Introducción a la Lógica

Curso 2017 - 2018 Grupo A3. Aula 405 Eduardo Hermo Reyes

16 de octubre de 2017

Ejercicio 1. Diga si las siguientes afirmaciones son verdaderas o falsas de acuerdo a lo explicado en clase. En caso de que la afirmación sea falsa señale y explique dónde está el error.

- 1. Si α es una fórmula, entonces $\neg(\alpha)$ es una fórmula;
- 2. (p) es una fórmula atómica;
- 3. ¬p es una fórmula atómica;
- 4. $(p \land q)$ no es una fórmula atómica;
- 5. Si una fórmula α no es una contradicción, entonces es una tautología;
- 6. Si una fórmula α es una contradicción, entonces $\neg \alpha$ es una tautología;
- 7. Si una fórmula α no es una tauotlogía, entonces es una contradicción;
- 8. Si una fórmula α es una tautología, entonces $\neg \alpha$ es una contradicción;
- 9. Si α y β son fórmulas contigentes, también lo son $(\alpha \wedge \beta)$ y $(\alpha \vee \beta)$;
- 10. Si α es una contradicción y β una fórmula cualquiera, $(\alpha \wedge \beta)$ es una contradicción;
- 11. Si α y β son tautologías, también los son $(\alpha \wedge \beta)$ y $(\alpha \vee \beta)$.

Ejercicio 2. Demuestre los siguientes enunciados:

- 1. Si α es una contradicción, entonces para cualquier fórmula β , $(\alpha \to \beta)$ es una tautología;
- 2. $Si(\alpha \rightarrow \beta)$ y α son tautologías, entonces también lo es β .

Ejercicio 3.

1. Demuestre la siguiente equivalencia lógica:

$$(p \lor q) \land (r \lor p) \land (\neg q \lor \neg r \lor p) \equiv p.$$

2. Halle una asignación que confirme lo siguiente:

$$(p \lor r \lor t) \land (r \lor p) \land (\neg t \lor \neg r \lor p) \not\equiv p$$

Ejercicio 4. Diga si las siguientes equivalencias son ciertas o no. En caso de que no sea cierta, de una asignación que lo demuestre:

- 1. $p \leftrightarrow p \equiv p$;
- 2. $(p \leftrightarrow p) \land p \equiv p$;
- 3. $(p \leftrightarrow \neg p) \equiv \neg p;$
- 4. $p \rightarrow q \equiv \neg q \rightarrow \neg p$;
- 5. $p \to (q \land r) \equiv (p \to q) \land (p \to r);$
- 6. $p \to (p \land \neg p) \equiv \neg p$;
- 7. $(p \lor q) \to r \equiv (p \to r) \lor (q \to r)$.

Solución al ejercicio 1.

- 1. **Falsa.** $\neg(\alpha)$ debería ser $\neg\alpha$;
- 2. Falsa. (p) no es una fórmula;
- 3. **Falsa.** $\neg p$ es una fórmula compuesta;
- 4. Verdadera;
- 5. Falsa. Si α no es una contradicción, entonces puede ser una fórmula contingente o una tautología;
- 6. Verdadera;
- 7. Falsa. Si α no es una tautología, entonces puede ser una fórmula contingente o una contradicción;
- 8. Verdadera;
- 9. **Falsa.** Por ejemplo, $p \vee \neg p$ son fórmulas contingentes pero $(p \wedge \neg p)$ es una contradicción y $(p \vee \neg p)$ es una tautología;
- 10. Verdadera;
- 11. Verdadera.

Solución al ejercicio 2.

