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Interpretability logic

» Intepretability logics have a binary modal operator .
» Basic interpretability logic IL:
classically valid formulas (in the new language, O, <, >);
K o(A - B) -» (A - OB);
Lob O(DA — A) - 0OA;
J1 o(A - B)—> A B;
J2 (A>B) A (B>-C)—> A>C;
JB3 (A>C) A (BC)—>AVB®>C;
J4 A>B — (0A = OB);
J5 A A.
» rules: modus ponens and necessitation A/OA.

(parentheses priority: =, 0, 0; A, V; >; —, <)



Models

» Semantics: extend the usual relational (Kripke) model.
Veltman model: M = (W, R,{Sy : we W}, V), where:
1. W=#0;
2. R~ 'is well-founded (no xoRx; Rx2R ... chains);
3. R s transitive;
4. S, C R(w)? is reflexive, transitive, contains R N R(w)?
(wRuRv implies uSyv);
5. V: Prop —» P(W).

Truth of a formula F > G (“F interprets G”) in a world w € M:

v

v

wi-rF>G & VYxeR(w): xrF=3yeSy(x): yrG.

\4

IL-frame (Veltman frame) is a triple
F =(W,R,{Syw : we W}).
We have:

v

IL-F © VYF: FEF.



Frame conditions

» Some extensions of IL:

ILM, IL+A>B—->OAAOC>BAOC
ILW IL+A>B—->A>BADO-A
IiLw IL+A>-B—->BAoC>BAOCADO-A

» ILW* = ILMyW C IL(All)
» These logics are complete w.r.t. certain classes of frames:

(My)  wRuRxSyVvRz = uRz;
(W)  Sw o R is reverse well-founded for each w
(W7) (Mp) and (W)

» ILW-frame is IL-frame that satisfies (W) etc.



Proving decidability

v

Let’s focus on IL.

FMP: if x - F, then there is finite M and x" € M s.t. X" F.
Decision procedure: simultaneously do two things:

» Enumerate the (countable) set of all IL-proofs.
» Enumerate the (countable) set of (descriptions of) finite
IL-models.

v

v

v

The usual way of proving FMP is by filtrations.



Filtrations on IL-frames

» Let [ contain A, closed under subformulas.

» Assume ~ is an equivalence relation on W, ~C=r.

» For any V C W, define V= {[v]IveV}

» We define the rest of M as follows.

» R ={([w],[u]) | wRu,30C € T : w ¥ OC, u + OC}.

> [u]§[W][v] if and only if [u], [v] € R([w]), and for all/some
w’ € [w] and some u’ € [u] such that w’Ru” we have u’S,, v’
for some v/ ~ v.

» Define I so that x and [x] agree on variables in I'.
» We'll write R, S instead of R, S when context allows.

» Problem: we lose transitivity of Sy}
W — {U~ vy ~ Vo w Z}, (W] = {[u] w [v] » [2]}



Filtrations on IL-frames (2)

» Let I contain A, closed under subformulas.

» Assume ~ is an equivalence relation on W, ~C=r.

» For any V C W, define V= {[v]IveV}

» We define the rest of M as follows.

» R ={([w].[u]) | wRu,30C €T : w ¥ 0C, u I OC}.

> [u]§[W][v] if and only if [u], [v] € R([w]), and for some/all
w’ € [w] and all " € [u] such that w’Ru’ we have uv’S,, v’ for
some v/ ~ v.

» Define I so that x and [x] agree on variables in I'.
» We'll write R, S instead of R, S when context allows.

» Problem: we lose S,-successors that don’t agree enough.
w - {V1 [X] e Up ~ Uo v V2[—'X]},
(W] = {[u] ~» 7}



Generalized frames

» In the last example, ideally [u] ~> {vy, va}.

» Generalized IL-frames (generalized Veltman frames).
» M=(W,R,{S, : we W}, V), where:
1. W=£0;
2. R~ 'is well-founded (no xoRx1Rx2R ... chains);
3. Ris transitive;
4. S, € R(w) x 2FR") js:
> non-empty;
» quasi-reflexive  uS,{u};
» quasi-transitive  uS,{v;|i€ l}and v;S,Z = uS,, \U{Z | i€ l};
» contains RN R(w)?2  wRuRv implies uS,{v};
» is monotonous uS,V = uS,V,VcV

5. V: Prop — P(W).
» Truth of a formula F > G (“F interprets G”) in a world x € M:

wikF>G & VYxeR(w): xrF=3VeS,(x): Vi G.

