GLP Lecture 1: Calibration of Proof-theoretical Strength

Joost J. Joosten

Dept. Lògica, Història i Filosofia de la Ciència Universitat de Barcelona

> Wednesday 15-11-2010 Logic Seminar, Barcelona

► Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations

- ► Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations
- ▶ Most notably, David Hilbert proposed (1900) a programme to justify the use *non-finitary* methods by finitary means only

- ► Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations
- ▶ Most notably, David Hilbert proposed (1900) a programme to justify the use *non-finitary* methods by finitary means only
- In meta-mathematical language:

$$\mathcal{F} \vdash \mathsf{Con}(\mathcal{R})$$

- ► Since the foundational crises around 1900 more rigor was needed within mathematics and its foundations
- ▶ Most notably, David Hilbert proposed (1900) a programme to justify the use *non-finitary* methods by finitary means only
- In meta-mathematical language:

$$\mathcal{F} \vdash \mathsf{Con}(\mathcal{R})$$

ightharpoonup where $\mathcal F$ is some undisputed part of mathematics consisting of finitary methods only, and $\mathcal R$ denotes 'real' mathematics

► The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

$$\mathcal{F} \vdash \mathsf{Con}(\mathcal{F})$$

under some very reasonable assumptions of \mathcal{F} .

► The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

$$\mathcal{F} \vdash \mathsf{Con}(\mathcal{F})$$

under some very reasonable assumptions of \mathcal{F} .

▶ Thus proving the impossibility of Hilbert's programme.

▶ The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

$$\mathcal{F} \vdash \mathsf{Con}(\mathcal{F})$$

under some very reasonable assumptions of \mathcal{F} .

- ▶ Thus proving the impossibility of Hilbert's programme.
- ▶ However, partial realizations of Hilbert's programme have been obtained

▶ The second incompleteness theorem of Gödel (1931) taught us that we can not even expect

$$\mathcal{F} \vdash \mathsf{Con}(\mathcal{F})$$

under some very reasonable assumptions of \mathcal{F} .

- ▶ Thus proving the impossibility of Hilbert's programme.
- ▶ However, partial realizations of Hilbert's programme have been obtained
- ► Most notably, Gentzen's consistency proof for Peano Arithmetic (1936)

▶ Peano Arithmetic (PA) is the formal arithmetical theory in the language $\{0, S, +, \cdot, 2^x\}$ axiomatized by the regular axioms for the constant and function symbols together with full induction:

$$\varphi(0, \vec{y}) \land \forall x \ [\varphi(x, \vec{y}) \rightarrow \varphi(Sx, \vec{y})] \rightarrow \forall x \varphi(x, \vec{y}).$$

▶ Peano Arithmetic (PA) is the formal arithmetical theory in the language $\{0, S, +, \cdot, 2^x\}$ axiomatized by the regular axioms for the constant and function symbols together with full induction:

$$\varphi(0, \vec{y}) \land \forall x \ [\varphi(x, \vec{y}) \rightarrow \varphi(Sx, \vec{y})] \rightarrow \forall x \varphi(x, \vec{y}).$$

Gentzen showed

$$\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$$

▶ Peano Arithmetic (PA) is the formal arithmetical theory in the language $\{0, S, +, \cdot, 2^x\}$ axiomatized by the regular axioms for the constant and function symbols together with full induction:

$$\varphi(0, \vec{y}) \land \forall x \ [\varphi(x, \vec{y}) \rightarrow \varphi(Sx, \vec{y})] \rightarrow \forall x \varphi(x, \vec{y}).$$

Gentzen showed

$$\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$$

▶ Here PR-TI(ϵ_0) is transfinite induction up to ϵ_0 for primitive recursive (p.r.) predicates

$$\forall \alpha \in S \ [\forall \beta \prec \alpha \ A(\beta) \to A(\alpha)] \to \forall \alpha A(\alpha)$$

where S is some set on which \prec defines a (p.r.) well-order of order type ϵ_0 and A is a p.r. predicate

▶ \mathcal{F} + PR-TI(ϵ_0) \vdash Con(PA) With \mathcal{F} some finitistic part of mathematics (for example Primitive Recursive Arithmetic).

- F + PR-TI(ϵ₀) ⊢ Con(PA)
 With F some finitistic part of mathematics (for example Primitive Recursive Arithmetic).
- ▶ It is tempting to conceive of PR-TI(ϵ_0) as the non-finitistic part encompassed by PA.

- ▶ $\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$ With \mathcal{F} some finitistic part of mathematics (for example Primitive Recursive Arithmetic).
- ▶ It is tempting to conceive of PR-TI(ϵ_0) as the non-finitistic part encompassed by PA.
- ▶ And in analogy to this, one can define a norm that measures proof strengths for theories *T* as follows:

$$|T|_{\mathsf{con}} := \mathsf{min}\{\alpha \mid \mathsf{PRA} + \mathsf{PR-TI}(\alpha) \vdash \mathsf{Con}(\mathsf{T})\}\$$

▶ The norm $|T|_{con}$ is very sensitive to

- ▶ The norm $|T|_{con}$ is very sensitive to
 - (a.) The way ordinals are notated

- ▶ The norm $|T|_{con}$ is very sensitive to
 - (a.) The way ordinals are notated
 - (b.) The way these notations are represented in a theory dealing with natural numbers (PRA)

- ▶ The norm $|T|_{con}$ is very sensitive to
 - (a.) The way ordinals are notated
 - (b.) The way these notations are represented in a theory dealing with natural numbers (PRA)
- Ad (a.) Recall that an ordinal is just defined as a transitive set that is well-ordered by ∈. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.

- ▶ The norm $|T|_{con}$ is very sensitive to
 - (a.) The way ordinals are notated
 - (b.) The way these notations are represented in a theory dealing with natural numbers (PRA)
- Ad (a.) Recall that an ordinal is just defined as a transitive set that is well-ordered by ∈. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.

