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Proof-strength of theories
Reflection, Consistency and Arithmetic

Ordinal analysis
Iterated consistency

I Since the foundational crises around 1900 more rigor was
needed within mathematics and its foundations

I Most notably, David Hilbert proposed (1900) a programme to
justify the use non-finitary methods by finitary means only

I In meta-mathematical language:

F ` Con(R)

I where F is some undisputed part of mathematics consisting of
finitary methods only, and R denotes ‘real’ mathematics
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Ordinal analysis
Iterated consistency

I The second incompleteness theorem of Gödel (1931) taught
us that we can not even expect

F ` Con(F)

under some very reasonable assumptions of F .

I Thus proving the impossibility of Hilbert’s programme.

I However, partial realizations of Hilbert’s programme have
been obtained

I Most notably, Gentzen’s consistency proof for Peano
Arithmetic (1936)
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I Peano Arithmetic (PA) is the formal arithmetical theory in the
language {0, S ,+, ·, 2x} axiomatized by the regular axioms for
the constant and function symbols together with full
induction:

ϕ(0, ~y) ∧ ∀x [ϕ(x , ~y)→ ϕ(Sx , ~y)]→ ∀xϕ(x , ~y).

I Gentzen showed

F + PR-TI(ε0) ` Con(PA)

I Here PR-TI(ε0) is transfinite induction up to ε0 for primitive
recursive (p.r.) predicates

∀α∈S [∀β≺α A(β)→ A(α)]→ ∀αA(α)

where S is some set on which ≺ defines a (p.r.) well-order of
order type ε0 and A is a p.r. predicate
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I F + PR-TI(ε0) ` Con(PA)
With F some finitistic part of mathematics (for example
Primitive Recursive Arithmetic).

I It is tempting to conceive of PR-TI(ε0) as the non-finitistic
part encompassed by PA.

I And in analogy to this, one can define a norm that measures
proof strengths for theories T as follows:

|T |con := min{α | PRA + PR-TI(α) ` Con(T)}
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I The norm |T |con is very sensitive to

(a.) The way ordinals are notated
(b.) The way these notations are represented in a theory dealing

with natural numbers (PRA)

I Ad (a.) Recall that an ordinal is just defined as a transitive
set that is well-ordered by ∈. They live out there but to pick
out one particular ordinal one needs a recipe. A uniform
recipe makes up an ordinal notation system.

(where x being transitive means ∀y∈x∀z(z ∈ y → z ∈ x),
that is, each element y of x is also a subset of x)

I Ad (b.): There are pathological orderings known (Kreisel)
such that ω would be |T |Con for any T
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I Kreisel’s pathological ordering for a consistent theory T :

I We define n <T m iff

I n < m and ∀x < max{n,m} ¬ProofT (x , p0 = 1q)
I m < n and ∃x < max{n,m} ProofT (x , p0 = 1q)

I (PRA proves) The ordering <T looks like

I 0 <T 1 <T 2 <T . . .
in case T is consistent

I x0 >T x0 − 1 >T . . . >T 0 >T x0 + 1 >T x0 + 2 >T . . .
in case x0 is the smallest proof of 0 = 1

I Now, in PRA:

I If ∃xProof(x , p0 = 1q) then for any z :
¬∀y <T z¬Proof(y , p0 = 1q).

As there are arbitrary large proofs of anything that has a proof.
Whence ∀y <T z¬Proof(y , p0 = 1q)→ ¬Proof(z , p0 = 1q)

I If ∀x¬Proof(x , p0 = 1q) then certainly

∀y <T z¬Proof(y , p0 = 1q)→ ¬Proof(z , p0 = 1q)

I By induction along <T we prove in PRA consistency of T .
I Note that, as T is consistent, OT(N, <T ) = ω.
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Ordinal analysis
Iterated consistency

I Beklemishev has provided pathological representations for
arbitrary large β < ωCK

1 such that PRA together with
transfinite induction along β does not prove Con(PA).

I Gentzen: F + PR-TI(ε0) ` Con(PA)

I Consequently, PA 0PR-TI(ε0)

I However, Gentzen later also showed that PA `PR-TI(α) for
any α < ε0

I This leads to another measure for prove-strength of a theory
T : the supremum of the order types of those recursive
well-orders that are provably (in T ) well founded

I |T |sup := {α |
α is the ordertype of a, provably in T , recursive well-order}

I There are some technical details here as well-foundedness is a
Π1

1 predicate and as such not definable in first-order theories.
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Ordinal analysis
Iterated consistency

I |T |sup is more robust and less prone to pathological
counter-examples.