» Vi Gstandsforvir Gforallve V.



Filtration property

» R ={([w].[u]) | wRu,30C €T : w ¥ 0C, u I OC}.

> [u]Syw V if and only if {[u]}, V € R([w]), and for all w’ € [w]
and all " € [u] such that w/Ru’ we have u'S, V(w’, u") for
some V(w/,u’) C V.

> w o {(vi[X]} e ug ~ Uz w (Ve[ =X,
(W] = {[u] ~ {[v1]. [v2]}}

» Assume (W, R, S, ) is a generalized frame (depends on ~).

» Dowehavewir F & [w] I F?



» Denote [A]y = {x € R[w] | x I A}.

Lemma
Letw ¥ A > B. There is a maximal u € [A], such that

uS,V = V¥ B.

We also have u ¥ GA, B.

Proof.

Existence: definition of . Maximality: R is conversely
well-founded. Since uS,{u}, obviously u ¥ B. Suppose u I GA.
Then uRv I A. Since uS,{v}, by quasi-transitivity we have
Sw(v) € Sy(u). Contradiction with maximality of u.



Theorem

wikF — [w]rF.

Proof.
Induction on F.
& Assume w ¥ A > B. Lemma: there is a maximal u € [A]w
such that uSyV = V ¥ B; and u ¥ OA.
We have w I ©A, and since u ¥ A, [w]R[u].
Let V arbitrary s.t. [u]S[W]V In particular, uSy, V’ for some
V' C V. Since V' ¥ B, by IH, V' ¥ B. Therefore V ¥ B.



Theorem

wikF < [w]rF.

Proof.
Induction on F.

= Assume w I- A > B. Assume [w]R[u]  A. We construct V s.t.
[W]R[u]Sw V + B.
Let w’ € [w], v € [u], wRu. Since w’ ~ w, w’ I A > B,
therefore for some V(w’,u’), u'Sy V(w’,U") I+ B.
For each point v e V(w’,u"), put Z, = {v}if v ¥ OB.
Otherwise, Z, = {m}, where m is arbitrary maximal world from
[B]v- Now, vSyZy, so by quasi-transitivity, vSy |, Z, + 0-B.
Put V.= UW’G[W],U’E[u],WF\’U,VGV(W/,U/) Zy. By IH, V + B,O0-B.
It remains to show that V ¢ R([w]). This requires
3C:oCeT,[w]¥oC,V roC. Take C = -B.



v

v

v

v

So, if (W, ﬁ, §, I-) is a model at all, then it is a filtration of
M=(W,R,S,I).

Is it a model (does it satisfy quasi-transitivity etc.)? Depends
on what ~ is.

Ideally, x and [x] are structurally similar, so that
quasi-transitivity etc. is preserved.

So, each y ~ x should be structurally similar to x.



Definition
A bisimulation between IL-models (W, R, {S,, : w € W}, ) and
(W',R" (S, :w eW}iyisanyZC Wx W', Z # 0:
(at) if wzZw’ thenw I p < W’ I p;
(forth) if wZw’ and wRu, then there exists v’ € R’(w’) with uzZu’

andforall V' € S/ ,(u") there is V € Sy, (u) such that for all
v € V thereis v/ € V’ with vZv’;

(back) if wZw’ and w’R’U’, then there exists u € R(w) such that
uZu’' and for all V € Sy (u) there is V' € S;,,(u’) such that for
all v’ € V' there is v € V with vZv’.

» By induction on F, if x and y are bisimilar (w.r.t. any
bisimulation), x + F < y I F.

» Union of bisimulations (over generalized frames) is itself a
bisimulation (Vrgo¢ and Vukovi¢, 2010).

» In particular, there is a largest (auto)bisimulation Z ¢ W2.



» Denote by ~ the largest bisimulation on W?2.
(equivalently, denote x ~ y if there is any bisimulation at all
which equates x and y)

Theorem
(W, ﬁ, §, IF) is a model.

Proof.

We should check: (1) W £ 0, (2) R~ is well-founded, (3) R is
transitive, (4) §[W] c R([w]) x 2R (5) is quasi-reflexive
[u]S[W]{[u] 6) quasi-transitive [u]S[W] [vi] | i€ I} and
[VilSwZ = [u]lSiw ULZi | i € I}, (7) contains R n R([w])?
[w]R[u]R[v] implies [u]Sjw;{[v]}, (8) is monotonous

[U]S[W] V= [U] S[W] vi,vcVv



Proof.