(where x being transitive means $\forall y \in x \forall z (z \in y \to z \in x)$, that is, each element y of x is also a subset of x)

- ▶ The norm $|T|_{con}$ is very sensitive to
 - (a.) The way ordinals are notated
 - (b.) The way these notations are represented in a theory dealing with natural numbers (PRA)
- Ad (a.) Recall that an ordinal is just defined as a transitive set that is well-ordered by ∈. They live out there but to pick out one particular ordinal one needs a recipe. A uniform recipe makes up an ordinal notation system.
 - (where x being transitive means $\forall y \in x \forall z (z \in y \rightarrow z \in x)$, that is, each element y of x is also a subset of x)
- Ad (b.): There are *pathological* orderings known (Kreisel) such that ω would be $|T|_{\text{Con}}$ for any T

▶ Kreisel's pathological ordering for a consistent theory *T*:

- ► Kreisel's pathological ordering for a consistent theory *T*:
- ▶ We define $n <_T m$ iff

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ $n < m \text{ and } \forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$

- ▶ Kreisel's pathological ordering for a consistent theory *T*:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\}$ Proof_T $(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering <_T looks like

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \text{ Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering $<_T$ looks like
 - ▶ $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\}$ Proof_T $(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering $<_{\mathcal{T}}$ looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - ▶ $x_0 >_T x_0 1 >_T ... >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T ...$ in case x_0 is the smallest proof of 0 = 1

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering <_T looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - ▶ $x_0 >_T x_0 1 >_T ... >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T ...$ in case x_0 is the smallest proof of 0 = 1
- ► Now, in PRA:

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\}$ Proof_T $(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering $<_{\mathcal{T}}$ looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - $x_0 >_T x_0 1 >_T \dots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \dots$ in case x_0 is the smallest proof of 0 = 1
- ► Now, in PRA:
 - ▶ If $\exists x \mathsf{Proof}(x, \lceil 0 = 1 \rceil)$ then for any z: $\neg \forall y <_{\mathcal{T}} z \neg \mathsf{Proof}(y, \lceil 0 = 1 \rceil)$.

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering $<_T$ looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - $x_0 >_T x_0 1 >_T \dots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \dots$ in case x_0 is the smallest proof of 0 = 1
- ► Now, in PRA:
 - ▶ If $\exists x \text{Proof}(x, \lceil 0 = 1 \rceil)$ then for any z: $\neg \forall v < \tau \ z \neg \text{Proof}(v, \lceil 0 = 1 \rceil)$.

As there are arbitrary large proofs of anything that has a proof.

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering <_T looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - ▶ $x_0 >_T x_0 1 >_T ... >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T ...$ in case x_0 is the smallest proof of 0 = 1
- ► Now, in PRA:
 - ▶ If $\exists x \text{Proof}(x, \lceil 0 = 1 \rceil)$ then for any z: $\neg \forall v < \tau \ z \neg \text{Proof}(v, \lceil 0 = 1 \rceil)$.

As there are arbitrary large proofs of anything that has a proof. Whence $\forall y <_{\mathcal{T}} z \neg \mathsf{Proof}(y, \lceil 0 = 1 \rceil) \rightarrow \neg \mathsf{Proof}(z, \lceil 0 = 1 \rceil)$

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering $<_T$ looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - ▶ $x_0 >_T x_0 1 >_T ... >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T ...$ in case x_0 is the smallest proof of 0 = 1
- ► Now, in PRA:
 - ▶ If $\exists x \text{Proof}(x, \lceil 0 = 1 \rceil)$ then for any z: $\neg \forall v < \tau \ z \neg \text{Proof}(v, \lceil 0 = 1 \rceil)$.

As there are arbitrary large proofs of anything that has a proof. Whence $\forall y <_{\mathcal{T}} z \neg \mathsf{Proof}(y, \lceil 0 = 1 \rceil) \rightarrow \neg \mathsf{Proof}(z, \lceil 0 = 1 \rceil)$

▶ If $\forall x \neg Proof(x, \lceil 0 = 1 \rceil)$ then certainly

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering <_T looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - ▶ $x_0 >_T x_0 1 >_T ... >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T ...$ in case x_0 is the smallest proof of 0 = 1
- ► Now, in PRA:
 - ▶ If $\exists x \text{Proof}(x, \lceil 0 = 1 \rceil)$ then for any z: $\neg \forall v < \tau \ z \neg \text{Proof}(v, \lceil 0 = 1 \rceil)$.

As there are arbitrary large proofs of anything that has a proof. Whence $\forall y <_{\mathcal{T}} z \neg \mathsf{Proof}(y, \ulcorner 0 = 1 \urcorner) \rightarrow \neg \mathsf{Proof}(z, \ulcorner 0 = 1 \urcorner)$

▶ If $\forall x \neg \mathsf{Proof}(x, \lceil 0 = 1 \rceil)$ then certainly $\forall y <_T z \neg \mathsf{Proof}(y, \lceil 0 = 1 \rceil) \rightarrow \neg \mathsf{Proof}(z, \lceil 0 = 1 \rceil)$

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering $<_{\mathcal{T}}$ looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - $x_0 >_T x_0 1 >_T \dots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \dots$ in case x_0 is the smallest proof of 0 = 1
- ► Now, in PRA:
 - ▶ If $\exists x \text{Proof}(x, \lceil 0 = 1 \rceil)$ then for any z: $\neg \forall v < \tau \ z \neg \text{Proof}(v, \lceil 0 = 1 \rceil)$.

As there are arbitrary large proofs of anything that has a proof. Whence $\forall y <_{\mathcal{T}} z \neg \mathsf{Proof}(y, \lceil 0 = 1 \rceil) \rightarrow \neg \mathsf{Proof}(z, \lceil 0 = 1 \rceil)$

- ▶ If $\forall x \neg \mathsf{Proof}(x, \lceil 0 = 1 \rceil)$ then certainly $\forall y <_T z \neg \mathsf{Proof}(y, \lceil 0 = 1 \rceil) \rightarrow \neg \mathsf{Proof}(z, \lceil 0 = 1 \rceil)$
- ▶ By induction along $<_{\mathcal{T}}$ we prove in PRA consistency of \mathcal{T} .

- Kreisel's pathological ordering for a consistent theory T:
- ▶ We define $n <_T m$ iff
 - ▶ n < m and $\forall x < \max\{n, m\} \neg \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
 - ▶ m < n and $\exists x < \max\{n, m\} \mathsf{Proof}_{\mathcal{T}}(x, \lceil 0 = 1 \rceil)$
- ▶ (PRA proves) The ordering <_T looks like
 - $0 <_T 1 <_T 2 <_T \dots$ in case T is consistent
 - $x_0 >_T x_0 1 >_T \dots >_T 0 >_T x_0 + 1 >_T x_0 + 2 >_T \dots$ in case x_0 is the smallest proof of 0 = 1
- ► Now, in PRA:
 - ▶ If $\exists x \text{Proof}(x, \lceil 0 = 1 \rceil)$ then for any z: $\neg \forall y <_T z \neg \text{Proof}(y, \lceil 0 = 1 \rceil)$.