I As a matter of fact, it is a bit too robust:

I Let S be a set of true Σ1
1 sentences, then, under some fairly

reasonable conditions

|T |sup = |T + S |sup
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Ordinal analysis
Iterated consistency

I We know that, if T is consistent, then T + Con(T ) is
consistent too

I This idea leads us to consider transfinite progressions of
consistency iterations for some basic theory T :

I T0 := T
I Tα+1 := Tα + Con(Tα)
I Tλ := ∪β<λTβ for limit λ

I We can define the proof theoretic measure

|T |it := min{α | Fα ` Con(T )}

where F is a suitably chosen finitistic fragment of arithmetic
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Ordinal analysis
Iterated consistency

I It is to be expected that |T |it is more fine-grained than the
other notions as it is defined in terms of a central notion:
consistency

I We can expect that |T |it is again very sensible to pathological
orderings and representations thereof

I However, provability logics yield two main advantages

I All the calculations involved in determining |T |it can be done
within these logics

I The logics suggest a very natural ordinal notation which is
completely unambiguous up to the Feferman-Shütte ordinal Γ0
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

I Surprise to me:

I There is an intimate connection between consistency
statements and arithmetic

I In particular, the fragments I Σn can be fully characterized in
terms of consistency statements

I We need some notation and terminology to make this precise.
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

I Using coding techniques, syntactic objects like formulas and
proofs can be represented in number theories:

I For a formula ϕ, we denote the representation by pϕq.

I A formula in the language of arithmetic is elementary if it can
be decided in elementary (multi-exponential) time

I A theory is called elementary represented if it is represented
by some elementary formula

I For elementary represented theories T , one can write down a
formula ProofT (p, pϕq) that is true only when p is the code
of a proof in T of a formula ϕ

I ProofT (p, pϕq) is a decidable formula

I We will write �Tϕ for ∃p ProofT (p, pϕq)
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

I Our base theory/finitistic theory will be EA: elementary
arithmetic

I EA is in the language of PA but the induction axioms are
restricted to bounded formulas only

I A bounded formula is a formula where each quantifier is
bounded by a term in the language of PA which we recall is
{0,S ,+, ·, 2x}

I Bounded formulas define the elementary predicates
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I Bounded formulas define the elementary predicates
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I The class of Σ0 formulas is defined the same as the class of
Π0 formulas: the class of bounded formulas

I Σn+1-formulas are of the form ∃~x χ(~x) with χ ∈ Πn

I Πn+1-formulas are of the form ∀~x χ(~x) with χ ∈ Σn

I Weak theories like EA prove all true Π0 statements ψ, that is,

N |= ψ ⇒ EA ` ψ

I Thus, weak theories like EA also prove all true Σ1 formulas

I This fact is formalizable in EA whence for σ ∈ Σ1

EA ` σ → �EAσ
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

I From Tarski’s Theorem on the undefinability of truth, we
know that there is no arithmetical formula True(x) such that

N |= ψ ↔ True(pψq)

I However, there are partial truth predicates

I N |= ψ ↔ TrueΠn(pψq) for ψ ∈ Πn

I Moreover, weak theories like EA prove all the Tarski Truth
Conditions for these predicates, e.g.,

EA ` TrueΠn(pψ ∧ χq)↔ [TrueΠn(pψq) ∧ TrueΠn(pχq)]

for ψ, χ ∈ Πn

I The complexity of TrueΠn is itself Πn
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

I Using partial truth predicates,
[n]Tϕ : ϕ is provable in the theory whose axioms are those of
T together with all true Πn sentences.

I We sometimes write [0]Tϕ for �Tϕ

I We abbreviate ¬[n]T¬ϕ, that is, the n-consistency of ϕ, by
〈n〉Tϕ

I 〈n〉T> will stand for T is n-consistent
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Equivalences
The Reduction Property

I Uniform reflection over T denoted by RFN(T ) is the scheme

∀~x (�Tϕ(~̇x)→ ϕ(~x))

I Restricted reflection over T denoted by RFNΣn(T ) is the
scheme

∀~x (�Tϕ(~̇x)→ ϕ(~x)) with ϕ ∈ Σn

I It is an easy theorem that RFNΣn(T ) is equivalent to Kleene’s
rule for Σn formulas:

∀~x �Tϕ(~̇x)

∀~x ϕ(~x)
with ϕ ∈ Σn.
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

I From now on, T will be a consistent theory in the language of
arithmetic that contains the theory EA.

I Theorem:
〈n〉T> ≡ RFNΣn(T )

I Proof: Suppose [n]T⊥, then

I [0]T (π → ⊥) for some Πn sentence π (possibly non-standard)

I thus, [0]T¬π
I whence [0]T TrueΣn(¬π).