We should check: (1) W # 0, (2) R~ is well-founded, (3) R is
transitive, (4 ) S[W] c R([w]) x 2R (5) is quasi-reflexive
[u]S[W] [u]}, (B) quasi-transitive [u]S[W] [vi] | i€ I} and
[VilSwZ = [u]S[W] UtZ; | i € I, (7) contains R n R([w])?
[w]R[u]R[v] implies [u]Sjw{[v]}, (8) is monotonous

[U]S[W] V= [y S[W] V,vVcVv.



Proof.

We should check: (1) W £ 0, (2) R~ is well-founded, (3) R is
transitive, (4 ) g[w] c R([w]) x 2R (5) is quasi-reflexive

[u]S[W] [u]}, (B) quasi-transitive [u]S[W] [vi] | i€ I} and

[VilSwZ = [u]S[W] UtZ; | i € I, (7) contains R n R([w])?
[w]R[u]R[v] implies [u]Sjw{[v]}, (8) is monotonous

[U]S[W] V= [y S[W] V,vVcVv.

(8). Assume [w]|R[u]R][v]. Then (w.l.o.g.) wRu ~ u’Rv. Now (back)
implies there is v € R(u), v/ ~ v. So wRuRV’, thus wRVv’. Since
[w]R[u], thereis A s.t. w ¥ O-A, u - O-A. So, also v’ I O0—-A. But
then [w]R[v’]. Since v’ ~ v, [W]|R]v].



Proof.

We should check: (1) W # 0, (2) R~ is well-founded, (3) R is
transitive, (4 ) S[W] c R([w]) x 2R (5) is quasi-reflexive

[u]S[W] [u]}, (B) quasi-transitive [u]S[W] [vi] | i€ I} and

[VilSwZ = [u]S[W] UtZ; | i € I, (7) contains R n R([w])?
[w]R[u]R[v] implies [u]Sw{[v]}, (8) is monotonous

[U]§[W] V= [U]§[W] V,vVcVv.

(8). Assume [w]|R[u]R][v]. Then (w.l.o.g.) wRu ~ u’Rv. Now (back)
implies there is v € R(u), v/ ~ v. So wRuRV’, thus wRVv’. Since
[w]R[u], thereis A s.t. w ¥ O-A, u - O-A. So, also v’ I O0—-A. But
then [w]R[v’]. Since v’ ~ v, [W]R]v].

(7) Assume [w]R[u]R[v]. We already know [w]R[u] and [w]R][v].
Let w’ ~ w,u” ~ u such that wRu’. Since u’ ~ u, (back) implies
there is v/ ~ v such that w’Ru’Rv’. So for arbitrary w’ ~ w,u’ ~ u
there is v/ s.t. U'Sy/{v’} and indeed [v] € {[v]}. O



» Thus, if ~ is the largest bisimulation on W?, then (W, ﬁ,g, I)
is a model, and a filtration.

We were trying to prove finite model property; is this a finite
model?

» Each R-transition eliminates at least one ¢-formula from I; so
height is finite.

» Still, branching factor might be infinite.



Definition

A n-bisimulation between IL-models (W, R,{S,, : w € W}, ) and

(W',R',{S,, : w € W}, ) is any sequence

Z,C---CZyC Wx W:

(at) if wZow’ thenw - p < W’ I p;

(forth) if wZ,w’ and wRu, then there exists v’ € R’(w’) with
uZ,-1u" andforall V' € S/, (u’) there is V € Sy, (u) such that
for all v € V there is v/ € V' with vZ,_{V/;

(back) if wzZ,w’ and w’R’U’, then there exists u € R(w) such that
uZ,-1u andforall V € Sy(u) thereis V' € S/ ,(u") such that
for all v/ € V'’ there is v € V with vZ,_{V’.

» Since height of M is bounded by ||, worlds are |['|-bisimilar iff
bisimilar.



v

v

v

Put u =, vif uand v agree on all formulas with at most n
nested modalities.

From now on, assume Prop := PropNT.

Now there are only finitely many formulas of modal depth up
to ng (up to local equivalence).

Denote Th, w the set of all formulas F s.t. |[F|<nand w - F.



Lemma

U~pV & U=p V.

Proof.

= Induction on F.

< Induction on n. Step: assume (forth) doesn’t hold.
Then there is u € R(w):

(YU ~pq u, U € R(w))@AV'(U') € Sw (U'))(YV € Sy (u))
Av(u, V) e V)(VV e V(U))v(U', V) #p-1 V.