As there are arbitrary large proofs of anything that has a proof. Whence $\forall y <_{\mathcal{T}} z \neg \mathsf{Proof}(y, \ulcorner 0 = 1 \urcorner) \rightarrow \neg \mathsf{Proof}(z, \ulcorner 0 = 1 \urcorner)$

- ▶ If $\forall x \neg \mathsf{Proof}(x, \lceil 0 = 1 \rceil)$ then certainly $\forall y <_T z \neg \mathsf{Proof}(y, \lceil 0 = 1 \rceil) \rightarrow \neg \mathsf{Proof}(z, \lceil 0 = 1 \rceil)$
- ▶ By induction along $<_T$ we prove in PRA consistency of T.
- ▶ Note that, as T is consistent, $OT(\mathbb{N}, <_T) = \omega$

▶ Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{\text{CK}}$ such that PRA together with transfinite induction along β does not prove Con(PA).

- ▶ Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{\text{CK}}$ such that PRA together with transfinite induction along β does not prove Con(*PA*).
- ▶ Gentzen: $\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$

- ▶ Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{\text{CK}}$ such that PRA together with transfinite induction along β does not prove Con(*PA*).
- ▶ Gentzen: $\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$
- ▶ Consequently, PA \nvdash PR-TI(ϵ_0)

- ▶ Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{\text{CK}}$ such that PRA together with transfinite induction along β does not prove Con(*PA*).
- ▶ Gentzen: $\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$
- ▶ Consequently, PA \nvdash PR-TI(ϵ_0)
- ▶ However, Gentzen later also showed that PA \vdash PR-TI(α) for any $\alpha < \epsilon_0$

- ▶ Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{\text{CK}}$ such that PRA together with transfinite induction along β does not prove Con(*PA*).
- ▶ Gentzen: $\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$
- ▶ Consequently, PA \nvdash PR-TI(ϵ_0)
- ▶ However, Gentzen later also showed that PA \vdash PR-TI(α) for any $\alpha < \epsilon_0$
- ► This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded

- ▶ Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{\text{CK}}$ such that PRA together with transfinite induction along β does not prove Con(*PA*).
- ▶ Gentzen: $\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$
- ▶ Consequently, PA \nvdash PR-TI(ϵ_0)
- ▶ However, Gentzen later also showed that PA \vdash PR-TI(α) for any $\alpha < \epsilon_0$
- This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded
- $|T|_{\sup} := \{ \alpha \mid \\ \alpha \text{ is the ordertype of a, provably in } T \text{, recursive well-order} \}$

- ▶ Beklemishev has provided pathological representations for arbitrary large $\beta < \omega_1^{\text{CK}}$ such that PRA together with transfinite induction along β does not prove Con(PA).
- ▶ Gentzen: $\mathcal{F} + \mathsf{PR}\text{-}\mathsf{TI}(\epsilon_0) \vdash \mathsf{Con}(\mathsf{PA})$
- ▶ Consequently, PA \nvdash PR-TI(ϵ_0)
- ▶ However, Gentzen later also showed that PA \vdash PR-TI(α) for any $\alpha < \epsilon_0$
- ► This leads to another measure for prove-strength of a theory T: the supremum of the order types of those recursive well-orders that are provably (in T) well founded
- ▶ $|T|_{sup} := {\alpha \mid \alpha \mid \exists T, \text{ recursive well-order}}$
- There are some technical details here as well-foundedness is a Π₁¹ predicate and as such not definable in first-order theories.

▶ |T|_{sup} is more robust and less prone to pathological counter-examples.

- ▶ |T|_{sup} is more robust and less prone to pathological counter-examples.
- As a matter of fact, it is a bit too robust:

- ▶ |T|_{sup} is more robust and less prone to pathological counter-examples.
- As a matter of fact, it is a bit too robust:
- Let S be a set of true Σ_1^1 sentences, then, under some fairly reasonable conditions

$$|T|_{\mathsf{sup}} = |T + S|_{\mathsf{sup}}$$

We know that, if T is consistent, then T + Con(T) is consistent too

- We know that, if T is consistent, then T + Con(T) is consistent too
- This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:

- We know that, if T is consistent, then T + Con(T) is consistent too
- This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:
 - $ightharpoonup T_0 := T$

- We know that, if T is consistent, then T + Con(T) is consistent too
- ► This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:
 - $T_0 := T$
 - $T_{\alpha+1} := T_{\alpha} + \mathsf{Con}(T_{\alpha})$

- We know that, if T is consistent, then T + Con(T) is consistent too
- ► This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:
 - $ightharpoonup T_0 := T$
 - $T_{\alpha+1} := T_{\alpha} + \mathsf{Con}(T_{\alpha})$
 - $T_{\lambda} := \cup_{\beta < \lambda} T_{\beta} \text{ for limit } \lambda$

- We know that, if T is consistent, then T + Con(T) is consistent too
- ► This idea leads us to consider transfinite progressions of consistency iterations for some basic theory T:
 - ▶ $T_0 := T$
 - $T_{\alpha+1} := T_{\alpha} + \mathsf{Con}(T_{\alpha})$
 - $T_{\lambda} := \cup_{\beta < \lambda} T_{\beta} \text{ for limit } \lambda$
- We can define the proof theoretic measure

$$|T|_{\mathsf{it}} := \min\{\alpha \mid \mathcal{F}_{\alpha} \vdash \mathsf{Con}(T)\}$$

where ${\mathcal F}$ is a suitably chosen finitistic fragment of arithmetic

▶ It is to be expected that |T|_{it} is more fine-grained than the other notions as it is defined in terms of a central notion: consistency

- ▶ It is to be expected that |T|_{it} is more fine-grained than the other notions as it is defined in terms of a central notion: consistency
- ▶ We can expect that |T|_{it} is again very sensible to pathological orderings and representations thereof

- ▶ It is to be expected that |T|_{it} is more fine-grained than the other notions as it is defined in terms of a central notion: consistency
- ▶ We can expect that |T|_{it} is again very sensible to pathological orderings and representations thereof
- ▶ However, provability logics yield two main advantages

- ▶ It is to be expected that |T|_{it} is more fine-grained than the other notions as it is defined in terms of a central notion: consistency
- ▶ We can expect that |T|_{it} is again very sensible to pathological orderings and representations thereof
- However, provability logics yield two main advantages
 - \blacktriangleright All the calculations involved in determining $|\mathcal{T}|_{it}$ can be done within these logics

- ▶ It is to be expected that |T|_{it} is more fine-grained than the other notions as it is defined in terms of a central notion: consistency
- We can expect that |T|_{it} is again very sensible to pathological orderings and representations thereof
- However, provability logics yield two main advantages
 - ▶ All the calculations involved in determining $|T|_{it}$ can be done within these logics
 - The logics suggest a very natural ordinal notation which is completely unambiguous up to the Feferman-Shütte ordinal Γ₀

Preliminaries and definitions Equivalences The Reduction Property

► Surprise to me:

- ► Surprise to me:
- ► There is an intimate connection between consistency statements and arithmetic

- ► Surprise to me:
- ► There is an intimate connection between consistency statements and arithmetic
- ▶ In particular, the fragments $I\Sigma_n$ can be fully characterized in terms of consistency statements

- Surprise to me:
- ► There is an intimate connection between consistency statements and arithmetic
- ▶ In particular, the fragments $I\Sigma_n$ can be fully characterized in terms of consistency statements
- ▶ We need some notation and terminology to make this precise.

Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:

- ▶ Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:
- ▶ For a formula φ , we denote the representation by $\lceil \varphi \rceil$.

- Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:
- ▶ For a formula φ , we denote the representation by $\ulcorner \varphi \urcorner$.
- ▶ A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time

- Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:
- ▶ For a formula φ , we denote the representation by $\ulcorner \varphi \urcorner$.
- ▶ A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time
- ▶ A theory is called *elementary represented* if it is represented by some elementary formula

- Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:
- ▶ For a formula φ , we denote the representation by $\ulcorner \varphi \urcorner$.
- ▶ A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time
- ▶ A theory is called *elementary represented* if it is represented by some elementary formula
- ▶ For elementary represented theories T, one can write down a formula $\mathsf{Proof}_{\mathcal{T}}(p, \ulcorner \varphi \urcorner)$ that is true only when p is the code of a proof in T of a formula φ

- Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:
- ▶ For a formula φ , we denote the representation by $\ulcorner \varphi \urcorner$.
- ▶ A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time
- ▶ A theory is called *elementary represented* if it is represented by some elementary formula
- ▶ For elementary represented theories T, one can write down a formula $\mathsf{Proof}_{\mathcal{T}}(p, \lceil \varphi \rceil)$ that is true only when p is the code of a proof in T of a formula φ
- ▶ Proof $\tau(p, \lceil \varphi \rceil)$ is a decidable formula

- Using coding techniques, syntactic objects like formulas and proofs can be represented in number theories:
- ▶ For a formula φ , we denote the representation by $\ulcorner \varphi \urcorner$.
- ▶ A formula in the language of arithmetic is *elementary* if it can be decided in elementary (multi-exponential) time
- ▶ A theory is called *elementary represented* if it is represented by some elementary formula
- ▶ For elementary represented theories T, one can write down a formula $\mathsf{Proof}_{\mathcal{T}}(p, \ulcorner \varphi \urcorner)$ that is true only when p is the code of a proof in T of a formula φ
- ▶ Proof $\tau(p, \lceil \varphi \rceil)$ is a decidable formula
- ▶ We will write $\Box_T \varphi$ for $\exists p \ \mathsf{Proof}_T(p, \ulcorner \varphi \urcorner)$

 Our base theory/finitistic theory will be EA: elementary arithmetic

- Our base theory/finitistic theory will be EA: elementary arithmetic
- ► EA is in the language of PA but the induction axioms are restricted to *bounded formulas only*

- Our base theory/finitistic theory will be EA: elementary arithmetic
- ► EA is in the language of PA but the induction axioms are restricted to *bounded formulas only*
- ▶ A bounded formula is a formula where each quantifier is bounded by a term in the language of PA which we recall is $\{0, S, +, \cdot, 2^x\}$

- Our base theory/finitistic theory will be EA: elementary arithmetic
- ► EA is in the language of PA but the induction axioms are restricted to *bounded formulas only*
- ▶ A bounded formula is a formula where each quantifier is bounded by a term in the language of PA which we recall is $\{0, S, +, \cdot, 2^x\}$
- Bounded formulas define the elementary predicates

▶ The class of Σ_0 formulas is defined the same as the class of Π_0 formulas: the class of bounded formulas

- The class of Σ₀ formulas is defined the same as the class of Π₀ formulas: the class of bounded formulas
- ▶ Σ_{n+1} -formulas are of the form $\exists \vec{x} \ \chi(\vec{x})$ with $\chi \in \Pi_n$

- The class of Σ₀ formulas is defined the same as the class of Π₀ formulas: the class of bounded formulas
- ▶ Σ_{n+1} -formulas are of the form $\exists \vec{x} \ \chi(\vec{x})$ with $\chi \in \Pi_n$
- ▶ Π_{n+1} -formulas are of the form $\forall \vec{x} \ \chi(\vec{x})$ with $\chi \in \Sigma_n$

- The class of Σ₀ formulas is defined the same as the class of Π₀ formulas: the class of bounded formulas
- ▶ Σ_{n+1} -formulas are of the form $\exists \vec{x} \ \chi(\vec{x})$ with $\chi \in \Pi_n$
- ▶ Π_{n+1} -formulas are of the form $\forall \vec{x} \ \chi(\vec{x})$ with $\chi \in \Sigma_n$
- ▶ Weak theories like EA prove all true Π_0 statements ψ , that is,

$$\mathbb{N}\models\psi\quad\Rightarrow\quad\mathsf{EA}\vdash\psi$$

- The class of Σ₀ formulas is defined the same as the class of Π₀ formulas: the class of bounded formulas
- ▶ Σ_{n+1} -formulas are of the form $\exists \vec{x} \ \chi(\vec{x})$ with $\chi \in \Pi_n$
- ▶ Π_{n+1} -formulas are of the form $\forall \vec{x} \ \chi(\vec{x})$ with $\chi \in \Sigma_n$
- ▶ Weak theories like EA prove all true Π_0 statements ψ , that is,

$$\mathbb{N} \models \psi \quad \Rightarrow \quad \mathsf{EA} \vdash \psi$$

lacktriangle Thus, weak theories like EA also prove all true Σ_1 formulas

- The class of Σ₀ formulas is defined the same as the class of Π₀ formulas: the class of bounded formulas
- ▶ Σ_{n+1} -formulas are of the form $\exists \vec{x} \ \chi(\vec{x})$ with $\chi \in \Pi_n$
- ▶ Π_{n+1} -formulas are of the form $\forall \vec{x} \ \chi(\vec{x})$ with $\chi \in \Sigma_n$
- ▶ Weak theories like EA prove all true Π_0 statements ψ , that is,

$$\mathbb{N} \models \psi \Rightarrow \mathsf{EA} \vdash \psi$$

- ▶ Thus, weak theories like EA also prove all true Σ_1 formulas
- ▶ This fact is formalizable in EA whence for $\sigma \in \Sigma_1$

$$\mathsf{EA} \vdash \sigma \to \Box_{\mathsf{EA}} \sigma$$

► From Tarski's Theorem on the undefinability of truth, we know that there is no arithmetical formula True(x) such that

$$\mathbb{N} \models \psi \leftrightarrow \mathsf{True}(\lceil \psi \rceil)$$

► From Tarski's Theorem on the undefinability of truth, we know that there is no arithmetical formula True(x) such that

$$\mathbb{N} \models \psi \leftrightarrow \mathsf{True}(\lceil \psi \rceil)$$

▶ However, there are *partial truth predicates*

► From Tarski's Theorem on the undefinability of truth, we know that there is no arithmetical formula True(x) such that

$$\mathbb{N} \models \psi \leftrightarrow \mathsf{True}(\lceil \psi \rceil)$$

- ▶ However, there are partial truth predicates
- ▶ $\mathbb{N} \models \psi \leftrightarrow \mathsf{True}_{\Pi_n}(\lceil \psi \rceil)$ for $\psi \in \Pi_n$

