be represented in number theories:

For a formula ¢, we denote the representation by "¢ .
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» Using coding techniques, syntactic objects like formulas and
proofs can be represented in number theories:

» For a formula ¢, we denote the representation by "¢ .

» A formula in the language of arithmetic is elementary if it can
be decided in elementary (multi-exponential) time

» A theory is called elementary represented if it is represented
by some elementary formula

» For elementary represented theories T, one can write down a
formula Proof r(p, ™) that is true only when p is the code
of a proof in T of a formula ¢

> Proof r(p,"¢7) is a decidable formula

» We will write O7¢ for 3p Proof r(p, ¢)
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» Our base theory/finitistic theory will be EA: elementary
arithmetic

» EA is in the language of PA but the induction axioms are
restricted to bounded formulas only

» A bounded formula is a formula where each quantifier is
bounded by a term in the language of PA which we recall is
{07 Sa + 2X}
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v

The class of g formulas is defined the same as the class of
Mg formulas: the class of bounded formulas

v

Y p+1-formulas are of the form 3x x(X) with x € I,

v

Mpy1-formulas are of the form VX x(X) with x € X,

v

Weak theories like EA prove all true Iy statements ), that is,

Ny = EAR®

v

Thus, weak theories like EA also prove all true ¥; formulas

v

This fact is formalizable in EA whence for o € ¥

EAF o — Ugaoc
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» From Tarski's Theorem on the undefinability of truth, we
know that there is no arithmetical formula True(x) such that

N ¢ o True(Ty7)

» However, there are partial truth predicates
» N | ¢ < Truen, ("¢7) for ¢ € M,

» Moreover, weak theories like EA prove all the Tarski Truth
Conditions for these predicates, e.g.,
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v

From Tarski's Theorem on the undefinability of truth, we
know that there is no arithmetical formula True(x) such that

N ¢ o True(Ty7)

v

However, there are partial truth predicates

N E ¢ < Truen, ("¢7) for ¢ € N,

Moreover, weak theories like EA prove all the Tarski Truth
Conditions for these predicates, e.g.,

v

v

EA I Truen, ("¢ A X7) < [Truen, ("¢ ™) A Truen, ("x7)]

for ¥, x € M,
The complexity of Truep, is itself I,

v
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» Using partial truth predicates,
[n]T¢ : ¢ is provable in the theory whose axioms are those of
T together with all true I1,, sentences.

» We sometimes write [0] ¢ for Ot

» We abbreviate —[n]7—¢, that is, the n-consistency of ¢, by
(n)Te

» (n)7T will stand for T is n-consistent
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» Uniform reflection over T denoted by RFN(T) is the scheme
VX (Ore(X) — (%))

> Restricted reflection over T denoted by RFNy, (T) is the
scheme

v (Orp(X) = ¢(X))  with p e,

> It is an easy theorem that RFNy (T) is equivalent to Kleene's
rule for ¥, formulas:

vx O7o(X)

ith 2.
VRox) eeEn
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» From now on, T will be a consistent theory in the language of
arithmetic that contains the theory EA.

» Theorem:
<n>TT = RFN):H(T)
Proof: Suppose [n] 1L, then

v

v

[0]7(m — L) for some I, sentence 7 (possibly non-standard)
thus, [O]T—|7T

v
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» From now on, T will be a consistent theory in the language of
arithmetic that contains the theory EA.

Theorem:
<n>TT = RFN):H(T)
Proof: Suppose [n] 1L, then

v

[0]7(m — L) for some I, sentence 7 (possibly non-standard)
thus, [O]T—|7T
whence [0] 7+ Truex, (—7).
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» From now on, T will be a consistent theory in the language of
arithmetic that contains the theory EA.

» Theorem:

(T = RFNx, (T)

Proof: Suppose [n] 1L, then

[0]7(m — L) for some I, sentence 7 (possibly non-standard)
thus, [0]7—7

whence [0] 7+ Truex, (—7).

We obtain Truey (—7) using RFNx (T)

contradicting Truep, ()

vV v vV vV V. VY

whence —[n]rL, i.e., (M1 T
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Theorem:

<n>TT = RFNZn(T)

For the other direction, we need a very easy lemma:
EAF o — [n]1o foro € X,11

v

v

v

Suppose [0]T¢ with ¢ € X,

v

suppose, for a contradiction, that —¢

v

as ~p € Zn-‘rl
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» Theorem:
<n>TT = RFNZn(T)

» For the other direction, we need a very easy lemma:
EAF o — [n]1o foro € X,11

Suppose [0] ¢ with ¢ € X,
suppose, for a contradiction, that —¢

as ~p € Zn-‘rl

vV v v Y
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» Theorem:
(mtT = RFNx (T)
» For the other direction, we need a very easy lemma:
EAF o — [n]1o foro € X,11
Suppose [0] ¢ with ¢ € X,
suppose, for a contradiction, that —¢
as " € X4
we have [n] ¢, whence
[n] 7L
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» Theorem:
<n>TT = RFNZn(T)

» For the other direction, we need a very easy lemma:
EAF o — [n]1o foro € X,11

Suppose [0] ¢ with ¢ € X,

suppose, for a contradiction, that —¢
as " € X4

we have [n] ¢, whence

[n] 7L

contradicting (n) 7T
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» Theorem:
(mtT = RFNx (T)
» For the other direction, we need a very easy lemma:
EAF o — [n]1o for o € X 11
Suppose [0] ¢ with ¢ € X,
suppose, for a contradiction, that —¢
as " € X4
we have [n] ¢, whence
[n] 7L
contradicting (n)7T
All of the steps can be done within EA!