I We obtain TrueΣn(¬π) using RFNΣn(T )

I contradicting TrueΠn(π)

I whence ¬[n]T⊥, i.e., 〈n〉T>
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Preliminaries and definitions
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The Reduction Property

I Theorem:
〈n〉T> ≡ RFNΣn(T )

I For the other direction, we need a very easy lemma:
EA ` σ → [n]Tσ for σ ∈ Σn+1

I Suppose [0]Tϕ with ϕ ∈ Σn

I suppose, for a contradiction, that ¬ϕ
I as ¬ϕ ∈ Σn+1

I we have [n]T¬ϕ, whence

I [n]T⊥
I contradicting 〈n〉T>
I All of the steps can be done within EA!
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

I Let I Σn be as PA but now the induction axioms restricted to
Σn formulas

I Theorem: I Σn ≡ RFNΣn+1(EA)

I It is not hard to see that
∀x �EA((ϕ(0) ∧ ∀x [ϕ(x)→ ϕ(x + 1)])→ ϕ(ẋ))

I Note, the complexity of this formula
(ϕ(0) ∧ ∀x [ϕ(x)→ ϕ(x + 1)])→ ϕ(ẋ) ‘is’ Σn+1

I By Kleene’s rule: ϕ(0) ∧ ∀x [ϕ(x)→ ϕ(x + 1)]→ ∀xϕ(x)

I Note, this direction is fully formalizable in EA
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∀x �EA((ϕ(0) ∧ ∀x [ϕ(x)→ ϕ(x + 1)])→ ϕ(ẋ))

I Note, the complexity of this formula
(ϕ(0) ∧ ∀x [ϕ(x)→ ϕ(x + 1)])→ ϕ(ẋ) ‘is’ Σn+1

I By Kleene’s rule: ϕ(0) ∧ ∀x [ϕ(x)→ ϕ(x + 1)]→ ∀xϕ(x)
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I For the other direction, suppose �Tσ with σ ∈ Σn+1

I ∃p ProofT (p, pσq)

I Now, employ cut-elimination to obtain a cut-free proof of σ

I Now, prove by induction on p that
Cut-Free-ProofT (p, χ)→ TrueΣn+1(pχq)

I This requires Σn+1 induction

I With techniques from proof-theory, this can actually be
brought back to Σn induction

I Note that the proof can only be formalized in a setting where
cut-elimination can be proved

I that is, the sup-exp function must be provably total
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Proof-strength of theories
Reflection, Consistency and Arithmetic

Preliminaries and definitions
Equivalences
The Reduction Property

I Summarizing: I Σn ≡ 〈n + 1〉EA> ≡ RFNΣn+1(EA)

I Using similar techniques one can prove an analogous for the
induction rules:

I I ΣR
n is the closure of EA under the rule ϕ(0)∧∀x(ϕ(x)→ϕ(x+1))

∀xϕ(x)

I Theorem
I ΣR

n ≡ Πn+1−RRn(EA)

I Here Πn+1−RRn(EA) is the rule

π

〈n〉EAπ
with π ∈ Πn+1

I It is not hard to see that RFNΣn+1(EA) ` π → 〈n〉π for
π ∈ Πn+1 whence

I RFNΣn+1(EA) ` Πn+1−RRn(EA)
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Preliminaries and definitions
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The Reduction Property

I Theorem
I ΣR

n ≡ Πn+1−RRn(EA)

I RFNΣn+1(EA) turns out to be Πn+1 conservative over
EA + Πn+1−RRn(EA)

I We write

EA + RFNΣn+1(EA) ≡n EA + Πn+1−RRn(EA)

I This is formalizable in EA+, and can be generalized to
theories other than EA

I Here EA+ is the theory EA together with the axiom stating
that super-exponentiation is a total function
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Equivalences
The Reduction Property

I EA + RFNΣn+1(EA) ≡n EA + Πn+1−RRn(EA)

I From this follows

〈n + 1〉> ≡n {〈n〉k> | k < ω}

I Bluffing (fallacious/incomplete argument):

I 〈1〉> ≡0 〈0〉ω>
I IΣ1 ≡ 〈2〉> ≡1 〈1〉ω> ≡0 (〈0〉ω)ω> ≡ 〈0〉ωω>
I IΣ2 ≡ 〈3〉> ≡2 〈2〉ω> ≡1 〈0〉ω

ω> ≡0 〈0〉ω
ωω

>

I PA ≡ 〈ω〉> ≡0 〈0〉ε0>
I Where ε0 = sup{ω, ωω, ωωω

, ωω
ωω

, . . .}
I This can be conceived as the proof theoretic ordinal of PA
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