From Tarski's Theorem on the undefinability of truth, we know that there is no arithmetical formula True(x) such that

$$\mathbb{N} \models \psi \leftrightarrow \mathsf{True}(\lceil \psi \rceil)$$

- ▶ However, there are *partial truth predicates*
- ▶ $\mathbb{N} \models \psi \leftrightarrow \mathsf{True}_{\Pi_n}(\lceil \psi \rceil)$ for $\psi \in \Pi_n$
- Moreover, weak theories like EA prove all the Tarski Truth Conditions for these predicates, e.g.,

$$\mathsf{EA} \vdash \mathsf{True}_{\Pi_n}(\lceil \psi \land \chi \rceil) \leftrightarrow [\mathsf{True}_{\Pi_n}(\lceil \psi \rceil) \land \mathsf{True}_{\Pi_n}(\lceil \chi \rceil)]$$
 for $\psi, \chi \in \Pi_n$

From Tarski's Theorem on the undefinability of truth, we know that there is no arithmetical formula True(x) such that

$$\mathbb{N} \models \psi \leftrightarrow \mathsf{True}(\lceil \psi \rceil)$$

- ▶ However, there are *partial truth predicates*
- ▶ $\mathbb{N} \models \psi \leftrightarrow \mathsf{True}_{\Pi_n}(\lceil \psi \rceil)$ for $\psi \in \Pi_n$
- Moreover, weak theories like EA prove all the Tarski Truth Conditions for these predicates, e.g.,

$$\mathsf{EA} \vdash \mathsf{True}_{\mathsf{\Pi}_n}(\ulcorner \psi \land \chi \urcorner) \leftrightarrow [\mathsf{True}_{\mathsf{\Pi}_n}(\ulcorner \psi \urcorner) \land \mathsf{True}_{\mathsf{\Pi}_n}(\ulcorner \chi \urcorner)]$$

for
$$\psi, \chi \in \Pi_n$$

▶ The complexity of True Π_n is itself Π_n

Using partial truth predicates,
 [n]_Tφ: φ is provable in the theory whose axioms are those of
 T together with all true Π_n sentences.

- Using partial truth predicates,
 [n]_Tφ: φ is provable in the theory whose axioms are those of
 T together with all true Π_n sentences.
- ▶ We sometimes write $[0]_T \varphi$ for $\Box_T \varphi$

- Using partial truth predicates,
 [n]_Tφ: φ is provable in the theory whose axioms are those of
 T together with all true Π_n sentences.
- ▶ We sometimes write $[0]_T \varphi$ for $\Box_T \varphi$
- ▶ We abbreviate $\neg[n]_T \neg \varphi$, that is, the *n*-consistency of φ , by $\langle n \rangle_T \varphi$

- Using partial truth predicates,
 [n]_Tφ: φ is provable in the theory whose axioms are those of
 T together with all true Π_n sentences.
- ▶ We sometimes write $[0]_T \varphi$ for $\Box_T \varphi$
- ▶ We abbreviate $\neg[n]_T \neg \varphi$, that is, the *n*-consistency of φ , by $\langle n \rangle_T \varphi$
- ▶ $\langle n \rangle_T \top$ will stand for T is n-consistent

▶ Uniform reflection over T denoted by RFN(T) is the scheme

$$\forall \vec{x} \; (\Box_T \varphi(\vec{x}) \to \varphi(\vec{x}))$$

▶ Uniform reflection over T denoted by RFN(T) is the scheme

$$\forall \vec{x} \; (\Box_T \varphi(\vec{x}) \to \varphi(\vec{x}))$$

▶ Restricted reflection over T denoted by RFN $_{\Sigma_n}(T)$ is the scheme

$$\forall \vec{x} \; (\Box_T \varphi(\vec{x}) \to \varphi(\vec{x})) \quad \text{with } \varphi \in \Sigma_n$$

▶ Uniform reflection over T denoted by RFN(T) is the scheme

$$\forall \vec{x} \; (\Box_T \varphi(\vec{x}) \to \varphi(\vec{x}))$$

▶ Restricted reflection over T denoted by $RFN_{\Sigma_n}(T)$ is the scheme

$$\forall \vec{x} \; (\Box_T \varphi(\vec{x}) \to \varphi(\vec{x})) \quad \text{with } \varphi \in \Sigma_n$$

▶ It is an easy theorem that $RFN_{\Sigma_n}(T)$ is equivalent to Kleene's rule for Σ_n formulas:

$$\frac{\forall \vec{x} \, \Box_T \varphi(\vec{x})}{\forall \vec{x} \, \varphi(\vec{x})} \quad \text{with } \varphi \in \Sigma_n.$$

► From now on, *T* will be a consistent theory in the language of arithmetic that contains the theory EA.

- ▶ From now on, *T* will be a consistent theory in the language of arithmetic that contains the theory EA.
- Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ▶ From now on, *T* will be a consistent theory in the language of arithmetic that contains the theory EA.
- Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

▶ Proof: Suppose $[n]_T \perp$, then

- ▶ From now on, *T* will be a consistent theory in the language of arithmetic that contains the theory EA.
- Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ▶ Proof: Suppose $[n]_T \perp$, then
- ▶ $[0]_T(\pi \to \bot)$ for some Π_n sentence π (possibly non-standard)

- ▶ From now on, *T* will be a consistent theory in the language of arithmetic that contains the theory EA.
- Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ▶ Proof: Suppose $[n]_T \perp$, then
- ▶ $[0]_T(\pi \to \bot)$ for some Π_n sentence π (possibly non-standard)
- ▶ thus, $[0]_T \neg \pi$

- From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.
- Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ▶ Proof: Suppose $[n]_T \perp$, then
- ▶ $[0]_T(\pi \to \bot)$ for some Π_n sentence π (possibly non-standard)
- ▶ thus, $[0]_T \neg \pi$
- ▶ whence $[0]_T$ True $_{\Sigma_n}(\neg \pi)$.