Put Bv := Aw~,  uweR(w) Thn-1 v(u', V). Put

B := Aves,(u) ~Bv. Forall v ~ u, we have V'(u’) - B
(because v(U', V) #p_1 V').

Let A := Thy_1 u. Now w’ I A > B. Since w =, W/, then
w I A > B. Contradiction.



v

v

v

v

v

Denote N' = M.
Forx,y e Nywenowhave x ~y & X~y < X=VY.
There are obviously only finitely many worlds in M/ =r|.

Since =rj = ~r, N (that is, M) has only finitely many worlds.
Thus we have FMP for IL.



Extending to ILX

» To prove FMP, given ILX that is complete w.r.t. class of
Veltman frames that satisfy property C, we need to fill in the
following:

1. What is the (generalized) frame condition G of X?
2. Is ILX complete w.r.t. to the class of G-frames?
3. Does M have G if M has C?

» For popular choices of X (except for W, W*), 1 is known; and 2
usually reduces to completeness w.r.t. C.



Logic ILM

v

ILMgislL+A>B —- A ADC> B ADOC.
Frame condition (VM):

v

wRuRxS,,vRz = uRz.

v

Frame condition (GVM):

wRuRxS,V = (3V' C V)(uSwV’ & R(V’) € R(u)).

v

For each VM, there is a natural GVM (for xS, y, xSw{y}).

v

Remains to prove M preserves (Mo)gen-



Theorem
If M has property (My), then M has property (Mp).

Proof.

Let [w]R[u]R[x]S[W]V. Fix w’ € [w], v’ € [u]. By bisimilarity, there
is x” ~ x, wRURXx.

Since [x]S[W]V, there is V(w’, u’) such that x’S, V(w’, u") and
v(w w)c V.

By (Mp), there is V'(w’,u") € V(w’, u") such that

R(V'(w',u")) € R(V).

Choose such V'(w/,u’) for w’ € [w],u’ € [u]; V/ = J V' (W, ).
Now [u]S[W]V, remains to show R(V’) € R([u]). Take [v] € V' and
any [z] € R([v]), w.l.o.g. we have vRz. By definition,

v~V eV(w,U)forsome v,w ~ w,u" ~ u. Since v~ Vv, VvRZ
for some z’ ~ z. We had R(V’(w’,u’)) € R(V').

So, Z’ € R(U’). To show [z] € R([u]), there should be a formula C,
[u] - ©C, [z] ¥ ©C. Take such C from [v]R|z].

Since v ~ v/, v/ I ©C and R(V'(w’,u’)) € R(u’), we have

u - oC. O



Logic ILW

» ILWisIL+ A>B —» A> B AO-A.
» Frame condition (VM):

Sw o R is reverse well-founded for each w
» Frame condition (GVM)?

(Yw e W)(VX € R(w))(VZ € S, (X),Z # 0)(Vz € 2)
(AV S X)(2SwV & (Vv € V)(R(v) N Z = 0)).

» (VZ C S;,'(X) is: for all Z such that for all z € Z, zS,,X)

» (Interestingly, equivalent after replacing (Vz € Z) with
(3z € Z); occasionally useful in proofs.)



Logic ILW*

» ILW*islL+A>B - BAOC> B AOC AO-A.

» ILW* = ILWMp.

» Frame condition (GVM)?

» Each ILW*-frame is ILW-frame (ILWMg 2 ILW) and
ILMp-frame (ILWMq 2 ILMp).

» Conversely, if ¥ is an both an ILW-frame and an ILMg-frame,
then it is an ILWMg-frame (induction on proof length).

» So, the frame condition is:

(W)gen and (Mo)gen-

» IFILW* ¥ F, there is a ILMo-, ILW-VM M, w € M, s.t. w ¥ F.

Then M is an ILMg-, ILW-model, and so an ILW*-model.



Complexity

v

Given X, what is comp. complexity of {F | ILX + F}?
Since GL C IL, at least PSPACE for any natural choice of X.
The only (?) known result: ILg is PSPACE-hard.

v

v

v

Our goals:

» IL is in PSPACE;
» ILWis in PSPACE.

(corollary: both are PSPACE-complete)

v



Complexity (2)

» Let F be any non-theorem of ILX. By completeness, there is
M, we Mst weF.
1. Show that M can be transformed to a certain model M with
some desirable properties:
» accessibility relation (R) is a tree;
> polynomial height;
> polynomial branching factor;
» S-relations should be “factorized”.
2. Show that there is an algorithm that verifies the existence of all
models with such properties.
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