A2 A A A A A 4
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» Let /X, be as PA but now the induction axioms restricted to
Y , formulas

» Theorem: /¥, = RFNy,  (EA)
» It is not hard to see that

Vx Dea((0(0) A VX [p(x) — @(x +1)]) — ¢(X))
» Note, the complexity of this formula

(#(0) A VX [p(x) = @(x + 1)]) = ¢(X) "is" Zns1
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» Let /X, be as PA but now the induction axioms restricted to
Y , formulas

» Theorem: /¥, = RFNy,  (EA)
» It is not hard to see that

Vx Dea((0(0) A VX [p(x) — @(x +1)]) — ¢(X))
» Note, the complexity of this formula

(#(0) A VX [p(x) = @(x + 1)]) = ¢(X) "is" Zns1
» By Kleene's rule: ¢(0) AVx [p(x) — ¢(x + 1)] — Vxp(x)

» Note, this direction is fully formalizable in EA

Joost J. Joosten Modal Logic Course, 2011



Preliminaries and definitions
Equivalences
The Reduction Property

Reflection, Consistency and Arithmetic

» Theorem: /X, = RFNy, (EA)

Joost J. Joosten Modal Logic Course, 2011



Prelim es and definitions
Equivalences
The Reduction Property

Reflection, Consistency and Arithmetic

» Theorem: /X, = RFNy, (EA)

» For the other direction, suppose Ll7o with 0 € X411

Joost J. Joosten Modal Logic Course, 2011



Prelim es and definitions
Equivalences
The Reduction Property

Reflection, Consistency and Arithmetic

» Theorem: /X, = RFNy, (EA)
» For the other direction, suppose Ll7o with 0 € X411
» dp Proofr(p,"07)

Joost J. Joosten Modal Logic Course, 2011



Preliminaries and definitions
Equivalences
The Reduction Property

Reflection, Consistency and Arithmetic

» Theorem: /X, = RFNy, (EA)
» For the other direction, suppose Ll7o with 0 € X411
» dp Proofr(p,"07)

» Now, employ cut-elimination to obtain a cut-free proof of o

Joost J. Joosten Modal Logic Course, 2011



Preliminaries and definitions
Equivalences
The Reduction Property

Reflection, Consistency and Arithmetic

Theorem: /¥, = RFNgy,  (EA)
For the other direction, suppose Lo with 0 € X411
dp Proofr(p,"07)

Now, employ cut-elimination to obtain a cut-free proof of o

vV v.v. v .Y

Now, prove by induction on p that
Cut-Free-Proof r(p, x) — Truex,,, ("x")
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Theorem: /¥, = RFNgy,  (EA)
For the other direction, suppose Lo with 0 € X411
dp Proofr(p,"07)

Now, employ cut-elimination to obtain a cut-free proof of o
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Now, prove by induction on p that
Cut-Free-Proof r(p, x) — Truex,,, ("x")

» This requires 41 induction

» With techniques from proof-theory, this can actually be
brought back to X, induction

» Note that the proof can only be formalized in a setting where
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Theorem: /¥, = RFNgy,  (EA)
For the other direction, suppose Lo with 0 € X411
dp Proofr(p,"07)

Now, employ cut-elimination to obtain a cut-free proof of o

vV v.v. v .Y

Now, prove by induction on p that
Cut-Free-Proof r(p, x) — Truex,,, ("x")

» This requires 41 induction

» With techniques from proof-theory, this can actually be
brought back to X, induction

» Note that the proof can only be formalized in a setting where
cut-elimination can be proved

» that is, the sup-exp function must be provably total
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» Summarizing: 1Y, = (n+1)eaT = RFNg,  (EA)

» Using similar techniques one can prove an analogous for the
induction rules:
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» Theorem
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v

Summarizing: I, = (n+1)eaT = RFNg, (EA)
Using similar techniques one can prove an analogous for the

induction rules:
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» Theorem
I¥R =1,,1-RR"(EA)

» RFNx . (EA) turns out to be I, conservative over
EA + My, 1—RR"(EA)

» We write
EA + RFN):M(EA) =, EA+T,:1—RR"(EA)

» This is formalizable in EA™, and can be generalized to
theories other than EA

» Here EA™ is the theory EA together with the axiom stating
that super-exponentiation is a total function
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EA+RFNs, (EA) =, EA+ M, ;—RR"(EA)

From this follows
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(n+1)T =, {(n)kT | k < w}

> Blufﬁng (fallacious/incomplete argument):
> (DT =0 (T
> In = (2)T = (12T = ((0))*T =(0)" T
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PA = ()T =0 (0)T

— w W e
Where ¢ = sup{w,w”,w* ;0" ,...}
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v

This can be conceived as the proof theoretic ordinal of PA
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