- ▶ From now on, *T* will be a consistent theory in the language of arithmetic that contains the theory EA.
- Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ▶ Proof: Suppose $[n]_T \perp$, then
- ▶ $[0]_T(\pi \to \bot)$ for some Π_n sentence π (possibly non-standard)
- ▶ thus, $[0]_T \neg \pi$
- ▶ whence $[0]_T$ True $_{\Sigma_n}(\neg \pi)$.
- We obtain $\mathsf{True}_{\Sigma_n}(\neg \pi)$ using $\mathsf{RFN}_{\Sigma_n}(T)$

- From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.
- Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ▶ Proof: Suppose $[n]_T \perp$, then
- ▶ $[0]_T(\pi \to \bot)$ for some Π_n sentence π (possibly non-standard)
- ▶ thus, $[0]_T \neg \pi$
- whence $[0]_T \operatorname{True}_{\Sigma_n}(\neg \pi)$.
- We obtain $\operatorname{True}_{\Sigma_n}(\neg \pi)$ using $\operatorname{RFN}_{\Sigma_n}(T)$
- contradicting True $\Pi_n(\pi)$

- From now on, T will be a consistent theory in the language of arithmetic that contains the theory EA.
- Theorem:

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ▶ Proof: Suppose $[n]_T \perp$, then
- ▶ $[0]_T(\pi \to \bot)$ for some Π_n sentence π (possibly non-standard)
- ▶ thus, $[0]_T \neg \pi$
- ▶ whence $[0]_T$ True $_{\Sigma_n}(\neg \pi)$.
- We obtain $\text{True}_{\Sigma_n}(\neg \pi)$ using $\text{RFN}_{\Sigma_n}(T)$
- ▶ contradicting True $\Pi_n(\pi)$
- ▶ whence $\neg[n]_T\bot$, i.e., $\langle n\rangle_T\top$

$$\langle \textit{n} \rangle_{\textit{T}} \top \ \equiv \ \textit{RFN}_{\Sigma_\textit{n}}(\textit{T})$$

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

▶ For the other direction, we need a very easy lemma:

$$\mathsf{EA} \vdash \sigma \to [\mathit{n}]_{\mathcal{T}} \sigma \text{ for } \sigma \in \Sigma_{\mathit{n}+1}$$

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ► For the other direction, we need a very easy lemma:
 - $\mathsf{EA} \vdash \sigma \to [n]_{\mathcal{T}} \sigma \text{ for } \sigma \in \Sigma_{n+1}$
- ▶ Suppose $[0]_T \varphi$ with $\varphi \in \Sigma_n$

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

- ► For the other direction, we need a very easy lemma: $EA \vdash \sigma \rightarrow [n]_T \sigma$ for $\sigma \in \Sigma_{n+1}$
- Suppose [0]—a with a C \(\sigma\)
- ▶ Suppose $[0]_T \varphi$ with $\varphi \in \Sigma_n$
- suppose, for a contradiction, that $\neg \varphi$

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

For the other direction, we need a very easy lemma:

$$\mathsf{EA} \vdash \sigma \to [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1}$$

- ▶ Suppose $[0]_T \varphi$ with $\varphi \in \Sigma_n$
- ightharpoonup suppose, for a contradiction, that $\neg \varphi$
- ▶ as $\neg \varphi \in \Sigma_{n+1}$

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

▶ For the other direction, we need a very easy lemma: EA $\vdash \sigma \rightarrow [n]_T \sigma$ for $\sigma \in \Sigma_{n+1}$

▶ Suppose
$$[0]_T \varphi$$
 with $\varphi \in \Sigma_n$

- suppose, for a contradiction, that $\neg \varphi$
- ▶ as $\neg \varphi \in \Sigma_{n+1}$
- we have $[n]_T \neg \varphi$, whence

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

► For the other direction, we need a very easy lemma: $EA \vdash \sigma \rightarrow [n]_T \sigma$ for $\sigma \in \Sigma_{n+1}$

▶ Suppose
$$[0]_T \varphi$$
 with $\varphi \in \Sigma_n$

- ightharpoonup suppose, for a contradiction, that $\neg \varphi$
- ▶ as $\neg \varphi \in \Sigma_{n+1}$
- we have $[n]_T \neg \varphi$, whence
- \triangleright $[n]_T \perp$

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

► For the other direction, we need a very easy lemma: $EA \vdash \sigma \rightarrow [n]_T \sigma$ for $\sigma \in \Sigma_{n+1}$

▶ Suppose
$$[0]_{\mathcal{T}\varphi}$$
 with $\varphi \in \Sigma_n$

- suppose, for a contradiction, that $\neg \varphi$
- ▶ as $\neg \varphi \in \Sigma_{n+1}$
- we have $[n]_T \neg \varphi$, whence
- [n]_T⊥
- ▶ contradicting $\langle n \rangle_T \top$

$$\langle n \rangle_T \top \equiv RFN_{\Sigma_n}(T)$$

For the other direction, we need a very easy lemma:

$$\mathsf{EA} \vdash \sigma \to [n]_T \sigma \text{ for } \sigma \in \Sigma_{n+1}$$

- ▶ Suppose $[0]_T \varphi$ with $\varphi \in \Sigma_n$
- suppose, for a contradiction, that $\neg \varphi$
- ▶ as $\neg \varphi \in \Sigma_{n+1}$
- we have $[n]_T \neg \varphi$, whence
- [n]_T⊥
- ▶ contradicting $\langle n \rangle_T \top$
- ▶ All of the steps can be done within EA!

Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas

- Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas
- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$

- Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas
- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ It is not hard to see that

$$\forall x \square_{\mathsf{EA}}((\varphi(0) \land \forall x \ [\varphi(x) \rightarrow \varphi(x+1)]) \rightarrow \varphi(\dot{x}))$$

- Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas
- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ It is not hard to see that $\forall x \square_{\mathsf{EA}}((\varphi(0) \land \forall x \ [\varphi(x) \rightarrow \varphi(x+1)]) \rightarrow \varphi(\dot{x}))$
- Note, the complexity of this formula $(\varphi(0) \land \forall x \ [\varphi(x) \to \varphi(x+1)]) \to \varphi(\dot{x})$ 'is' Σ_{n+1}

- Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas
- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ It is not hard to see that $\forall x \square_{\mathsf{EA}}((\varphi(0) \land \forall x \ [\varphi(x) \rightarrow \varphi(x+1)]) \rightarrow \varphi(\dot{x}))$
- Note, the complexity of this formula $(\varphi(0) \land \forall x \ [\varphi(x) \to \varphi(x+1)]) \to \varphi(\dot{x})$ 'is' Σ_{n+1}
- ▶ By Kleene's rule: $\varphi(0) \land \forall x \ [\varphi(x) \to \varphi(x+1)] \to \forall x \varphi(x)$