- 1. Supongamos que α es una contradicción. Entonces, para toda asignación $v, \overline{v}(\alpha) = F$. Así pues, para cualquier fórmula β , tenemos que para toda asignación $v, \overline{v}(\alpha) = F$ o $\overline{v}(\beta) = V$. Por lo tanto, para toda asignación $v, \overline{v}((\alpha \to \beta)) = V$. Es decir, que $(\alpha \to \beta)$ es una tautología.
- 2. Supongamos que $(\alpha \to \beta)$ y α son tautologías. Entonces, para toda asignación v, tenemos que: a) $\overline{v}(\alpha) = F$ o $\overline{v}(\beta) = V$, y b) $\overline{v}(\alpha) = V$. Por lo tanto, podemos concluir que para toda asignación v, $\overline{v}(\beta) = V$. Es decir, que β es una tatulogía.

Solución al ejercicio 3.

- 1. Supongamos que v(p) = V. Entonces:
 - (a) $\overline{v}(p) = V$;
 - (b) $\overline{v}((p \vee q)) = V;$
 - (c) $\overline{v}((r \vee p)) = V;$
 - (d) $\overline{v}((\neg q \vee \neg r \vee p)) = V;$

y así pues $\overline{v}\big((p\vee q)\wedge (r\vee p)\wedge (\neg q\vee \neg r\vee p)\big)=\overline{v}(p)=V.$

Supongamos v(p) = F y en busca de una contradicción asumamos que $\overline{v}((p \lor q) \land (r \lor p) \land (\neg q \lor \neg r \lor p)) = V$. Entonces:

- (a) $\overline{v}(p) = F$;
- (b) $\overline{v}((p \vee q)) = V;$
- (c) $\overline{v}((r \vee p)) = V;$
- (d) $\overline{v}((\neg q \vee \neg r \vee p)) = V$.

De los puntos (a) y (b) deducimos que v(q) = V y de los puntos (a) y (c), que v(r) = V Pero entonces, $\overline{v}(\neq q) = \overline{v}(\neq r) = \overline{v}(p) = F$. Así pues, $\overline{v}((\neg q \lor \neg r \lor p)) = F$ y por lo tanto, $\overline{v}((p \lor q) \land (r \lor p) \land (\neg q \lor \neg r \lor p)) = F$ en contra de nuestro supuesto.

2. Consideremos la siguiente asignación:

$$v(p) = F$$
, $v(r) = V$ y $v(t) = F$

Si v(p) = F entonces $\overline{v}(p) = F$. Por otro lado, si v(r) = V entonces $\overline{v}((p \lor r \lor t)) = V$ y $\overline{v}((r \lor p)) = V$. Finalmente, si v(t) = F, entonces $\overline{v}(\neg t) = V$ y así, $\overline{v}((\neg t \lor \neg r \lor p)) = V$. Con lo anterior podemos observar que $\overline{v}((p \lor r \lor t) \land (r \lor p) \land (\neg t \lor \neg r \lor p)) = V$ y, sin embargo, $\overline{p} = F$. Es decir, existe una asgignación para las que ambas fórmulas obtienen valores de verdad distintos.

Solución al ejercicio 4.

- 1. **Falsa.** Consideremos la asignación v(p) = F. Entonces $\overline{v}(p \leftrightarrow p) = V$ y $\overline{v}(p) = F$;
- 2. Verdadera;
- 3. Falsa. Consideremos la asignación v(p)=F. Entonces $\overline{v}(\neg p)=V$ y $\overline{v}(p\leftrightarrow \neg p)=F$;
- 4. Verdadera:
- 5. Verdadera;
- 6. Verdadera;
- 7. **Falsa.** Consideremos la asignación v(p) = F, v(q) = V y v(r) = F. Entonces $\overline{v}((p \lor q) \to r) = F$, ya que $\overline{v}(p \lor q) = V$ pero $\overline{v}(r) = F$. Por otro lado, $\overline{v}((p \to r)) = V$ ya que v(p) = F y v(r) = F. Por lo tanto, $\overline{v}((p \to r) \lor (q \to r)) = V$.

Otra respuesta válida sería la asignación $v(p)=V,\,v(q)=F$ y v(r)=F. La comprobación de los detalles queda como ejercicio.