- Let $I\Sigma_n$ be as PA but now the induction axioms restricted to Σ_n formulas
- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ It is not hard to see that $\forall x \square_{\mathsf{EA}}((\varphi(0) \land \forall x \ [\varphi(x) \rightarrow \varphi(x+1)]) \rightarrow \varphi(\dot{x}))$
- Note, the complexity of this formula $(\varphi(0) \land \forall x \ [\varphi(x) \to \varphi(x+1)]) \to \varphi(\dot{x})$ 'is' Σ_{n+1}
- ▶ By Kleene's rule: $\varphi(0) \land \forall x \ [\varphi(x) \rightarrow \varphi(x+1)] \rightarrow \forall x \varphi(x)$
- Note, this direction is fully formalizable in EA

▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$

- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$

- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$
- ▶ $\exists p \ \mathsf{Proof}_{T}(p, \lceil \sigma \rceil)$

- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$
- ▶ $\exists p \ \mathsf{Proof}_{\mathcal{T}}(p, \lceil \sigma \rceil)$
- lacktriangle Now, employ cut-elimination to obtain a cut-free proof of σ

- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$
- ▶ $\exists p \; \mathsf{Proof}_{\mathsf{T}}(p, \lceil \sigma \rceil)$
- lacktriangle Now, employ cut-elimination to obtain a cut-free proof of σ
- ▶ Now, prove by induction on p that Cut-Free-Proof $_T(p,\chi) \to \operatorname{True}_{\Sigma_{n+1}}(\lceil \chi \rceil)$

- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$
- ▶ $\exists p \ \mathsf{Proof}_{\mathcal{T}}(p, \lceil \sigma \rceil)$
- lacktriangle Now, employ cut-elimination to obtain a cut-free proof of σ
- ▶ Now, prove by induction on p that Cut-Free-Proof $_T(p,\chi) \to \operatorname{True}_{\Sigma_{n+1}}(\lceil \chi \rceil)$
- ▶ This requires Σ_{n+1} induction

- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$
- ▶ $\exists p \; \mathsf{Proof}_{\mathsf{T}}(p, \lceil \sigma \rceil)$
- lacktriangle Now, employ cut-elimination to obtain a cut-free proof of σ
- ▶ Now, prove by induction on p that Cut-Free-Proof $_T(p,\chi) \to \operatorname{True}_{\Sigma_{n+1}}(\lceil \chi \rceil)$
- ▶ This requires Σ_{n+1} induction
- ▶ With techniques from proof-theory, this can actually be brought back to Σ_n induction

- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$
- ▶ $\exists p \ \mathsf{Proof}_{\mathcal{T}}(p, \lceil \sigma \rceil)$
- lacktriangle Now, employ cut-elimination to obtain a cut-free proof of σ
- ▶ Now, prove by induction on p that Cut-Free-Proof $_T(p,\chi) \to \operatorname{True}_{\Sigma_{n+1}}(\lceil \chi \rceil)$
- ▶ This requires Σ_{n+1} induction
- ▶ With techniques from proof-theory, this can actually be brought back to Σ_n induction
- Note that the proof can only be formalized in a setting where cut-elimination can be proved

- ▶ Theorem: $I\Sigma_n \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- ▶ For the other direction, suppose $\Box_T \sigma$ with $\sigma \in \Sigma_{n+1}$
- ▶ $\exists p \ \mathsf{Proof}_{\mathcal{T}}(p, \lceil \sigma \rceil)$
- lacktriangle Now, employ cut-elimination to obtain a cut-free proof of σ
- ▶ Now, prove by induction on p that Cut-Free-Proof $_T(p,\chi) \to \operatorname{True}_{\Sigma_{n+1}}(\lceil \chi \rceil)$
- ▶ This requires Σ_{n+1} induction
- ▶ With techniques from proof-theory, this can actually be brought back to Σ_n induction
- Note that the proof can only be formalized in a setting where cut-elimination can be proved
- that is, the sup-exp function must be provably total

▶ Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\mathsf{EA}} \top \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$

- ▶ Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\mathsf{EA}} \top \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- Using similar techniques one can prove an analogous for the induction rules:

- ▶ Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\mathsf{EA}} \top \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- Using similar techniques one can prove an analogous for the induction rules:
- ► $I\Sigma_n^R$ is the closure of EA under the rule $\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}$

- ▶ Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\mathsf{EA}} \top \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- Using similar techniques one can prove an analogous for the induction rules:
- ► $I\Sigma_n^R$ is the closure of EA under the rule $\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}$
- Theorem

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

- ▶ Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\mathsf{EA}} \top \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- Using similar techniques one can prove an analogous for the induction rules:
- ► $I\Sigma_n^R$ is the closure of EA under the rule $\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}$
- Theorem

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

▶ Here Π_{n+1} -RRⁿ(EA) is the rule

$$\frac{\pi}{\langle n \rangle_{\mathsf{EA}} \pi} \quad \text{with } \pi \in \Pi_{n+1}$$

- ▶ Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\mathsf{EA}} \top \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- Using similar techniques one can prove an analogous for the induction rules:
- ► $I\Sigma_n^R$ is the closure of EA under the rule $\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}$
- Theorem

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

▶ Here Π_{n+1} -RRⁿ(EA) is the rule

$$\frac{\pi}{\langle n \rangle_{\mathsf{EA}} \pi} \quad \text{with } \pi \in \Pi_{n+1}$$

▶ It is not hard to see that $\mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA}) \vdash \pi \to \langle n \rangle \pi$ for $\pi \in \Pi_{n+1}$ whence

- ▶ Summarizing: $I\Sigma_n \equiv \langle n+1 \rangle_{\mathsf{EA}} \top \equiv \mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA})$
- Using similar techniques one can prove an analogous for the induction rules:
- ► $I\Sigma_n^R$ is the closure of EA under the rule $\frac{\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1))}{\forall x \varphi(x)}$
- Theorem

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

▶ Here Π_{n+1} -RRⁿ(EA) is the rule

$$\frac{\pi}{\langle n \rangle_{\mathsf{EA}} \pi} \quad \text{with } \pi \in \Pi_{n+1}$$

- ▶ It is not hard to see that $\mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA}) \vdash \pi \to \langle n \rangle \pi$ for $\pi \in \Pi_{n+1}$ whence
- ▶ $\mathsf{RFN}_{\Sigma_{n+1}}(\mathsf{EA}) \vdash \Pi_{n+1} \mathsf{RR}^n(\mathsf{EA})$

▶ Theorem

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

▶ RFN_{Σ_{n+1}}(EA) turns out to be Π_{n+1} conservative over EA + Π_{n+1} −RRⁿ(EA)

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

- ▶ RFN_{Σ_{n+1}}(EA) turns out to be Π_{n+1} conservative over EA + Π_{n+1} -RRⁿ(EA)
- We write

$$EA + RFN_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - RR^n(EA)$$

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

- ► RFN_{Σ_{n+1}}(EA) turns out to be Π_{n+1} conservative over EA + Π_{n+1} -RRⁿ(EA)
- ▶ We write

$$EA + RFN_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - RR^n(EA)$$

► This is formalizable in EA⁺, and can be generalized to theories other than EA

$$I\Sigma_n^R \equiv \Pi_{n+1} - RR^n(EA)$$

- ► RFN_{Σ_{n+1}}(EA) turns out to be Π_{n+1} conservative over EA + Π_{n+1} -RRⁿ(EA)
- ▶ We write

$$EA + RFN_{\Sigma_{n+1}}(EA) \equiv_n EA + \Pi_{n+1} - RR^n(EA)$$

- ► This is formalizable in EA⁺, and can be generalized to theories other than EA
- ► Here EA⁺ is the theory EA together with the axiom stating that super-exponentiation is a total function

$$ightharpoonup$$
 EA + RFN _{Σ_{n+1}} (EA) \equiv_n EA + Π_{n+1} -RRⁿ(EA)

- ightharpoonup EA + RFN_{Σ_{n+1}}(EA) \equiv_n EA + Π_{n+1} RRⁿ(EA)
- ► From this follows

$$\langle n+1\rangle \top \equiv_n \{\langle n\rangle^k \top \mid k < \omega\}$$

- ightharpoonup EA + RFN_{Σ_{n+1}}(EA) \equiv_n EA + Π_{n+1} -RRⁿ(EA)
- ▶ From this follows

$$\langle n+1\rangle \top \equiv_n \{\langle n\rangle^k \top \mid k < \omega\}$$

Bluffing (fallacious/incomplete argument):

- ightharpoonup EA + RFN_{Σ_{n+1}}(EA) \equiv_n EA + Π_{n+1} RRⁿ(EA)
- ▶ From this follows

$$\langle n+1\rangle \top \equiv_n \{\langle n\rangle^k \top \mid k < \omega\}$$

- Bluffing (fallacious/incomplete argument):
 - $\blacktriangleright \ \langle 1 \rangle \top \equiv_0 \langle 0 \rangle^\omega \top$

- ightharpoonup EA + RFN_{Σ_{n+1}}(EA) \equiv_n EA + Π_{n+1} RRⁿ(EA)
- From this follows

$$\langle n+1\rangle \top \equiv_n \{\langle n\rangle^k \top \mid k < \omega\}$$

- Bluffing (fallacious/incomplete argument):
 - $ightharpoonup \langle 1 \rangle \top \equiv_0 \langle 0 \rangle^{\omega} \top$

- ightharpoonup EA + RFN_{Σ_{n+1}}(EA) \equiv_n EA + Π_{n+1} RRⁿ(EA)
- From this follows

$$\langle n+1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \}$$

- Bluffing (fallacious/incomplete argument):
 - $ightharpoonup \langle 1 \rangle \top \equiv_0 \langle 0 \rangle^{\omega} \top$
 - $\blacktriangleright \ \ I\Sigma_1 \equiv \langle 2 \rangle \top \equiv_1 \langle 1 \rangle^{\omega} \top \equiv_0 (\langle 0 \rangle^{\omega})^{\omega} \top \equiv \langle 0 \rangle^{\omega^{\omega}} \top$
 - $\qquad \qquad \mathbf{I}\Sigma_2 \equiv \langle 3 \rangle \top \equiv_2 \langle 2 \rangle^{\omega} \top \equiv_1 \langle 0 \rangle^{\omega^{\omega}} \top \equiv_0 \langle 0 \rangle^{\omega^{\omega^{\omega}}} \top$

- ightharpoonup EA + RFN_{Σ_{n+1}}(EA) \equiv_n EA + Π_{n+1} -RRⁿ(EA)
- From this follows

$$\langle n+1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \}$$

- Bluffing (fallacious/incomplete argument):
 - $ightharpoonup \langle 1 \rangle \top \equiv_0 \langle 0 \rangle^{\omega} \top$
 - $\qquad \quad \mathsf{I} \Sigma_1 \equiv \langle 2 \rangle \top \equiv_1 \langle 1 \rangle^{\omega} \top \equiv_0 (\langle 0 \rangle^{\omega})^{\omega} \top \equiv \langle 0 \rangle^{\omega^{\omega}} \top$
 - $\qquad \qquad \blacksquare \Sigma_2 \equiv \langle 3 \rangle \top \equiv_2 \langle 2 \rangle^{\omega} \top \equiv_1 \langle 0 \rangle^{\omega^{\omega}} \top \equiv_0 \langle 0 \rangle^{\omega^{\omega^{\omega}}} \top$
- ightharpoonup PA $\equiv \langle \omega \rangle \top \equiv_0 \langle 0 \rangle^{\epsilon_0} \top$

- ightharpoonup EA + RFN_{Σ_{n+1}}(EA) \equiv_n EA + Π_{n+1} RRⁿ(EA)
- From this follows

$$\langle n+1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \}$$

- Bluffing (fallacious/incomplete argument):
 - $ightharpoonup \langle 1 \rangle \top \equiv_0 \langle 0 \rangle^{\omega} \top$

 - $I\Sigma_2 \equiv \langle 3 \rangle \top \equiv_2 \langle 2 \rangle^{\omega} \top \equiv_1 \langle 0 \rangle^{\omega^{\omega}} \top \equiv_0 \langle 0 \rangle^{\omega^{\omega^{\omega}}} \top$
- ightharpoonup PA $\equiv \langle \omega \rangle \top \equiv_0 \langle 0 \rangle^{\epsilon_0} \top$
- ▶ Where $\epsilon_0 = \sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \ldots\}$

- ightharpoonup EA + RFN_{Σ_{n+1}}(EA) \equiv_n EA + Π_{n+1} RRⁿ(EA)
- From this follows

$$\langle n+1 \rangle \top \equiv_n \{ \langle n \rangle^k \top \mid k < \omega \}$$

- Bluffing (fallacious/incomplete argument):
 - $ightharpoonup \langle 1 \rangle \top \equiv_0 \langle 0 \rangle^{\omega} \top$
 - $I\Sigma_1 \equiv \langle 2 \rangle \top \equiv_1 \langle 1 \rangle^{\omega} \top \equiv_0 (\langle 0 \rangle^{\omega})^{\omega} \top \equiv \langle 0 \rangle^{\omega^{\omega}} \top$
 - $I\Sigma_2 \equiv \langle 3 \rangle \top \equiv_2 \langle 2 \rangle^{\omega} \top \equiv_1 \langle 0 \rangle^{\omega^{\omega}} \top \equiv_0 \langle 0 \rangle^{\omega^{\omega^{\omega}}} \top$
- ▶ PA $\equiv \langle \omega \rangle \top \equiv_0 \langle 0 \rangle^{\epsilon_0} \top$
- ▶ Where $\epsilon_0 = \sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \ldots\}$
- ▶ This can be conceived as the proof theoretic ordinal of PA

